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CHAPTER 1 

Introduction: 
The Emergence of a New Technology 
Maria Teresa Giardi* 

The possibility of producing a new generation of technological devices that integrate the 
knowledge coming from various fields (chemistry, biology, computer science, electronics, 
engineering) is attracting increasing attention. This trend has introduced a new technologi

cal science called "molecular electronics" or "nanotechnology". It is a technology based on the use of 
molecular scale components such as a single or a few molecules, carbon nanotubes, nanoscale metal
lic and/or semiconductor wires, etc. that function as electronic components. 

RC-biotechnology refers to the use of Reaction Centres (RC) and more in general of photosyn-
thetic proteins, for technological purposes. It regards the construction of photo optical-electrical 
devices based on photosynthetic proteins. Photosynthetic RC proteins are suitable biological mate
rial for the construction of devices because they exhibit light-induced electron transfer across lipid 
membranes. Many chromophore molecules, such as bacteriochlorophylls, bacteriopheophytins and 
quinones, are arranged in RCs with relevant interchromophore distances and relevant gaps in the 
energy levels of each chromophore to ensure unidirectional electron transfer. 

The development of biosensors represents a valuable step towards the advancement of pollutant 
monitoring in ecosystems. Biosensors are analytical devices that consist of a biosensing element 
(enzyme, tissue, living cell) that provides selectivity and a transducer that transfers the chemical 
signal to an electrical signal for further processing. Therefore even a single protein molecule of an 
RC is a sophisticated molecular device. They are able to generate supramolecular and self-assembling 
structure and, hence, are natural nanostructures. 

In recent years, progress on isolation of RC and of photosystem II (PSII) particles has been 
obtained, and it is now possible to isolate quite stable and pure preparations from plant thylakoid 
and cyanobacterial membranes by detergent solubilization. These preparations are capable of 
light-induced oxygen evolution, at high rates, and/or electron transfer in the absence or presence of 
benzoquinones as artificial electron acceptors. The RC isolated from photosynthetic bacteria is par
ticularly stable against denaturation. Moreover, recent advances in RCII biochemistry and molecu
lar biology (site-directed mutagenesis) have produced a number of mutants resistant to extreme 
conditions, showing altered amino acid composition of the D l protein. 

RC-biotechnology exploits the characteristics of the pigment-protein complexes located within 
the membrane of plants, algae, cyanobacteria and bacteria. However, the structures, functions and 
potentials of the photosynthetic complexes are different in the various photosynthetic organisms. 
We can distinguish the technological appUcations obtained from the three types of photosynthetic 
proteins from bacteria (RC), from cyanobacteria, algae and higher plants (RCII) and rhodopsin 
from halobacteria (bR). RC from bacteria was utilised for building several biochip types; 
RCII-technology includes applications such as photonic-crystal bandgap materials, biosensors and 

*Correspondlng Author: Maria Teresa Giardi—Group on Photosynthetic-Based Biosensors 
National Council of Research-IC, Via Salaria km 29.3, Area of Research of Rome, 
Rome, Italy. Email: giardi@mlib.cnr.it 

Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and BiodeviceSy 
edited by Maria Teresa Giardi and Elena V. Piletska. ©2006 Landes Bioscience. 
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Figure 1. Schematic representation of a biosensor (A); Photosynthetic Photosystem II and Reaction Centre 
activities (B). 

biodevices; finally, bR-technology includes a reversible holographic memory, an ultrafast 
random-access memory, pattern-recognition systems and photoelectrical cells. 

The advantage of using RC biodevices mainly depends on the specificity of the enzyme to recog
nize certain analytes or particular physicochemical conditions. Moreover, RC and PSII are especially 
suitable because of their physiological activities that can be easily monitored by amperometric, po-
tentiometric and optical systems (Fig. 1). 

Why and How to Make a Photosynthetic-Based Biosensor 
Despite initial enthusiasm, biosensors have not yet achieved the prominent conmiercial applica

tion that was initially predicted. This slow progress is not surprising since biosensor development 
requires the combined expertise of biologists, chemists, biotechnologists, biochemists, physicists, 
and mechanical and electrical engineers. It is rare to have so many disciplines in a commercial 
company. 

The construction of RC-based devices requires a multidisciplinary approach where the device is 
obtained in various stages. First of all the physiology of the photosynthetic organism should be 
considered since it is essential before designing the biodevice. For instance, the choice of a thermo
philic cyanobacterium as a biomediator guarantees the stability of biosensors for monitoring herbi
cides. The second stage is the isolation of the biomediator, its stabilization and immobilization by 
biochemical and chemical techniques. Using molecular biology, mutations on PSII complexes that 
produce specific properties can be carried out; e.g., a modification of a single amino acid on Dl 
protein generates a resistance towards herbicide subclasses. Bioinformatics is then applied to optimise 
the molecular modifications on the biomediator. The next stage is the study of suitable transduction 
system for the detection of the chosen PSII activity and the analyses of the data. Finally, biosensor 
prototypes for specific applications are designed (e.g., field portable, device for laboratory, miniature 
size prototype etc.). 

Although it utilises the same basic biomediator, the tech applications can be divided into differ
ent classes, based on different concepts of the RC properties. 

Potential and Prospective of the RC-Biotech for Basic Research 
and Applications 

The production of mono/multi-molecular layers is now a reality. The layers are made up inte
grating natural or engineered photosynthetic systems wdth synthetically derived molecules that act 
as a means of transduction and immobilisation. 

A common feature of the various RCs is the trigger of the photochemistry by solar energy, but 
there are differences in the way they convert energy and consequently on their potential application 
for the building of biochips, biosensors, photovoltaic and photoelectrochemical cells, holographic 
memory etc. 



The Emergence of a New Technology 

The present RC-technology is geared around die concept that the engineered RC can be the core 
of numerous innovative devices. The technological applications described above can be divided into 
distinct classes of innovative products based on the different RC-biochip properties. However, the 
skills and knowledge required to manipulate and setde the RC complex properties are common. 
Single changes in amino acid sequences can create more stable biomediators and increase the effi
ciency of selected photochemical processes. Moreover, the required functionality for new devices 
can be found in molecules that are in natural abundance. 

The emergence of RC-technology would perhaps be a benefit to those looking to establish com
mercial devices. Certainly the number of patents based on photosynthetic proteins that are applied 
for and granted every year is increasing, and that is a clear indication of its future commercial 
success. 

The data summarised here can serve as a basis for the development of a commercial biosensor for 
use in rapid prescreening analyses of PSII pollutants, minimising cosdy and time-consuming labora
tory analyses. 

The aim of this book is to give a general description of the basic and technical research in this 
sector. 



CHAPTER 2 

A Brief Story of Biosensor Technology 
Marco Mascini* 

Introduction 

The vast literature in the last 40 years related to the keyword Biosensor reveals without doubt 
that the scientific field is attracdve! We realized at once that several researchers with different 
background are involved in this field of research, from chemistry to physics, to microbiol

ogy and of course to electrical engineering, all are deeply involved in several facets of the assembly of 
the object "Biosensor". 

Looking at the past we realize also that the concept of Biosensor has evolved! 
For some authors, especially at the beginning of this research activity, i.e., about 40 years ago, 

Biosensor is a self contained analytical device that responds to the concentration of chemical species 
in biological samples! This is clearly wrong, but it has been very difficult to clarify this point! No 
mention of a biological active material involved in the device! Thus any physical (thermometer) or 
chemical sensor (microelectrode implanted in animal tissue) operating in biological samples could 
be considered a Biosensor. We agree that a biosensor can be defined as a device that couples a 
biological sensing material (we can call it a molecular biological recognition element) associated 
with a transducer. 

In 1956 Professor Leland C. Clark publishes his paper on the development of an oxygen probe 
and based on this research activity he expanded the range of analytes that could be measured in 1962 
in a Conference at a Symposium in the New York Academy of Sciences where he described how to 
make electrochemical sensors (pH, polarographic, potentiometric or conductometric) more intelli
gent by adding "enzyme transducers as membrane enclosed sandwiches".^ The first example was 
illustrated by entrapping the enzyme Glucose Oxidase in a dialysis membrane over an oxygen probe. 
The addition of glucose determined the decrease of oxygen concentration in proportional relation! 
The first biosensor was described in the published paper coining the term "enzyme electrode"."^ 
Then subsequendy in 1967 Updike and Hicks use the same term "enzyme electrode" to describe a 
similar device where again the enzyme glucose oxidase was immobilized in a polyacrylamide gel 
onto a surface of an oxygen electrode for the rapid and quantitative determination of glucose.^ 

Besides amperometry Guilbault and Montalvo in 1969 use glass electrodes coupled with urease 
to measure urea concentration by potentiometric measurement. 

Starting from 1970, several others authors start to prove the concept of Biosensors, the coupling 
of an enzyme and electrochemical sensors. This was at the beginning a Biosensor, a strange research 
where biological elements were combined with electrochemical sensors. 

In the electrochemical community at that period the research on ion selective electrodes (ISE) 
was very active and the idea to extend the range of sensors to non electrochemical active compounds, 
and even to non ionic compounds, like glucose, has been very well accepted. We saw at that time the 
possibility to extend much more the research activity. The groups active in ISE development have 
been definitively the first to shift to the development of electroanalytical biosensors. 

•Corresponding Author: Marco Mascini—Biosensors Laboratory, Department of Chemistry, 
University of Florence, Florence, Italy. Email: mascini@unifi.it 

Biotechnological Applications ofPhotosynthetic Proteins: Biochips, Biosensors and BiodeviceSy 
edited by Maria Teresa Giardi and Elena V. Piletska. ©2006 Landes Bioscience. 
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Table 1. Biosensors 

Receptors Transducers 

Tissues • Electochemical 
Microorganisms • Optical 
Organelles • Thermometric 
Cell receptors • Piezoelectric 
Enzymes • Magnetic 
Antibodies 
Nucleic acids 
Biomimetic receptors 

I recollect very elegant research starting from Prof. G. Rechnitz involving the development of an 
"amygdaline" sensor based on the coupling of an Ion Selective Electrode (cyanide ISE) with 
betaglucosidase to give benzaldeyde and cyanide.^ 

But this was just the beginning of a large activity where the obtained couplings have been multi
plied by changing the "biological element" and the kind of transducer! Enzyme, multiple enzymes, 
organelles, bacteria, specialized biological tissue, containing specific enzymes were coupled to 
potentiometric or amperometric devices, then optical, thermometric, piezoelectric, etc. We con
tinue also today to enlarge the list of physical sensors with the last entry of "magnetic devices". 
Recendy the concept evolved again in the tentative to replace or mimic the biological material with 
synthetic chemical compounds! Table 1 demonstrates all kinds of couplings have been used in order 
to obtain Biosensors. 

Enzymes (and all biological elements based on the enzymes contained in it) represent the class of 
what is now called "catalytic elements". The other important class is represented by the "affinity 
elements", namely antibodies, lectins, nucleic acids (DNA and RNA) and recendy synthetic ligands. 

Biomolecular sensing can be then defined as the possibility to detect analytes of biological interest, 
like metabolites, but also of environmental concerns or of any other technological field where the 
concentration of a specific compound is important to be quantified in a complex sample. 

The exploitation of the selectivity of the biological element is the "driving force" of the Biosensor. 

The Problem of Amplification 
Catalytic events or affinity events have not the same scheme of transduction. If the biological 

recognition element present in the sensing layer is an enzyme or generally a biocatalyst, a reaction 
takes place in the presence of the specific target analyte and an increasing amount of coreactant or 
product is consumed or formed, respectively, in a short time depending on the turnover. In this 
scheme the amplification step is inherent and a large chemical amount can be obtained from the 
sensing layer. 

In contrast the use of the antibodies for the detection of antigens has not an amplification stage 
involved and then the "affinity" reaction should be amplified in order to have a clear transduction. 
We have two possibilities, one is the use of a bioconjugate involving a bound enzyme, like in the 
classical ELISA test; the second is the inherent amplification given by the mass of the biological 
element involved, a piezoelectric device (sensitive to mass) can detect minute amount of large 
proteins (like antibodies) if they are attracted on the surface of the sensor. 

With the same scheme surface plasmon resonance can be sensitive to minute amount of large 
molecule reacting at the surface of the electrode. 

The Biological System 
The main problem of the biological system, catalytic or affinity, is the associated fragility and the 

operational activity. Most proteins have an optimal pH range in which their activity is maximal; this 
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pH range should be compatible with transducer. Moreover the most of the biological systems have a 
very narrow range of temperature (15-40°C). 

The most important problem and main drawback for industrial exploitation is the short Ufetime 
associated with the biological elements. During last years several Meeting and Joined Actions were 
specifically dedicated to this point which is still object of research work. Lifetime or at least shelf 
lifetime of months or few years are the prerequisite for a suitable market and the fragility of the 
assembled systems has always limited the diffusion of biosensors in the market. 

Immobilization of the Biological System 
The technique of the immobilization of the biological elements has changed according with the 

different events, catalytic or affinity. The simplest way to retain enzymes on the tip of a transducer is 
to trap them behind a perm-selective membrane. This method has been mainly used in addition to 
embedding procedures in polyacrylamide gels. Then, mainly in the 80th, the trend shifted to use 
disposable membranes with bound bioactive material. Several companies put on the market 
preactivated membranes suitable for the immediate preparation of any bioactive membrane and this 
appeared as a real improvement at least for the easy use of enzyme sensors. 

The removal of intereference has been also the other important aspect for the wide use of 
biosensors for industrial processes. The two problems have been solved by using multilayer 
membranes, such as those developed by Yellow Springs Instrument Co. (for glucose or lactate 
electrodes), with the enzyme sandwiched between a special cellulose acetate membrane and a 
polycarbonate nucleopore membrane. The main role of the membrane is to prevent proteins 
and other macromolecules from passing into the bioactive layer. Cellulose acetate membrane 
allows only molecule of the size of hydrogen peroxide to cross and contact the platinum anode, 
thus preventing intereference fi-om ascorbic acid or uric acid, for example, at the fixed potential. 
Such configuration has been used by several researchers in their biosensor assembly. But at the 
same time several recipes of immobilization of enzymes were published and several laboratories 
developed their own procedure for immobilizing the biological element, sometimes also 
patented! 

One approach was also the development of disposable sensor, based on combination of screen 
printed electrochemical sensors with enzyme adsorbed on the electrode surface (in this case mainly 
carbon). The use of the sensor just for one measurement limited the use of complicated immobi
lization procedures to simplest as possible, like only based on adsorption on carbon surface. This 
electrode surface acted as a sponge, and the large protein was easily immobilized even if the bond 
was weak. This approach was useful only for a quick and rapid measurement. 

The immobilization of antibodies soon revealed that random immobilization of proteins was 
not effective and a new research in this direction started. Several researchers start to think how to 
immobilize proteins using an exact deposition. Technology, like self-assembling, based on gold 
surface and thiol groups prove to have a high potential. Proteins immobilized on the surface of the 
transducers were now aligned and their ligands group were directed toward the exterior ready to 
fix the metabolite. 

This technique become important in the antigen-antibody reactions and even more in 
immobilization of nucleic acids such as 20-30 bases' oligonucleotides, which single strand 
conformations were looking for their complementary sequence of bases in the sample material. 

Important Steps in the Biosensor Research 
I want just concentrate my talk on three points which I consider very relevant in the Biosensors 

development in the last 30 years: 

The Case of Glucose Pen 
In 1984 Cass and coworkers publish a scientific paper where the team prove the use of ferrocene 

and its derivatives as mediators for amperometric biosensors. Few years later the Medisense Exatech 
Glucose Meter was launched in the market and become the world s best selling biosensor product. 
The initial product was a pen-shaped meter with a disposable screen printed electrodes. 
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There were several advances in this product; first of all, the miniaturized instrument, just a 
pen with a small screen, where the current, recalculated in mg/dL of glucose was directly 
displayed. Then the concept of disposable screen printed electrodes, which allowed discarding 
the sensor after the use, and more important allowed the elimination of the calibration step. 
This was an incredible step in the sensor community. All sensors known, from pH glass 
electrodes to all kind of ISE, etc. should pass the "calibration step", where the sensor must be 
calibrated every day and sometimes before every measurement. The disposable screen printed 
electrodes do not need the calibration which simplifies enormously the use of it. The sensors 
became simple and user-friendly objects and diabetic people started to use it for individual 
monitoring and a large market was created. In 1996 Exatech was sold to Abbott for 867 million 
of US dollars. 

The performance and design of several strip analyzers based on different electrochemical principles 
and meters has been published.^ The book described around 10 different home glucose meters but 
it is not the final number because the new instruments continue to appear on the market. 

The Wearable Artificial Pancreas 
One major interesting application of Biosensor has been the development of a wearable artificial 

pancreas and the studies associated with development. This devise has never reached the market 
stage even if several scientists addressed the problem and demonstrated the possibility to resolve it. 
In 1976 Clemens et al. incorporated an electrochemical glucose biosensor in a "bedside artificial 
pancreas".^ It was later marketed by Miles (Elkhart) as the Biostator Glucose-Controlled Insulin 
Infusion System (60 I^ , 42 x 46 x 46 cm) (Fig. 1). 

This instrument became very well known in the medical endocrinology community. It regulated 
the glucose value injecting insulin or glucose into the bloodstream of the patient. 

Figure 1. A general view of Biostator. 
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Figure 2. A general view of the Betalike (A) the artificial pancreas developed and marketed by Esacontrol, and a 
scheme of the system (B). Principle of operation: The device draws a small amount of blood from a peripheral vein 
and then infuse it into another one. In order to prevent coagulation inside the tubes the blood is diluted and 
heparinized at the tip of the drawing needle. The glucose measurements are carried out on the ultrafiltrate liquid 
obtained from a micro hemofilter cartridge. On a minute basis the Betalike infiises into the blood stream the 
amounts of insulin and glucose, calculated by means of a mathemathic algorithm, which are needed to reach and 
maintain the selected glucose level. 

Although Biostator production was soon discontinued, it was later substituted by a similar in
strument called Betalike produced and distributed by a small Italian company in 1990. 

The Betalike had some innovations and improvement over Biostator: blood was taken from the 
patient via a double lumen catheter (6 ml/h) diluted with a buffer solution (1:9) with the addition of 
3 units/ml of heparin. The diluted blood was then dialyzed in a miniaturized hollow fibre 
haemofiltering cartridge (filtration surface was 50 cm ;̂ membrane cut off about 35 000 daltons) 
which allows only the haemofiltrate to reach the sensors while the blood cells and proteins are 
reinfiised into the patient (Fig. 2). The value of glucose could then give a signal for feeding in 
another needle positioned in the bloodstream, insulin or glucose according to the glucose profile 
(value and trend). This instrument opened new opportunities to study the diabetes and the glucose 
variation during the day. 

Figure 3, shows one representative case of three days continuous record of an insulin-dependent 
diabetic treated with continuous subcutaneous insulin infusion. The continuous monitoring of glucose 
concentration disclosed a day-by-day variation of glycemia in diabetics. Then a large research activity 
started to miniaturize the system in order to obtain a real wearable artificial pancreas. The first step 
was miniaturizing the sensor. Today we have on the market several small instruments able to 
monitor glucose continuously up to one week.̂ '̂  

The Appearance ofBIAcore on the Market 
In 1982 researchers from Pharmacia started to work jointly with physics and biochemistry 

professors at Linkoping University in order to develop a new bioanalytical instrument able to monitor 
the interactions between biomolecules. In 1984 a new company Pharmacia Biosensor was created. 

The company introduced a new instrument, BIAcore, in 1990 (Fig. 4). The instrument had a 
very high impact on the Biosensor community. The price of the instrument was more than 100 
times higher than any other electrochemical or optical apparatus. The instrument based on surface 
plasmon resonance (SPR) technology was a fully automated instrument which monitored the 
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Figure 3. A typical experiment performed by clamping a "normal" value of glucose. 

biomolecular interactions and included a sample handling equipment. The instrument performed 
the immobilization of the biomolecules, the SPR analysis and the regeneration of the sensor surface 
automatically by a microprocessor and this was a great advantage over the more traditional sensor 
technologies. 

The autosampler was able to handle up to 192 samples without operator assistance. It increased 
the reproducibility of the analysis and provide a large sample capacity. The instrument stabilized the 
temperature at 0.1 °C and allowed analysis of biomolecular kinetics. 

The BIAcore instrument also eliminates the moving components that are generally associated 
with prism-based instrumentation. However the real advancement of the instrument was the unique 
sensor chip technology to simplify the immobilization of biomolecules to the sensor surface. 

Figure 4. A general view of BIAcore. 
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Figure 5. Biacore sensor chip. 
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Figure 5, is a scheme of the BIAcore sensor chip. The chip consisted of a glass slide embedded in 
a plastic support; the glass surface is 1 cm^ and has approximately 50 nm of gold coated on one side 
of the glass. The gold layer was then covered with dextran acting as a linking layer in order to 
facilitate the binding of biomolecules. Dextran, an old Pharmacia product, acted as a support for 
biomolecules but also protected the gold layer from nonspecific binding which is the main problem 
of this kind of apparatus. Typical protein concentrations required for immobilization are in the 
range 10 to 100 ^ig/ml. Usually, the chips can be used for more than 50 measurements without a 
notable loss in sensitivity and reproducibility. Moreover the company provided the sensor with 
alternative linking and binding layers (for protocols see http://www.biacore.com). The flow injec
tion system has been designed with miniaturized sample loops, valves and conduits reducing drasti
cally sample and reagent volumes with help of silicone layers. This is, of course, very important 
when dealing with valuable biological reagents. 

The instrument was sold initially mainly to pharmaceutical companies looking for mono
clonal antibodies (antibodies were ranked and selected for specific conditions). The instrument was 
very powerful in its automatic performance which significandy cut the time for the evaluation of the 
binding constant between antibodies and antigens. Consequently it was also applied to the study 
several other affinity reactions and became an important instrument in several research laboratories. 
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CHAPTER 3 

Photosystem II: 
Composition and Structure 
Aspasia Spyridaki,* Emmanuel Psylinakis and Demetrios F. Ghanotakis 

Introduction 

Photosystem II (PSII) is a light driven, water-plastoquinone oxidoreductase which catalyses 
the most thermodynamically demanding reaction in biology.^ This highly endergonic 
reaction splits water into molecular oxygen, protons and electrons, thereby sustaining an 

aerobic atmosphere on earth and providing the reducing equivalents necessary to fix carbon dioxide 
to organic molecules, creating biomass, food and fuel. 

PSII is a multisubunit pigment-protein complex embedded in the thylakoid membranes of higher 
plants, algae and cyanobacteria. Its unique properties require an elaborate arrangement of integral 
membrane proteins, specifically bound pigment moieties, extrinsic proteins and inorganic cofactors. 
Light energy is absorbed by light harvesting complexes that contain most of the pigments associated 
with PSII. Excitation energy is transferred from this antenna to the "core" of the PSII complex, 
where the primary photochemistry takes place. This photochemical part of PSII contains the ultra-fast 
and very efficient light-induced charge separation and stabilization steps that occur vectoriaUy across 
the membrane. Finally, the photochemical reactions result in the accumulation of oxidizing equiva
lents in the oxygen-evolving complex (OEC); four oxidizing equivalents are used to convert two 
molecules of water into oxygen. 

The photochemical and enzymatic reactions catalyzed by PSII are stricdy conserved among all 
oxygenic photosynthetic organisms including cyanobacteria, eukaryotic algae and higher plants, 
while quite diverse pigment-protein complexes have developed for light-harvesting antenna systems 
associated with PSII.'^'^ These antenna systems, though similar in fimction, differ in their structures, 
with those of higher plants and green algae (LHCP) being located in the thylakoid membrane while 
those of most classes of cyanobacteria (phycobilisomes) are bound extrinsically to the stromal sur
face of PSII. With regard to protein structure, the PSII complex differs mosdy in peripheral subunits 
between cyanobacteria and higher plants but shares the core parts in common. 

The PSII core is the minimal unit which is capable of catalysing full PSII function.^' It is com
posed of a reaction center, which consists of the D l and D2 polypeptides, cytochrome b559 (Cyt 
b559), the psbl protein and six chlorophyll (Chi) and two pheophytin (Pheo) molecules, an inner 
antenna of chlorophyll-binding proteins termed CP47 and CP43, and the extrinsic lumenatly bound 
proteins of the OEC, 33 kDa protein (psbO), 23 kDa (psbP) and 17 kDa (psbQ), in higher plants 
and green algae, whereas in cyanobacteria psbP and psbQ are replaced by the 15 kDa psbV (cyto
chrome c550) and the 12 kDa psbU."^ These intrinsic and extrinsic proteins, together with a number 
of low-molecular weight subimits '̂  make up the core complex. 
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