Lecture Notes in Economics
and Mathematical Systems 624

Founding Editors:

M. Beckmann
H.P. Kiinzi

Managing Editors:

Prof. Dr. G. Fandel

Fachbereich Wirtschaftswissenschaften
Fernuniversitidt Hagen

Feithstr. 140/AVZ 11, 58084 Hagen, Germany

Prof. Dr. W. Trockel

Institut fiir Mathematische Wirtschaftsforschung (IMW)
Universitit Bielefeld

Universititsstr. 25, 33615 Bielefeld, Germany

Editorial Board:
A. Basile, H. Dawid, K. Inderfurth, W. Kiirsten



Martin Josef Geiger « Walter Habenicht
Marc Sevaux - Kenneth Sorensen
Editors

Metaheuristics 1n the
Service Industry

@ Springer



Dr. Martin Josef Geiger

University of Southern Denmark
Department of Business and Economics
Campusvej 55

5230 Odense

Denmark

mjg@sam.sdu.dk

Prof. Dr. Walter Habenicht

University of Hohenheim

Production and Logistics Management
Department

Schloss, Osthof-Nord

70593 Stuttgart

Germany

habenicht @uni-hohenheim.de

ISSN 0075-8442
ISBN 978-3-642-00938-9
DOI 10.1007/978-3-642-00939-6

Prof. Dr. Marc Sevaux
Université de Bretagne-Sud
Lab-STICC, CNRS-UEB

2 rue de Saint Maudé - BP 92116
56321 Lorient - Cedex

France

marc.sevaux @univ-ubs.fr

Dr. Kenneth Sorensen
University of Antwerp
Faculty of Applied Economics
Prinsstraat 13

2000 Antwerp

Belgium

kenneth.sorensen @ua.ac.be

e-ISBN 978-3-642-00939-6

Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009926020

(© Springer-Verlag Berlin Heidelberg 2009

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations

are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

laws and regulations and therefore free for general use.

Cover design: SPi Publisher Services

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

While the cost- and material-effective production of tangible goods has been the
emphasis of early industrialization, developed countries show an increasing impor-
tance of services. Similar to situations arising from manufacturing, optimization
problems can be identified here that can be addressed using modern metaheuristic
approaches.

The book presents a collection of articles describing recent advances in meta-
heuristics, in particular with applications in the fast developing service industry.
The compilation of these papers was preceded by the 8th meeting of the EU/ME
working group, held in October 2007 in Stuttgart, Germany. EU/ME, the European
Chapter on Metaheuristics is a working group within EURO, the Association of
European Operational Research Societies.

While some of the results given in this volume have been presented and discussed
during the 2007 workshop, a wider call for papers followed that invited all fellow
researchers to contribute to the book. Each article has been peer-reviewed by sev-
eral referees, and as a result a subset of all received articles has been accepted for
publication.

With regard to the scope of the book, applications in areas of modern services
are targeted:

e Transportation and logistics play an important role here. A bicriterion traveling
salesman problem is tackled in the article of Schmitz and Niemann, and an ap-
plication of the vehicle routing problem is studied by Rieck and Zimmermann.
Toll pricing in road networks is investigated by Dimitriou and Tsekeris, while the
article of Ortega-Mier, Delgado Hipdlito, and Garcia-Sanchez solves the prob-
lem of locating a treatment plant in a reverse logistics network. Vansteenwegen,
Souffriau, Vanden Berghe, and Van Oudheusden contribute with two articles. The
first describes the interesting application of tourist trip planning, while the other
is dedicated to the crane operations in train terminals.

e Besides classical logistical problems, areas such as production scheduling and
multi-item economic order quantity problems are addressed. The former problem
is studied by Czogalla and Fink, while for the latter a contribution is made by
Baykasoglu and Gogken.

e Moreover, a financial application is considered in the form of a index tracking
problem by the work of di Tollo and Maringer.
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The production of this volume would not have been possible without the support
of numerous colleagues. We owe our thanks to the referees, who here have to remain
anonymous. Explicitly to mention are, however, the sponsors of the 8th EU/MEeting
that contributed with their financial aid to the success of the event:

The Association of European Operational Research Societies EURO

The “Universititsbund Hohenheim e. V.”

The German Society of Operations Research GOR e. V.

The “Forschungszentrum Innovation und Dienstleistung FZID,” the research cen-
ter on innovation and services of the University of Hohenheim

Odense Martin Josef Geiger
Stuttgart Walter Habenicht
Lorient Marc Sevaux
Antwerp Kenneth Sorensen
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A Bicriteria Traveling Salesman Problem
with Sequence Priorities

Heinz Schmitz and Sebastian Niemann

Abstract This paper introduces a bicriteria version of the classical Traveling
Salesman Problem (TSP) which is motivated by various applications in the con-
text of service delivery. The additional objective allows to take priorities among
locations into account while minimizing the costs of traveling. For this, cities in the
input are given in a strict ordering, e.g., due to arrival times of delivery requests. The
goal is to compute the set of efficient solutions when both objectives are optimized
simultaneously. To the best of our knowledge, this variation of TSP has not been
studied before.

After making the notion of priorities precise, we present a local-search algorithm
to approximate the set of non-dominated solutions. While still being conceptionally
easy, our algorithm employs different means of intensification and diversification
in a way we call breadth-first local search. We maintain one candidate solution for
each possible value of the additional objective in a polynomially-sized archive, and
try to improve this set towards the Pareto front. Experimental results with test data
from TSPLIB show that this is a reasonable approach to attack the problem.

Keywords Bicriteria traveling salesman problem - Local search - Metaheuristic -
Multi-objective discrete optimization - Sequence priorities

1 Introduction

The classical Traveling Salesman Problem (TSP) has numerous real-world applica-
tions, for a recent overview we refer to [7]. A typical one is the minimum-cost tour
scheduling to fulfill delivery requests from different locations.

Example 1. Let {1,...,m} be a set of customer locations such that the earliest re-
quest is from location 1, the second earliest from 2 and so on. Obviously, minimizing

H. Schmitz ()
Department of Computer Science, Fachhochschule Trier, Schneidershof, 54293 Trier, Germany
e-mail: schmitz@informatik.th-trier.de

M.J. Geiger et al. (eds.), Metaheuristics in the Service Industry, Lecture Notes in 1
Economics and Mathematical Systems 624, DOI 10.1007/978-3-642-00939-6_1,
(© Springer-Verlag Berlin Heidelberg 2009



2 H. Schmitz and S. Niemann

traveling costs is a reasonable objective for the shipping company. However, if de-
livery time is crucial, then the tour (m,m — 1,..., 1) cannot be considered optimal
from a customers perspective since requests are fulfilled in reverse order.

One way around this is to incorporate the first-come-first-served-policy. If lo-
cations have priorities according to arrival times of delivery requests one can
additionally try to maintain this ordering while minimizing traveling costs. Obvi-
ously, both objectives are conflicting in general. In such a situation, we would like
to present the set of efficient solutions to the decision maker, i.e., the set of all
solutions such that there is no other solution having better values in both objectives.
To the best of our knowledge, this variation of TSP has not been studied before.

Due to the many applications of TSP there are also other settings where the new
objective emerges in a natural way. We have encountered the following situation in
a real-world project, where we used the approach presented in this paper.

Example 2. The manager of a single-machine production line wants to schedule
tasks such that the overall makespan is minimized. Since there are sequence-
dependent setup times this is equivalent to solving TSP instances. On the other
hand, there also needs to be achieved some level of service for different sales de-
partments that place orders. To avoid lengthy discussions about what jobs are more
important than others, all participants agreed on the first-come-first-served-policy.
So in fact, the production-line manager needs to solve TSP instances with sequence
priorities, i.e., trade-offs between both objectives have to be balanced.

Once priorities are considered in general, they can also be used to implement
other preferences, e.g., due to some customer-specific or order-specific properties.
As another example we want to mention the agent service brokering problem which
can be understood as a generalized TSP problem [2]. Among other criteria, service
requests are presented in an ordered manner by client agents. When the service bro-
ker tries to choose a set of service providers subject to minimal costs, the broker can
additionally take the priorities of services into account.

Our Contribution

Motivated by the above examples we give a formal definition of the Traveling Sales-
man Problem with Sequence Priorities (TSPwSP) which is a straightforward and
natural extension of classical TSP (Sect.2). We observe some easy facts about this
bicriteria problem.

Next we design a local-search algorithm called breadth-first local search that
combines the two typical means of heuristic search, i.e., intensification and diversifi-
cation, in a novel way (Sect. 3). To intensify the search we explore the neighborhood
of an ordered archive of candidate solutions using different neighborhood structures
and a variable search-depth (Sect. 3.1). The polynomially-sized archive is such that
it keeps one candidate solution for each possible value of the additional objective.
A well-balanced amount of diversification is achieved using tabu lists together with
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a random choice between two problem-specific perturbation operators (Sect. 3.2).
Experimental results suggest that this is a promising approach to solve TSPwSP
(Sect. 4).

Additionally, our algorithm can be seen as an implementation of a more abstract
algorithmic pattern that can be used to solve similar bicriteria problems, namely
problems where the range of at least one objective function is polynomially bounded
in the input size.

Related Work

Our algorithmic approach is in the same line with other recently published variants
of local search, such as Pareto Local Search [12] and Pareto Iterated Local Search
[3], but it also differs in a number of aspects. On one hand we also incorporate
perturbation operators [10], we make use of multiple neighborhood structures [9],
and we keep an archive of candidate solutions. For more details on related local
search metaheuristics we refer to [4].

On the other hand we exploit that the range of the additional objective function
is polynomially bounded to obtain a dense approximation for every such value, and
we do not restrict the archive to locally Pareto optimal solutions. Moreover, we
combine the mentioned aspects with tabu lists which is a well established method in
combinatorial optimization [5]. It has been successfully applied to classical TSP as
well as to other multiple-objective problems, e.g., [1, 11]. Other multiple-objective
variants of TSP that have been studied in the literature mainly consider multiple cost
matrices, e.g., [8].

2 Problem Statement

We define the Traveling Salesman Problem with Sequence Priorities (TSPwSP) as
follows. As in case of classical TSP an instance x = (m, C) with m cities consists of
some cost matrix C = (¢;,j )mxm With ¢; ; € IN. A solution for x is any permutation
t =(ay,...,ay)of {1,...,m} having costs

m—1

21(t) = Capar + Z Cai.ajq-

i=1

Additionally we assume without loss of generality that cities are labeled according
to some priority rule, i.e., the city with highest (lowest) priority has label 1 (respec-
tively, m). No extra input data is needed. To measure violations of these priorities
we define the penalty resulting from the i-th city on tour ¢ as p; = max{i — a;, 0}.
E.g., if as = 3 then city with priority 3 is visited in fifth place and hence ps; = 2.
As the second objective function we set

2(t) = ZPi~

i=1
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Note that this takes the quantity of each penalty into account. In analogy to the
tardiness measure in machine scheduling one could also count the number of non-
zero penalties or minimize the largest penalty. We do not study these alternatives
here.

It is easy to see that = (1,2, ...,m) is the unique tour with z,(¢) = 0, and that

- _((m>=1)/4, if m is odd,
nmm—1,...,1)= m2/4, otherwise.

Since no solutions with larger z,-values exist, we have for all tours ¢ that
0 < 2(1) <m/4. (1)

For notational convenience assume that m is even for the remainder of this paper.

We associate with every tour ¢ the vector z(¢) = (z1(¢), z2(¢)) where both com-
ponents need to be minimized. As is common in multicriteria optimization we say
a tour t dominates t’ if z;(t) < z1(t"), 22(t) < z2(¢) and z(¢) # z(¢'). If there is
no ¢ that dominates ¢ we call ¢’ Pareto-optimal or efficient. Observe from (1) that
for each input x the number of Pareto-optimal solutions ¢ with pairwise different
vectors z(t) is polynomially bounded in the length of x. The optimization goal for
instances of TSPwSP is to compute such a set of Pareto-optimal tours.

It is easy to see that TSPwSP is not a special case of bicriteria TSP where a sec-
ond cost matrix is given. Just note that usually z,(¢) # z,(¢') if ¢’ is a cyclic shift of
the permutation ¢. There are also some similarities to the single-machine schedul-
ing problem 1[s r¢[#(Crax, ) T;) with sequence-dependent setup times where the
overall makespan and the total tardiness both need to be minimized (for standard
notations for scheduling problems see, e.g., [15]). However, it is not clear how a
reduction from TSPwSP to this problem can be achieved such that the quality of
solutions is preserved.

3 Algorithm Design

We describe the main design ideas of our algorithm. The overall structure is rather
simple: We keep an archive A of candidate solutions, and try to improve its quality
via alternation of intensifying and diversifying phases during the search. To organize
this, we instantiate the pool template [6, 16] (Algorithm 2) to control the behavior
of an iterated local-search procedure (Algorithm 3).

To be more precise, solutions in the polynomially-sized set A = (t,11,...)
always have the property that

w(ty) =k for0 <k <m?/4. 2)

Hence we can understand A as a dense approximation of the Pareto front since it
contains one candidate for each possible value in the range of function z,. It is not
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until the final step of the algorithm that a (locally) efficient set of solutions is ex-
tracted from the set of best solutions that appeared during the search.

There is a straightforward way to generate a first version of the archive such
that (2) holds (Algorithm 1). Starting with (1,2,3,...,m) we move the first
city to the last position in the permutation via successive transpositions that in-
crease the penalty one-by-one. Then we move city 2 in (2,3,...,m,1) to the
second last position resulting in (3,...,m, 2, 1). This is repeated until we finally
get (m,...,3,2,1). Note that not every transposition during this procedure strictly
increases the penalty, e.g., when turning (2, 3,...,m, 1) into (3,2,...,m,1).

Fort = (ai,...,a,) denote by exchng(t,i, j) the transposition of a; and a;.
Then we can state the following algorithm.

Algorithm 1: init()
begin
t:=(1,2,..., m);
to:=1t; A:= {to};
k:=0;
for lastpos := m downto 2 do
for pos := 1to (lastpos — 1) do
t :=exchng(t, pos, pos + 1);
if z,(t) = k + 1 then
k:=k+1;
=1t A:=AU{}
end
end
end

return A
end

Next we describe what the instantiation of the pool template looks like. One kind
of diversification we use is a collection 7" of tabu lists T'(k) for each 0 < k < m? /4.
We take these lists to ensure that a subsequent iteration of the local search yields an
archive A" with solutions that all have z;-values different from the ones of previous
iterations. So if A = (#y, t1, ...) is the content of the archive j iterations ago, we let

T(k) = (z},....Z2)) with z{ = z1(t).

By storing values instead of solutions every tabu-list entry excludes numerous other
tours. The duration of this effect can immediately be controlled by the length-
parameter /. It is one out of just two search parameters, the other one being the
number of iterations for the halting condition.

After initializing the archive and the tabu lists, we repeatedly call the local-search
procedure intensify, we remember the best solutions found so far, update the
tabu lists and we apply one out of two randomly-chosen perturbation operators.
Inspired by the way intensification is organized (left-right sweeps, see next subsec-
tion) we call our approach breadth-first local search (BFLS). Together, we have the
following algorithmic pattern.
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Fig. 1 Every iteration has an
intensify-step

(a) followed by the
application of a perturbation
operator (b). Due to forbidden
values, the next iteration (c¢) (a) 2(A)
returns a vector z(A/,,,) which
is componentwise different
from Z(A/) Z(Anew)

<1
?(b) (©

Z2(A")

0 ) m/4

Algorithm 2: BFLS(maxlterations, [)
begin

A:=1init();

init 7 with T'(k) := @ for 0 < k < m?*/4;

repeat
A’:=intensify (4, T);
update best Archive with A’;
update 7" with A’;
choose r € {1, 2} randomly;
A:=0,(4)

until maxIterations reached ;

return efficient solutions in bestArchive
en

A detailed description of the intensify-procedure is given in Sect. 3.1 below,
while the perturbation operators O and O, are explained in Sect.3.2. They form
the second kind of diversification we use in the algorithm.

For A = (#y, 11, ...) denote its coordinates in objective space as z(A) = (z(ty),
z(t1), .. .). Then the progress of BFLS can be depicted as shown in Fig. 1.

3.1 Intensification

The execution of a single call of the intensify-procedure starts with an archive A
and performs several left-right sweeps.! During each sweep neighborhoods N/ (#;)

! Note that this intuitive name depends on the order of objectives in the graphical representation
we chose to present the Pareto front.
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Fig. 2 Archive A is updated
(a) whenever a non-forbidden
but better solution is found
in N'(#). Each left-right
sweep (b) repeats this for
k=0,1,...,m?*/4

2]

ofty € Afork =0,1,...,m? /4 are investigated in this order. Whenever a tour
t € N(t;) with z(¢) = k' is found such that

2(t) ¢T(K') and  z(t) < zi(tw) 3)

for some #;» € A, then t; is replaced by ¢ (see Fig. 2).

It has been observed in the literature that the combined use of different neighbor-
hood functions yields better results compared to a single function [3, 9]. We apply
two such functions that are efficiently computable but yet effective. The first is sim-
ply the exchange neighborhood

Ni(t) = {exchng(t,i,j) | 1 <i < j <m}.

For a second one we move every a; to some position j, i.e.,if t = (...,a;,...,
aj-,...) letmove(t,i,j) = (...,a,»_],a,»+1,...,aj,ai,...) and

N (t) = {move(t,i, j) |1 <i,j <m}.

The intensi fy-procedure alternates between N and N, after every comple-
tion of a left-right sweep. This is repeated until A is locally optimal with respect to
both neighborhood functions.
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Algorithm 3: intensify(A,T)

begin
s:i=1;
repeat

for k := 0 to m?/4 do
foreach 1 € N(1;) do
k"= z,(2);
if (3) holds then
replace #; by t in A;
end
end
end
s := (s mod?2)+ 1;
until A is locally optimal ;

return A
end

As a result of this procedure we obtain an archive A such that no #; € A can be
further improved within

Ny =l U Mo

€4 se{1,2}

So every #; is not only locally optimal for the value z,(#;) within A (f;), but it is
also a best tour for this z,-value in all other neighborhoods N (7) with ¢ € A and
s e{l,2}.

There are two more aspects worth noticing. First, even tours already known to
be dominated may contribute with their neighborhood to an improvement of the
archive (see again Fig.?2). This is because we do not restrict A to locally Pareto-
optimal solutions after each iteration.

Secondly, due to the overlapping of neighborhoods there is a variable search-
depth during intensification. If some ;45 for § > 0 is improved to #; , ; when looking
at N (#;), the search continues with ./\f,(t,é +¢) later during the same sweep. If ;s
has changed, then N(f/_;) is considered during the next sweep. It turns out that
6 can be as large as m — 1 for both neighborhood functions. To see this let 1 =
(1,...,m) and observe that

22(t) + (m — 1) = zp(exchng(t, 1, m)) = zp(move(t, 1, m)).

3.2 Perturbation Operators

When A becomes a locally-optimal fixpoint during intensification, the BFLS
algorithm makes a random choice between two perturbation operators in order to
diversify the archive while maintaining other (parts of) solutions at the same time.

The first operator simply performs a swap operation by exchanging the first
half with the second half of a tour. So if t = (ay,...,a;,ai+1,...,a,) With
i = m/2 then
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Ol(l) = (a,~+1,...,am,a1,...,ai).

This does not necessarily generate a new solution for every z,-value in the archive,
but it can be experimentally observed that a reasonable large fraction of A is rebuilt.
Note that this swap operator has the property that penalties usually change but

21(t) = 21(01(1)).

For our second operator O, we would like to obtain just the dual behavior: It should
change the z;-value of a tour t € A but z5(¢) = z2(O2(¢)). The design of such an
operator is more subtle. To our knowledge, it is not clear how many permutations ¢’
exist with z,(¢') = z,(¢) for some given 7, and how they can be computed without
exhaustive search. The numbers S(m, k) of permutations ¢ of {1,...,m} such that
72(t) = k are known as integer sequence A062869 from [14].

The idea for O, is to define an equivalence relation such that some random ¢" =
(aj,....a),) with z5(¢") = z>(¢) can be chosen efficiently from ¢’s equivalence class
whent = (ay,...,a,) is given. Let

Pty={1<i<m|p =0}

be the set of positions in ¢ that do not contribute to z,(¢). We say that ¢’ is a variant
of #, in symbols 7 ~ ¢/, if and only if for I <i < m it holds that

l.ieP(t)=p =0
2.i¢Pt)=a; =a

So ¢’ is obtained from ¢ by permuting elements from V(t) = {a;|j € P(t)} without
introducing new penalties. It is easy to see that & is an equivalence relation and that
t ~ t' implies z5(t) = z,(t’). Observe furthermore that by ii) the part of a tour ¢ that
is responsible for #’s penalty is carried over to every variant of 7.

In general, there are permutations ¢ having ~-equivalence classes of exponen-
tial size, e.g., if t = (m,m — 1,...,1) then every permutation of the cities m,
m —1,...,m/2 yields a variant of . However, the following producer-consumer
type of algorithm efficiently computes O,(¢) by making a uniform random choice

Algorithm 4: O,(t)

begin
t =1,
(dy,...,dy):=(0,...,0);
for i := m downto 1 do
ifi € VV(t) then d; := 1 end,
ifi € P(t) then
choose r € {i < j <m|d; = 1} randomly;
al:=r;
d, ;=0
end
end

return ¢’
en
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from [t]~. A 0-1-vector (dy, ..., d,,) stores the candidates from V(¢) (producer) that
can be put at position i € P(¢) (consumer) as i decreases from m to 1.

It must be noticed that there are permutations with [t]~ = {t}, e.g., if t =
(2,1,4,3,...,m,m — 1). In such an undesirable case O, has no effect. We finally
prove in this section how many permutations have single-elemented equivalence
classes. To do so, we first show the following characterization.

Lemma 3. Lett = (ay,...,ay,) be a permutation of {1, ..., m}. Then it holds that
[t]~ = {t} ifand only if pj > O foralli € P(t) and j withi < j < a;.

Proof. We prove both implications by contraposition. So first assume that there is
some i € P(f) and some j withi < j < a; such that p; = 0. If we putq; in ¢ at
position j there is penalty 0 at this position because a; > j. On the other hand, we
get from p; = Othata; > j > i. So we can also place a; at position i in ¢ while
having penalty O there as well. Since i # j the transposition of a; and a; yields a
strict variant of 7.

Conversely, let t' = (a},....,a),) € [t]~ with ¢’ # . So there must be some
a; € V(t)andi,j € P(t) witha; = a} but i # j. We may assume without loss
of generality that j > i since it cannot be the case that j < i for all a; € V().
Because p} = 0 it holds that a; = a; > j and with P(z) = P(t’) we see that also
pj = 0. Together, we identified some i € P(t) and j withi < j < a; such that
p; =0. O

Next we want to count all permutations with the above property. Assume P(t) =
{ii,...,ix} forsome 0 < k <mandi; < --- < ip. For every i; € P(t) it holds
that a;, € {i;,...,m} and due to the previous lemma we have ;4| € {a;,,...,m}.
In order to count these possibilities we consider a tree B(m) with its root labeled 0,
and such that every node with label n has successors labeled n + 1,...,m. Then a
node with label 7 at depth d means a;, = n and iy4+; = n + 1, and every leaf of
B(m) corresponds uniquely to a permutation ¢ with [t]~ = {¢}. An easy induction
shows that B(m) has 2"~! leaves.

Theorem 4. There are 2"~ permutations of {1, ..., m} with [t]~ = {t}.

Although exponential, this is a fast decreasing fraction of the size of the solution
space m! as can be seen as follows. Recall that without loss of generality m is even.

m/2—1

m! = 2 (%)' [T G+1/2)

i=l1
(5 )

So, e.g., for m = 48 this means 2"~ /m! < 10746,



