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Preface

More than 80% of our present energy consumption is chemical and non-renewable
(coal, oil and gas). The most important renewable energy alternatives (wind and
solar energy) produce intermittent electric energy and are also inadequate for most
transportation options. The renewable transition will require a collective effort using
many different types of energy conversion and storage devices and technologies to
entirely remove the dependence on non-renewable fossil fuels. Many technologies
have only recently entered the commercial market, with many others still not yet
commercialised. This is due to the requirement for technologies to be researched
further to understand how they can be improved. Sensors for the measurement and
monitoring of energy conversion and storage devices are needed to improve our
understanding of such technologies.

This volume intends to provide a brief research source for micro-optical sensors
and energy conversion and storage devices, discussing fundamental aspects as well
as cutting-edge trends. This volume provides industry professionals, researchers and
students with the most updated review on modern energy conversion and storage
technologies, as well as micro-optical sensors. This volume aims to help readers
identify technology gaps and develop new materials and novel designs that lead to
commercially viable non-fossil energy systems.

The editors and authors are grateful to the ENERSENSE programme, the
ENERSENSE team and NTNU Team Hydrogen at the Norwegian University of
Science and Technology (NTNU) for supporting and helping on this book volume.

Trondheim, Norway Jacob J. Lamb
Bruno G. Pollet
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Part I

Optical Properties for Sensors



Introduction 1
Jacob J. Lamb, Odne S. Burheim, and Dag R. Hjelme

In many recent research projects, research is conducted between several different
fields, with experts working together to achieve a common goal. The development of
nanostructures for use in battery technologies is one example, where the fields of
electrochemistry and nanoscience have come together to achieve a common goal. In
order to understand and develop research that integrates multiple fields of research,
experts in the required fields must come together. Concerning modelling and
simulations, the computation requires variable verification through experiments.
This relies on measuring the most critical properties in sufficient detail in terms of
numerical and geometrical precision. Electrochemical energy conversion and stor-
age devices are one such case where measurements of high resolution, in regard to
their geometrical precision within a device, are required.

Optical fibre-based sensors have the potential for being used on a microscopic
geometric scale with very high precision. With electrochemical energy storage
devices becoming thinner in order to improve their performance, the size
requirements for sensor systems is in the range of 5–500 μm. This book is intended
to uncover the possibilities and requirements to integrate the fields of optical fibre-
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based sensors in electrochemical energy storage systems, allowing the improvement
of variable resolution in their experimental model verification research.

Dimensions of Electrochemical Energy Storage Devices

Energy is a property defined by mass, geometry and time. The units of energy
(e.g. Joule, Nm or kg m2s�2) illustrate this. Energy is exchanged by means of heat
and work, as defined by the laws of thermodynamics. It can be stored or change
form. In electrochemical (and electric) energy storage, electrical work is converted
into latent work (a chemical potential) and heat. Heat, beyond reversible heat (TΔS),
is an indication of lost work from various forms of friction during energy conversion
or transport processes. This heat (or loss of work) increases with the rate of energy
conversion. Energy storage devices convert energy in order to store or release
energy, and modern energy storage devices are often developed to convert energy
more effectively (faster), rather than with higher efficiency [1].

Energy conversion between electric energy and chemical energy relies on elec-
trochemical cells, such as lithium-ion batteries, supercapacitors, water electrolysis
and hydrogen fuel cells [2]. These are reactors where thin layers of active and
passive components are assembled in several layers. Typically, the active layers
have a thickness below 200 μm, with many as thin as 10–20 μm [3–6].

Inside these rather thin layers, the conversion of electrical and chemical energy
takes place. Increases in temperature due to irreversible reactions or friction within
these materials that generally have a rather low thermal conductivity
(0.05–1 W K�1 m�1). In terms of chemical processes, degradation mechanisms
begin to occur and increase as the temperature increases [7, 8]. These reactions can
be traced or sensed by highly localised temperature measurements. Understanding
such processes to a high resolution within such small geometric spaces requires
applying sufficiently small sensors that are at the same time inert to the ongoing
processes. In several cases, optical fibres can be tuned concerning size and detection
variable without affecting the quality of the sensor. It is fair to say that optical fibre-
based sensors are a developing tool for improved understanding and model verifica-
tion within electrochemical systems. An overview of the electrochemical
technologies and possible optical fibre sizes is shown in Fig. 1.1.

Electrical Versus Optical Sensors

The detection of external stimuli on electronic sensors can often be segregated into
the terms active or passive sensing. By the use of an excitation signal, the active
sensor will change in response to an external effect and produce the output in the
form of the change in current or voltage. A thermistor is a typical example of an
active temperature sensor. For passive sensing, there is no need for an excitation
signal to produce the current or voltage in response to the external stimuli.
Thermocouples are often used as passive temperature sensors. Sensors based on

4 J. J. Lamb et al.



electronic circuit systems are convenient, cheap and simplified but have limitations
when used for monitoring harsh environments such as oxidising (pH too) fluids, in
high temperatures or high pressure, and have a size demand.

Optical fibre (OF) sensors for temperature, pressure and strain sensing have been
utilised in many industrial applications in the last decade. Combined with the
robustness of the sensor design for monitoring in harsh environments, OF sensors
are also immune to electromagnetic interference. Active or passive sensing with OF
sensors offers remote multiplexed and multipoint sensing capabilities, simplified
design and real-time monitoring of temperature, strain, humidity or concentration of
a specific chemical in complex mixtures. Active sensing with OFs utilises a light
source such as a laser or a broadband source as the excitation signal that responds to
an external stimulus measured by a photodetector. In passive sensor with OFs, the
excitation signal or light source is omitted so that only the photodetector detects the
background light. Active or passive OFs are organised in intrinsic or extrinsic sensor
configurations. Extrinsic OF sensors monitor the medium in the exterior of the OF;
whereas the intrinsic OF sensors monitor the interior medium that responds to
changes in the exterior medium [9].

General Principles of Optical Fibre Sensor Systems

A sensor is often understood as the transducer alone, the part of the sensor that
converts the measured quantity into an electrical signal. In an optical sensor, the
transducer creates an optical signal, which then also requires an optical-to-electrical
conversion. Figure 1.2 shows an illustration of the complete sensor system.

Fig. 1.1 Overview of different electrochemical devices and possible characterisation technologies
with emphasis on optical fibres

1 Introduction 5



Although the sensor sensitivity can be defined based on the transducer alone, the
resolution and accuracy of the sensor are often dependent on the electronics. For
chemical sensors, the required specificity introduces the need for recognition of the
correct variable. These analyte molecules typically interact with binding sites or
receptor molecules, which triggers a response from the transducer. Together with the
transducer, this will be the focus of a significant part of this book, which will be
limited to fibre optic sensors.

The transducer shown in Fig. 1.2 can modulate the optical signal in various ways
(e.g. intensity, phase and polarisation), based on the source, transducer and detector
type used. A common way of doing this is through refractive index (RI) sensing,
where the recognition element converts the analyte response into RI changes that are
detected by the transducer.

The recognition is typically realised with a stimuli-responsive polymer [10] or
surface plasmon-generating layer of metal [11], and typical RI transducers include
long-period gratings (LPGs) [12], Mach–Zehnder type interferometers [13] and
tilted fibre Bragg gratings (TFBG) [14–16]. These sensors have factor that they
excite cladding modes, of which their phase is sensitive to the surrounding RI, in
common [17, 18]. The changed phase will result in an interference signal when
recombined with the core mode. Sensing of pH can be realised by coating an
RI-sensitive sensor with a polymer that changes its optical density based on pH
[13, 18]. Linear response both in acidic and alkaline solutions has been achieved
using these techniques [13]. Although these sensors are temperature dependent, the
sensitivity is an order of magnitude lower than that in LPGs.

Sensor Integration

Interrogation methods and components applied in OF sensor systems are often
specially designed for the parameters used for the monitoring. To make the sensor
system compatible with existing regulation techniques in fuel cells and electrolysers,
the components used for signal excitation, modulation and acquisition should be
designed without disrupting and reducing the efficiency of the energy storage
system. For an OF embedded in a cathode catalyst layer of a proton exchange
membrane fuel cell (PEMFC) for multipoint temperature measurements, the fibre
itself will disrupt the thickness of the layer by occupying a space equal to 125 μm in
diameter of a cylinder. With a large surface area of the layers of a PEMFC, an OF
embedded in the layer will result in small disruption of the gas diffusion or the
transportation of heat.

Fig. 1.2 General components needed for a sensor setup
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By monitoring the temperature along the OF (i.e. along a one-dimensional line in
the PEMFC), the regulation of the temperature can be controlled by cooling channels
along the same line. Therefore, for OFs in a mesh, the temperature of the cooling
channels can be controlled along with the same mesh. The inputs and outputs of the
signal have to be centralised by a control unit depending on if it is a reflection- or
transmission-based OF sensor system. Sensor fusion can be applied in such a mesh
system based on a model calibrated for that particular fuel cell in response to
controlled temperature changes.

This book intends to give an overview of selected energy conversion and storage
devices as well as describing essential optical properties required to be considered
when coupling OF-based sensors for parameter detection. Examples of integration of
OF sensors into energy conversion and storage devices are also detailed to display
the ability afforded with such sensor networks.

Acknowledgements The authors are grateful to the ENERSENSE programme and NTNU Team
Hydrogen at the Norwegian University of Science and Technology (NTNU) for supporting and
helping on this book project.
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Light Properties and Sensors 2
Markus S. Wahl, Jacob J. Lamb, Harald I. Muri, Rolf K. Snilsberg,
and Dag R. Hjelme

Light as Electromagnetic Waves

Light has the properties of both particles and waves, depending on the situation. In
Young’s double-slit interferometer, light behaves like waves, creating a pattern
similar to what one could make with water ripples in a pond.

On the other hand, the photoelectric effect proves that light consists of particles—
each with an energy of E ¼ hv, where h is Planck’s constant and v is the light
frequency. The energy of light with the specific frequency v is quantised as a photon
that represents the “particle.” The wave–particle duality can be observed in the
Youngs double slit and the photoelectric effect.

Light as a wave contains frequency, amplitude and phase; whereas, light as a
photon contains quantised energies and different momentum for different
frequencies. Light can also be described in the so-called Ray model, where only
simple geometrical laws are used to determine the refraction of light in an optical
imaging system. Further in this chapter, we will talk about the light as electromag-
netic (EM) radiation, where the EM term describes the light containing an electric
and a magnetic component in a propagating wave.

The EM wave creates charges and currents when propagating in a dielectric or
metal media (e.g. glass or gold), and carries energy and momentum that is dependent
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on the wavelength. The light interacting with charges and currents in materials are
also often referred to as EM optics. In EM optics, Maxwell’s equations are used to
solve the electric and magnetic field vectors for position and time, where the material
or the medium properties serve as the input values. The light–matter interactions in
this model are explained as an EM wave interacting with charges and currents in the
conducting materials.

The electromagnetic spectrum ranges from wavelengths 0.003 nm (gamma rays)
to 108 m (long radio waves). The wavelength range used for optical sensors can be
divided into categories of ultraviolet, visible light that our eye can see, near-infrared
(NIR) and mid-infrared (MIR) (Fig. 2.1).

The short and long light wavelengths may interact with materials in different
ways. In the MIR or NIR range, the light may interact with the vibrational states of
molecules; whereas, in the UV or VIS range the light may interact with the electron
clouds of atoms or molecules. For some wavelengths (e.g. in the NIR range), the
light can be confined and guided over long distances with small losses in silica-based
waveguides. To explain other effects such as interference or diffraction, we can have
a look at the electric component of the EMwave expressed as a function of time t and
space z!:

E
!

z!, t
� � ¼ Re A

!
exp j k z! � ωt

� �� �n o
¼ a

! cos k z! � ωt þ φð Þ� � ð2:1Þ

Here A
! ¼ a

!
exp jφð Þ is the complex envelope, ω is the angular frequency of the

light, k ¼ 2π/λ is the wavenumber and φ is the phase. The electric wave may be
understood well by observing it for t and k individually. With t ¼ 0 an immobilised
electric cosine wave is observed and distributed along z!with a period determined by
the propagation constant k. When the value kΔ z! ¼ 2π=λð Þ Δ z! ¼ 2π , then Δ z!

represents the distance equal to the wavelength period. The value of 1/k can then
be understood as the distance in radians equal to the period of the wave. With z! ¼ 0,
we are observing the cosine wave for a fixed point in space with a frequency
determined by ω. With ωΔt ¼ 2πvΔt ¼ 2π, then Δt represents the time it takes for
the wave to complete one cycle. Therefore, ω represents the frequency of the cosine-
wave in radians.

Given the EM wave, we can now understand the effect of interference by first
noting the phase travelled by the waves with the same frequency as φ ¼ kz. One
wave with phase φ1 ¼ kz1 may have constructive interference with another wave
with the same frequency but different phase (e.g. φ2 ¼ kz2), so that the difference is
φ2 � φ1 ¼ q2π, where q ¼ 0, 1, 2 are integers. For destructive interference, the
difference in phase needs to be half the period of the wave so that φ2 � φ1 ¼ qπ.

Fig. 2.1 Electromagnetic spectrum
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The light diffraction effect can be explained given the interference of waves with
the same wavelength but a different phase. When EM waves enter a slit or an
obstacle with normal incidence, the waves are refracted for many angular degrees
θ. Here, the phase for each wave can be represented by phase φ ¼ k sin θ z, where θ
ranges from 0 to 90 degrees. The difference in propagation lengths z and in angular
degrees θ creates phase differences φ2 � φ1, with q2π as constructive interference
and qπ as destructive interference. For EM waves with different wavelengths, there
are now three variables changing the phase φ ¼ k sin θ z ¼ (2π/λ) sin θ z, and the
interference will not only vary with the θ and z, but also with the colour of the light.
One example of polychromatic light diffraction is the reflection of light by a CD or
DVD that appears as a rainbow to the eye.

Despite this, light refraction by a prism is due to another effect that is different
from diffraction. Each EM wave with different wavelengths will propagate in the
prism with a different RI so that phase φ1 ¼ k1 sin θ1n1 z ¼ (2π/λ) sin θ1n1 z, is
different to φ2¼ k2 sin θ2n2 z¼ (2π/λ) sin θ2n2 z. When white light is incident on the
prism, the light will refract with different angles for different wavelengths. A wave
with a normal incidence on the prism will have the phase at the air-glass interface as
φair ¼ φprism, so that (2π/λ) sin 90 nair z¼ (2π/λ) sin θrefract n (λ) z. It can be observed
from θrefract ¼ nair/n (λ) that the refraction angle θrefract will with be dependent on
wavelength due to n (λ), which will change with different wavelengths.

Absorption, scattering, refraction or interference of light can be measured by
detecting its intensity or energy for one or several wavelengths. There are several
definitions of intensity or energy of light. Radiant flux expresses the energy emitted
per unit time (W), and spectral flux expresses radiant flux per frequency or wave-
length (W/Hz). To include the angle of incidence of light we can express radiant or
spectral intensity, which is flux per steradian (W/sr) or flux per steradian and
wavelength (W/(sr Hz)). Lastly, we have radiance or spectral radiance that takes
into account the radiant or spectral intensity reflected, transmitted or received by a
surface area of m2 (W/(sr m2)) and (W/(sr Hz m2)), respectively.

Mathematical Formalism

The following section will discuss the mathematical formalism of EM fields. The
main areas of focus will include field strength and intensity, wave interference and
polarisation.

Field Strength and Intensity
As described in Eq. (2.2), the electric field of a light wave can be expressed as:

E
!

z!, t
� � ¼ Re Em

�!
zð Þ exp iωtð Þ

n o
ð2:2Þ
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