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Series Foreword

The Norwegian government established the Abel Prize in mathematics in 2002, and
the first prize was awarded in 2003. In addition to honoring the great Norwegian
mathematician Niels Henrik Abel by awarding an international prize for outstanding
scientific work in the field of mathematics, the prize shall contribute toward raising
the status of mathematics in society and stimulate the interest for science among
school children and students. In keeping with this objective, the Niels Henrik Abel
Board has decided to finance annual Abel Symposia. The topic of the symposia
may be selected broadly in the area of pure and applied mathematics. The symposia
should be at the highest international level and serve to build bridges between
the national and international research communities. The Norwegian Mathematical
Society is responsible for the events. It has also been decided that the contributions
from these symposia should be presented in a series of proceedings, and Springer
Verlag has enthusiastically agreed to publish the series. The Niels Henrik Abel
Board is confident that the series will be a valuable contribution to the mathematical
literature.

Chair of the Niels Henrik Abel Board John Grue
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Preface

The demands of science and industry for methods for understanding and utilizing
large and complex data sets have been growing very rapidly, driven in part by our
ability to collect ever more data about many different subjects. A key requirement is
to construct useful models of data sets that allow us to see more clearly and rapidly
what the data tells us. Mathematical modeling is usually thought of as the discipline
of constructing algebraic or analytic models, where the output of the model is an
equation, a system of equations, or perhaps a system of differential equations. This
method has been very effective in the past, when many of the data sets to be studied
involved only a small number of features and where there are simple relations among
the variables that govern the data being modeled. The work of Galileo, Kepler, and
Newton are prime examples of the successes of this kind of modeling. However,
these methods run into difficulties when confronted with some of the very complex
data currently arising in applications. For example, consider data sets where the
goal is to identify potential instances of fraud, or to discover drugs, where the
complex structure of molecules means that identification of effective medications
is a very complex task. For this reason, it is incumbent on the mathematical and
statistical communities to develop new methods of modeling. To understand what
these methods might be, we ask ourselves what do mathematical models buy us?
Here are some answers to that question.

• A mathematical model should provide some kind of compression of the data
into a tractable form. When we model data by using a simple one variable
linear regression, the result compresses the data from thousand or hundreds of
thousands of data points into two numbers, the slope and the y-intercept. If the
approximation is good, we have achieved a massive compression.

• A mathematical model should provide understanding of the data. The usual
mathematical modeling of the flight of a cannonball gives a great deal of
understanding about its behavior.

• In many cases, we would like a model to allow us to predict outcomes. In the
cannonball problem, we need only know the muzzle velocity and the angle of
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viii Preface

the cannon barrel in order to predict where the cannonball will land, or what the
highest altitude it will reach is.

Nothing about these answers requires that the model be algebraic. Consider, for
example, cluster analysis. Its output is no longer an equation or a set of equations,
but rather a partition of the data set into a collection of groups. Such a partition
provides all three of the capabilities described above. Cluster analysis clearly
provides compression, since the number of clusters is typically a much smaller
number than the number of data points. It also provides understanding, since the
cluster decomposition is effectively a taxonomy of the data points. Finally, it can
also be used to provide predictions, via classifying new data points into the different
clusters using methods like logistic regression or decision trees. These observations
suggest that we view cluster analysis as a modeling mechanism which is discrete
in the sense that it produces zero-dimensional outputs, with no information about
continuous phenomena such as progressions. They also suggest that we look
for other modeling mechanisms where the output can consist of more complex
mathematical structures. Topological data analysis (TDA) is a modeling method in
which the outputs are graphs and simplicial complexes. Work on TDA began with
the study of persistent homology (see [16, 26, 32]), but over time the direct study of
low-dimensional simplicial complex models (see [4, 30]) has also become important
in applications. Here are some of the advantages of TDA.

• TDA is able to give insight into continuous and discrete properties of a data set in
one output. Cluster analysis provides a discrete analysis, and algebraic modeling
often reflects continuous information.

• It is able to represent the properties of complex data more flexibly and therefore
more accurately than other machine learning methods.

• There is a great deal of “functionality” in the representation of data sets, since
simplicial complexes and graphs are more complex mathematical structures than
partitions or simple regression models. For example, if one is studying a function
on a data set, one is often able to create a corresponding function on the nodes
of the model, and the behavior of the corresponding function often clarifies the
behavior of the function. Persistent homology can also be viewed as functionality,
since it provides a way to measure (in an appropriate sense) the shape of the
model.

• An interesting direction is the study of topological models of the set of features in
a data set rather than the set of data points. This point of view has been advocated
in [27] and [11], and referred to in [27] as “topological signal processing”.

• Although persistent homology can be used to study the overall structure of data
sets, it is also used to generate features of data sets of complex or unstructured
objects. For example, in [31], data bases of molecules are treated as data sets
whose points are finite metric spaces.

TDA has been applied in a number of interesting domains, notably neuroscience
[18, 20, 25, 29, 28], materials science [19, 22], cancer biology [21, 23], and immune
responses [24].
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There are numerous very active mathematical research directions within TDA.

• Vectorization of barcodes: Most machine learning methods are defined for data
which is in the form of vectors in a high dimensional vector space. There are
numerous situations where the data points themselves are more complex objects,
which support a metric. For example, molecule structures or images fall into this
category. In such situations, one has assignments of barcodes to individual data
points instead of the whole data set. In order to enable machine learning, one
must therefore create functions on the set of barcodes. There are a number of
strategies to provide such “vectorizations”. See [1, 2, 8] for examples.

• Probabilistic analysis of spaces of barcodes: Statistical and probabilistic
analyses clearly play a key role in any data analytic problem. If we are building
simplicial complex models or creating features based on persistent homology, it
is clear that it is important to understand the behavior of distributions on the set
(it can be made into a metric space in numerous ways) of persistence barcodes or
equivalently persistence diagrams. There is a great deal of work in this direction.
See [3, 5–7, 15] for interesting examples.

• Methods for assessing the faithfulness of topological models: If we build
topological models of data, it is critical to devise methods for assessing how
faithful to the data the model is. Of course, even the problem of defining measures
of this kind of consistency is an important one. The paper [12] is an example of
this kind of work.

• Multidimensional and generalized persistence: Since the development of
persistent homology, a number of generalizations of it have been developed.
In particular, the idea that one might have families of complexes depending
on more than one real parameter is referred to as multidimensional persistence
[9]. Additionally, zig-zag persistence [10] studies the behavior of parametrized
families of complexes where one is permitted to delete as well as add simplices.
Further generalizations have been made, and a key direction of research is to
attach invariants to generalized persistence objects so that one can interpret them
and make use of them in data analysis. Other interesting work in this direction is
given in [13, 17].

• New domains of application: TDA has already seen application in numerous
areas, which were mentioned above. Finding new ways to apply it is high priority
research.

This volume presents a number of interesting papers in numerous different
research directions. It provides a partial snapshot of the current state of the field, and
we hope that it will be useful to practitioners as well as those considering entering
the field.

The papers are written by participants (and their collaborators) of the Abel
Symposium 2018 which took place from June 4 to June 8, 2018 in Geiranger,
Norway. The symposium was organized by an external committee consisting of
Gunnar E. Carlsson (Stanford University), Herbert Edelsbrunner (IST Austria),
Kathryn Hess (EPF Lausanne), and Raul Rabadan (Columbia University) and a
local committee from NTNU Trondheim consisting of Nils A. Baas, Gereon Quick,



x Preface

Markus Szymik and Marius Thaule. The webpage of the symposium can be found
at https://folk.ntnu.no/mariusth/Abel/.

We gratefully acknowledge the generous support of the Board for the Niels
Henrik Abel Memorial Fund, the Norwegian Mathematical Society, the Department
of Mathematical Sciences and the Faculty of Information Technology and Electrical
Engineering at NTNU. We also thank Ruth Allewelt, Leonie Kunz and Springer-
Verlag for encouragement and support during the editing of these proceedings.
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A Fractal Dimension for Measures via
Persistent Homology

Henry Adams, Manuchehr Aminian, Elin Farnell, Michael Kirby,
Joshua Mirth, Rachel Neville, Chris Peterson, and Clayton Shonkwiler

Abstract We use persistent homology in order to define a family of fractal
dimensions, denoted dimi

PH(μ) for each homological dimension i ≥ 0, assigned to
a probability measure μ on a metric space. The case of zero-dimensional homology
(i = 0) relates to work by Steele (Ann Probab 16(4): 1767–1787, 1988) studying
the total length of a minimal spanning tree on a random sampling of points. Indeed,
if μ is supported on a compact subset of Euclidean space R

m for m ≥ 2, then
Steele’s work implies that dim0

PH(μ) = m if the absolutely continuous part of μ
has positive mass, and otherwise dim0

PH(μ) < m. Experiments suggest that similar
results may be true for higher-dimensional homology 0 < i < m, though this is
an open question. Our fractal dimension is defined by considering a limit, as the
number of points n goes to infinity, of the total sum of the i-dimensional persistent
homology interval lengths for n random points selected from μ in an i.i.d. fashion.
To some measures μ, we are able to assign a finer invariant, a curve measuring
the limiting distribution of persistent homology interval lengths as the number of
points goes to infinity. We prove this limiting curve exists in the case of zero-
dimensional homology whenμ is the uniform distribution over the unit interval, and
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conjecture that it exists when μ is the rescaled probability measure for a compact
set in Euclidean space with positive Lebesgue measure.

1 Introduction

Let X be a metric space equipped with a probability measure μ. While fractal
dimensions are most classically defined for a space, there are a variety of fractal
dimension definitions for a measure, including the Hausdorff or packing dimension
of a measure [24, 30, 54]. In this paper we use persistent homology to define a fractal
dimension dimi

PH(μ) associated to a measure μ for each homological dimension
i ≥ 0. Roughly speaking, dimi

PH(μ) is determined by how the lengths of the
persistent homology intervals for a random sample, Xn, of n points from X vary
as n tends to infinity.

Our definition should be thought of as a generalization, to higher homological
dimensions, of fractal dimensions related to minimal spanning trees, as studied, for
example, in [63]. Indeed, the lengths of the zero-dimensional (reduced) persistent
homology intervals corresponding to the Vietoris–Rips complex of a sample Xn are
equal to the lengths of the edges in a minimal spanning tree with Xn as the set of
vertices. In particular, if X is a subset of Euclidean space Rm with m ≥ 2, then [63,
Theorem 1] by Steele implies that dim0

PH(μ) ≤ m, with equality when the absolutely
continuous part of μ has positive mass (Proposition 1). Independent generalizations
of Steele’s work to higher homological dimensions are considered in [26, 61, 62].

To some metric spacesX equipped with a measure μ we are able to assign a finer
invariant that contains more information than just the fractal dimension. Consider
the set of the lengths of all intervals in the i-dimensional persistent homology for
Xn. Experiments suggest that when probability measure μ is absolutely continuous
with respect to the Lebesgue measure on X ⊆ R

m, the scaled set of interval
lengths in each homological dimension i converges distribution-wise to some fixed
probability distribution (depending on μ and i). This is easy to prove in the simple
case of zero-dimensional homology when μ is the uniform distribution over the unit
interval, in which case we can also derive a formula for the limiting distribution.
Experiments suggest that when μ is the rescaled probability measure corresponding
to a compact set X ⊆ R

m of positive Lebesgue measure, then a limiting rescaled
distribution exists that depends only onm, i, and the volume ofμ (see Conjecture 2).
We would be interested to know the formulas for the limiting distributions with
higher Euclidean and homological dimensions.

Whereas Steele in [63] studies minimal spanning trees on random subsets of a
space, Kozma et al. in [42] study minimal spanning trees built on extremal subsets.
Indeed, they define a fractal dimension for a metric space X as the infimum, over
all powers d , such that for any minimal spanning tree T on a finite number of
points in X, the sum of the edge lengths in T each raised to the power d is
bounded. They relate this extremal minimal spanning tree dimension to the box
counting dimension. Their work is generalized to higher homological dimensions by
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Schweinhart [60]. By contrast, we instead generalize Steele’s work [63] on measures
to higher homological dimensions. Three differences between [42, 60] and our work
are the following.

• The former references define a fractal dimension for metric spaces, whereas we
define a fractal dimension for measures.

• The fractal dimension in [42, 60] is defined using extremal subsets, whereas we
define our fractal dimension using random subsets.

• We can estimate our fractal dimension computationally using log-log plots as in
Sect. 5, whereas we do not know a computational technique for estimating the
fractal dimensions in [42, 60].

After describing related work in Sect. 2, we give preliminaries on fractal
dimensions and on persistent homology in Sect. 3. We present the definition of
our fractal dimension and prove some basic properties in Sect. 4. We demonstrate
example experimental computations in Sect. 5; our code is publicly available
at https://github.com/CSU-PHdimension/PHdimension. Section 6 describes how
limiting distributions, when they exist, form a finer invariant. Sects. 7 and 8 discuss
the computational details involved in sampling from certain fractals and estimating
asymptotic behavior, respectively. Finally we present our conclusion in Sect. 9. One
of the main goals of this paper is to pose questions and conjectures, which are shared
throughout.

2 Related Work

2.1 Minimal Spanning Trees

The paper [63] studies the total length of a minimal spanning tree for random subsets
of Euclidean space. Let Xn be a random sample of points from a compact subset of
R
d according to some probability distribution. Let Mn be the sum of all the edge

lengths of a minimal spanning tree on vertex set Xn. Then for d ≥ 2, Theorem 1
of [63] says that

Mn ∼ Cn(d−1)/d as n→∞, (1.1)

where the relation ∼ denotes asymptotic convergence, with the ratio of the terms
approaching one in the specified limit. Here, C is a fixed constant depending on d
and on the volume of the absolutely continuous part of the probability distribution.1

There has been a wide variety of related work, including for example [5–7, 38, 64–
67]. See [41] for a version of the central limit theorem in this context. The
papers [51, 52] study the length of the longest edge in the minimal spanning tree

1If the compact subset has Hausdorff dimension less than d, then [63] implies C = 0.

https://github.com/CSU-PHdimension/PHdimension
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for points sampled uniformly at random from the unit square, or from a torus of
dimension at least two. By contrast, [42] studies Euclidean minimal spanning trees
built on extremal finite subsets, as opposed to random subsets.

2.2 Umbrella Theorems for Euclidean Functionals

As Yukich explains in his book [72], there are a wide variety of Euclidean
functionals, such as the length of the minimal spanning tree, the length of the
traveling salesperson tour, and the length of the minimal matching, which all have
scaling asymptotics analogous to (1.1). To prove such results, one needs to show that
the Euclidean functional of interest satisfies translation invariance, subadditivity,
superadditivity, and continuity, as in [21, Page 4]. Superadditivity does not always
hold, for example it does not hold for the minimal spanning tree length functional,
but there is a related “boundary minimal spanning tree functional" that does satisfy
superadditivity. Furthermore, the boundary functional has the same asymptotics as
the original functional, which is enough to prove scaling results. It is intriguing to
ask if these techniques will work for functionals defined using higher-dimensional
homology.

2.3 Random Geometric Graphs

In this paper we consider simplicial complexes (say Vietoris–Rips or Čech) with
randomly sampled points as the vertex set. The 1-skeleta of these simplicial
complexes are random geometric graphs. We recommend the book [50] by Penrose
as an introduction to random geometric graphs; related families of random graphs
are also considered in [53]. Random geometric graphs are often studied when the
scale parameter r(n) is a function of the number of vertices n, with r(n) tending to
zero as n goes to infinity. Instead, in this paper we are more interested in the behavior
over all scale parameters simultaneously. From a slightly different perspective,
the paper [40] studies the expected Euler characteristic of the union of randomly
sampled balls (potentially of varying radii) in the plane.

2.4 Persistent Homology

Vanessa Robins’ thesis [58] contains many related ideas; we describe one such
example here. Given a set X ⊆ R

m and a scale parameter ε ≥ 0, let

Xε = {y ∈ R
m | there exists some x ∈ X with d(y, x) ≤ ε}
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denote the ε-offset of X. The ε-offset of X is equivalently the union of all closed
ε balls centered at points in X. Furthermore, let C(Xε) ∈ N denote the number
of connected components of Xε . In Chapter 5, Robins shows that for a generalized
Cantor set X in R with Lebesgue measure 0, the box-counting dimension of X is
equal to the limit

lim
ε→0

log(C(Xε))

log(1/ε)
.

Here Robins considers the entire Cantor set, whereas we study random subsets
thereof.

The paper [46], which heavily influenced our work, introduces a fractal dimen-
sion defined using persistent homology. This fractal dimension depends on thick-
enings of the entire metric space X, as opposed to random or extremal subsets
thereof. As a consequence, the computed dimension of some fractal shapes (such
as the Cantor set cross the interval) disagrees significantly with the Hausdorff or
box-counting dimension.

Schweinhart’s paper [60] takes a slightly different approach from ours, consider-
ing extremal (as opposed to random) subsets. After fixing a homological dimension
i, Schweinhart assigns a fractal dimension to each metric space X equal to the
infimum over all powers d such that for any finite subset X′ ⊆ X, the sum of the
i-dimensional persistent homology bar lengths for X′, each raised to the power d , is
bounded. For low-dimensional metric spaces Schweinhart relates this dimension to
the box counting dimension.

More recently, Divol and Polonik [26] obtain generalizations of [63, 72] to higher
homological dimensions in the case when X is a cube. Related results are obtained
in [62] when X is a ball or sphere, and afterwards in [61] when points are sampled
according to an Ahlfors regular measure.

There is a growing literature on the topology of random geometric simplicial
complexes, including in particular the homology of Vietoris–Rips and Čech com-
plexes built on top of random points in Euclidean space [3, 13, 39]. The paper [14]
shows that for n points sampled from the unit cube [0, 1]d with d ≥ 2, the
maximally persistent cycle in dimension 1 ≤ k ≤ d − 1 has persistence of order
�((

logn
log logn)

1/k), where the asymptotic notation big Theta means both big O and big
Omega. The homology of Gaussian random fields is studied in [4], which gives the
expected k-dimensional Betti numbers in the limit as the number of points increases
to infinity, and also in [12]. The paper [29] studies the number of simplices and
critical simplices in the alpha and Delaunay complexes of Euclidean point sets
sampled according to a Poisson process. An open problem about the birth and death
times of the points in a persistence diagram coming from sublevelsets of a Gaussian
random field is stated in Problem 1 of [28]. The paper [18] shows that the expected
persistence diagram,from a wide class of random point clouds, has a density with
respect to the Lebesgue measure
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The paper [15] explores what attributes of an algebraic variety can be estimated
from a random sample, such as the variety’s dimension, degree, number of irre-
ducible components, and defining polynomials; one of their estimates of dimension
is inspired by our work.

In an experiment in [1], persistence diagrams are produced from random
subsets of a variety of synthetic metric space classes. Machine learning tools, with
these persistence diagrams as input, are then used to classify the metric spaces
corresponding to each random subset. The authors obtain high classification rates
between the different metric spaces. It is likely that the discriminating power is
based not only on the underlying homotopy types of the shape classes, but also on
the shapes’ dimensions as detected by persistent homology.

3 Preliminaries

This section contains background material and notation on fractal dimensions and
persistent homology.

3.1 Fractal Dimensions

The concept of fractal dimension was introduced by Hausdorff to describe spaces
like the Cantor set, and it later found extensive application in the study of dynamical
systems. The attracting sets of simple a dynamical system is often a submanifold,
with an obvious dimension, but in non-linear and chaotic dynamical systems the
attracting set may not be a manifold. The Cantor set, defined by removing the middle
third from the interval [0, 1], and then recursing on the remaining pieces, is a typical
example. It has the same cardinality as R, but it is nowhere-dense, meaning it at no
point resembles a line. The typical fractal dimension of the Cantor set is log3(2).
Intuitively, the Cantor set has “too many” points to have dimension zero, but also
should not have dimension one.

We speak of fractal dimensions in the plural because there are many different
definitions. In particular, fractal dimensions can be divided into two classes, which
have been called “metric” and “probabilistic” [31]. The former describe only the
geometry of a metric space. Two widely-known definitions of this type, which often
agree on well-behaved fractals, but are not in general equal, are the box-counting
and Hausdorff dimensions. For an inviting introduction to fractal dimensions
see [30]. Dimensions of the latter type take into account both the geometry of a
given set and a probability distribution supported on that set—originally the “natural
measure” of the attractor given by the associated dynamical system, but in principle
any probability distribution can be used. The information dimension is the best
known example of this type. For detailed comparisons, see [32]. Our persistent
homology fractal dimension, Definition 6, is of the latter type.
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For completeness, we exhibit some of the common definitions of fractal dimen-
sion. The primary definition for sets is given by the Hausdorff dimension [33].

Definition 1 Let S be a subset of a metric space X, let d ∈ [0,∞), and let δ > 0.
The Hausdorff measure of S is

Hd(S) = inf
δ

⎛
⎝inf

⎧⎨
⎩
∞∑
j=1

diam(Bj )d | S ⊆
∞⋃
j=1

Bj and diam(Bj ) ≤ δ

⎫⎬
⎭

⎞
⎠ ,

where the inner infimum is over all coverings of S by balls Bj of diameter at most
δ. The Hausdorff dimension of S is

dimH(S) = inf
d
{Hd(S) = 0.}

The Hausdorff dimension of the Cantor set, for example, is log3(2).
In practice it is difficult to compute the Hausdorff dimension of an arbitrary

set, which has led to a number of alternative fractal dimension definitions in the
literature. These dimensions tend to agree on well-behaved fractals, such as the
Cantor set, but they need not coincide in general. Two worth mentioning are the
box-counting dimension, which is relatively simple to define, and the correlation
dimension.

Definition 2 Let S ⊆ X a metric space, and let Nε denote the infimum of the
number of closed balls of radius ε required to cover S. Then the box-counting
dimension of S is

dimB(S) = lim
ε→0

log(Nε)

log(1/ε)
,

provided this limit exists. Replacing the limit with a lim sup gives the upper box-
counting dimension, and a lim inf gives the lower box-counting dimension.

The box-counting definition is unchanged if Nε is instead defined by taking the
number of open balls of radius ε, or the number of sets of diameter at most ε, or (for
S a subset of Rn) the number of cubes of side-length ε [70, Definition 7.8], [30,
Equivalent Definitions 2.1]. It can be shown that dimB(S) ≥ dimH (S). This
inequality can be strict; for example if S = Q ∩ [0, 1] is the set of all rational
numbers between zero and one, then dimH (S) = 0 < 1 = dimB(S) [30, Chapter 3].

In Sect. 4 we introduce a fractal dimension based on persistent homology which
shares key similarities with the Hausdorff and box-counting dimensions. It can also
be easily estimated via log-log plots, and it is defined for arbitrary metric spaces
(though our examples will tend to be subsets of Euclidean space). A key difference,
however, will be that ours is a fractal dimension for measures, rather than for
subsets.
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There are a variety of classical notions of a fractal dimension for a measure,
including the Hausdorff, packing, and correlation dimensions of a measure [24, 30,
54]. We give the definitions of two of these.

Definition 3 ((13.16) of [30]) The Hausdorff dimension of a measure μ with total
mass one is defined as

dimH (μ) = inf{dimH(S) | S is a Borel subset with μ(S) > 0}.

We have dimH (μ) ≤ dimH(supp(μ)), and it is possible for this inequality to be
strict [30, Exercise 3.10].2 We also give the example of the correlation dimension of
a measure.

Definition 4 Let X be a subset of Rm equipped with a measure μ, and let Xn be
a random sample of n points from X. Let θ : R → R denote the Heaviside step
function, meaning θ(x) = 0 for x < 0 and θ(x) = 1 for x ≥ 0. The correlation
integral of μ is defined (for example in [35, 69]) to be

C(r) = lim
n→∞

1

n2

∑

x,x ′∈Xn

x �=x ′

θ
(
r − ‖x − x ′‖) .

It can be shown that C(r) ∝ rν , and the exponent ν is defined to be the correlation
dimension of μ.

In [35, 36] it is shown that the correlation dimension gives a lower bound on
the Hausdorff dimension of a measure. The correlation dimension can be easily
estimated from a log-log plot, similar to the methods we use in Sect. 5. A different
definition of the correlation definition is given and studied in [23, 47]. The
correlation dimension is a particular example of the family of Rènyi dimensions,
which also includes the information dimension as a particular case [56, 57]. A
collection of possible axioms that one might like to have such a fractal dimension
satisfy is given in [47].

3.2 Persistent Homology

The field of applied and computational topology has grown rapidly in recent years,
with the topic of persistent homology gaining particular prominence. Persistent
homology has enjoyed a wealth of meaningful applications to areas such as image
analysis, chemistry, natural language processing, and neuroscience, to name just a

2See also [31] for an example of a measure whose information dimension is less than the Hausdorff
dimension of its support.
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few examples [2, 10, 20, 25, 44, 45, 71, 73]. The strength of persistent homology
lies in its ability to characterize important features in data across multiple scales.
Roughly speaking, homology provides the ability to count the number of indepen-
dent k-dimensional holes in a space, and persistent homology provides a means
of tracking such features as the scale increases. We provide a brief introduction
to persistent homology in this preliminaries section, but we point the interested
reader to [8, 27, 37] for thorough introductions to homology, and to [16, 22, 34]
for excellent expository articles on persistent homology.

Geometric complexes, which are at the heart of the work in this paper, associate
to a set of data points a simplicial complex—a combinatorial space that serves as a
model for an underlying topological space from which the data has been sampled.
The building blocks of simplicial complexes are called simplices, which include
vertices as 0-simplices, edges as 1-simplices, triangles as 2-simplices, tetrahedra as
3-simplices, and their higher-dimensional analogues as k-simplices for larger values
of k. An important example of a simplicial complex is the Vietoris–Rips complex.

Definition 5 Let X be a set of points in a metric space and let r ≥ 0 be a scale
parameter. We define the Vietoris–Rips simplicial complex VR(X; r) to have as its
k-simplices those collections of k + 1 points in X that have diameter at most r .

In constructing the Vietoris–Rips simplicial complex we translate our collection of
points in X into a higher-dimensional complex that models topological features of
the data. See Fig. 1 for an example of a Vietoris–Rips complex constructed from a
set of data points, and see [27] for an extended discussion.

It is readily observed that for various data sets, there is not necessarily an ideal
choice of the scale parameter so that the associated Vietoris–Rips complex captures
the desired features in the data. The perspective behind persistence is to instead
allow the scale parameter to increase and to observe the corresponding appearance
and disappearance of topological features. To be more precise, each hole appears
at a certain scale and disappears at a larger scale. Those holes that persist across a
wide range of scales often reflect topological features in the shape underlying the
data, whereas the holes that do not persist for long are often considered to be noise.

Fig. 1 An example of a set of data points in R
m with an associated Vietoris–Rips complex at a

fixed scale
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However, in the context of this paper (estimating fractal dimensions), the holes that
do not persist are perhaps better described as measuring the local geometry present
in a random finite sample.

For a fixed set of points, we note that as scale increases, simplices can only be
added and cannot be removed. Thus, for r0 < r1 < r2 < · · · , we obtain a filtration
of Vietoris–Rips complexes

VR(X; r0) ⊆ VR(X; r1) ⊆ VR(X; r2) ⊆ · · · .

The associated inclusion maps induce linear maps between the corresponding
homology groupsHk(VR(X; ri)), which are algebraic structures whose ranks count
the number of independent k-dimensional holes in the Vietoris–Rips complex. A
technical remark is that homology depends on the choice of a group of coefficients;
it is simplest to use field coefficients (for example R, Q, or Z/pZ for p prime), in
which case the homology groups are furthermore vector spaces. The corresponding
collection of vector spaces and linear maps is called a persistent homology module.

A useful tool for visualizing and extracting meaning from persistent homology
is a barcode. The basic idea is that each generator of persistent homology can be
represented by an interval, whose start and end times are the birth and death scales
of a homological feature in the data. These intervals can be arranged as a barcode
graph in which the x-axis corresponds to the scale parameter. See Fig. 2 for an
example. If Y is a finite metric space, then we let PHi (Y ) denote the corresponding
collection of i-dimensional persistent homology intervals.

Fig. 2 An example of Vietoris–Rips complexes at increasing scales, along with associated
persistent homology intervals. The zero-dimensional persistent homology intervals shows how 21
connected components merge into a single connected component as the scale increases. The one-
dimensional persistent homology intervals show two one-dimensional holes, one short-lived and
the other long-lived
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Zero-dimensional barcodes always produce one infinite interval, as in Fig. 2,
which are problematic for our purposes. Therefore, in the remainder of this paper
we will always use reduced homology, which has the effect of simply eliminating
the infinite interval from the zero-dimensional barcode while leaving everything
else unchanged. As a consequence, there will never be any infinite intervals in the
persistent homology of a Vietoris–Rips simplicial complex, even in homological
dimension zero.

Remark 1 It is well-known (see for example [58]) and easy to verify that for any
finite metric space X, the lengths of the zero-dimensional (reduced) persistent
homology intervals of the Vietoris–Rips complex of X correspond exactly to the
lengths of the edges in a minimal spanning tree with vertex set X.

4 Definition of the Persistent Homology Fractal Dimension
for Measures

Let X be a metric space equipped with a probability measure μ, and let Xn ⊆ X

be a random sample of n points from X distributed independently and identically
according to μ. Build a filtered simplicial complex K on top of vertex set Xn,
for example a Vietoris–Rips complex VR(X; r) (Definition 5), an intrinsic Čech
complex Č(X,X; r), or an ambient Čech complex Č(X,Rm; r) if X is a subset of
R
m [17]. Denote the i-dimensional persistent homology of this filtered simplicial

complex by PHi (Xn). This persistent homology barcode decomposes as a direct
sum of interval summands; we let Li(Xn) be the sum of the lengths of the intervals
in PHi (Xn). In the case of homological dimension zero, the sum L0(Xn) is simply
the sum of all the edge lengths in a minimal spanning tree with Xn as its vertex set
(since we are using reduced homology).

Definition 6 (Persistent Homology Fractal Dimension) Let X be a metric space
equipped with a probability measure μ, let Xn ⊆ X be a random sample of n
points from X distributed according to μ, and let Li(Xn) be the sum of the lengths
of the intervals in the i-dimensional persistent homology for Xn. We define the i-
dimensional persistent homology fractal dimension of μ to be

dimi
PH(μ) = inf

d>0

{
d

∣∣∣ ∃ constant C(i, μ, d) such that Li(Xn) ≤ Cn(d−1)/d

with probability one as n→∞
}
.

The constant C can depend on i, μ, and d . Here “Li(Xn) ≤ Cn(d−1)/d with
probability one as n→∞" means that we have limn→∞ P[Li(Xn) ≤ Cn(d−1)/d] =
1. This dimension may depend on the choices of filtered simplicial complex (say
Vietoris–Rips or Čech), and on the choice of field coefficients for homology
computations; for now those choices are suppressed from the definition.



12 H. Adams et al.

Proposition 1 Let μ be a measure on X ⊆ R
m with m ≥ 2. Then dim0

PH(μ) ≤ m,
with equality if the absolutely continuous part of μ has positive mass.

Proof By Theorem 2 of [63], we have that limn→∞ n−(m−1)/mL0(Xn) =
c
∫
Rm f (x)

(m−1)/m dx, where c is a constant depending on m, and where f is
the absolutely continuous part of μ. To see that dim0

PH(μ) ≤ m, note that

L0(Xn) ≤
(
c

∫
Rm

f (x)(m−1)/m dx + ε

)
n(m−1)/m

with probability one as n→∞ for any ε > 0. ��
We conjecture that the i-dimensional persistent homology of compact subsets of

R
m have the same scaling properties as the functionals in [63, 72].

Conjecture 1 Letμ be a probability measure on a compact setX ⊆ R
m withm ≥ 2,

and let μ be absolutely continuous with respect to the Lebesgue measure. Then for
all 0 ≤ i < m, there is a constant C ≥ 0 (depending on μ, m, and i) such that
Li(Xn) = Cn(m−1)/m with probability one as n→∞.

Let μ be a probability measure with compact support that is absolutely contin-
uous with respect to Lebesgue measure in R

m for m ≥ 2. Note that Conjecture 1
would imply that the persistent homology fractal dimension of μ is equal to m.
The tools of subadditivity and superadditivity behind the umbrella theorems for
Euclidean functionals, as described in [72] and Sect. 2.2, may be helpful towards
proving this conjecture. In some limited cases, for example whenX is a cube or ball,
or when μ is Ahlfors regular, then Conjecture 1 is closely related to [26, 61, 62].

One could alternatively define birth-time or death-time fractal dimensions by
replacing Li(Xn) with the sum of the birth times, or alternatively the sum of the
death times, in the persistent homology barcodes PHi (Xn).

5 Experiments

A feature of Definition 6 is that we can use it to estimate the persistent homology
fractal dimension of a measureμ. Indeed, suppose we can sample fromX according
to the probability distribution μ. We can therefore sample collections of points Xn

of size n, compute the statistic Li(Xn), and then plot the results in a log-log fashion
as n increases. In the limit as n goes to infinity, we expect the plotted points to
be well-modeled by a line of slope d−1

d
, where d is the i-dimensional persistent

homology fractal dimension of μ. In many of the experiments in this section, the
measures μ are simple enough (or self-similar enough) that we would expect the
persistent homology fractal dimension of μ to be equal to the Hausdorff dimension
of μ.
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In our computational experiments, we have used the persistent homology
software packages Ripser [9], Javaplex [68], and code from Duke (see the acknowl-
edgements). For the case of zero-dimensional homology, we can alternatively use
well-known algorithms for computing minimal spanning trees, such as Kruskal’s
algorithm or Prim’s algorithm [43, 55]. We estimate the slope of our log-log plots (of
Li(Xn) as a function of n) using both a line of best fit, and alternatively a technique
designed to approximate the asymptotic scaling described in Sect. 8. Our code is
publicly available at https://github.com/CSU-PHdimension/PHdimension.

5.1 Estimates of Persistent Homology Fractal Dimensions

We display several experimental results, for shapes of both integral and non-integral
fractal dimension. In Fig. 3, we show the log-log plots of Li(Xn) as a function of n,
where Xn is sampled uniformly at random from a disk, a square, and an equilateral
triangle, each of unit area in the plane R

2. Each of these spaces constitutes a
manifold of dimension two, and we thus expect these shapes to have persistent
homology fractal dimension d = 2 as well. Experimentally, this appears to be the
case, both for homological dimensions i = 0 and i = 1. Indeed, our asymptotically
estimated slopes lie in the range 0.49–0.54, which is fairly close to the expected
slope of d−1

d
= 1

2 .
In Fig. 4 we perform a similar experiment for the cube in R

3 of unit volume. We
expect the cube to have persistent homology fractal dimension d = 3, corresponding
to a slope in the log-log plot of d−1

d
= 2

3 . This appears to be the case for homological
dimension i = 0, where the slope is approximately 0.65. However, for i = 1 and
i = 2, our estimated slope is far from 2

3 , perhaps because our computational limits
do not allow us to take n, the number of randomly chosen points, to be sufficiently
large.

In Fig. 5 we use log-log plots to estimate some persistent homology fractal
dimensions of the Cantor set cross the interval (expected dimension d = 1 +
log3(2)), of the Sierpiński triangle (expected dimension d = log2(3)), of Cantor
dust in R

2 (expected dimension d = log3(4)), and of Cantor dust in R
3 (expected

dimension d = log3(8)). As noted in Sect. 3, various notions of fractal dimension
tend to agree for well-behaved fractals. Thus, in each case above, we provide the
Hausdorff dimension d in order to define an expected persistent homology fractal
dimension. The Hausdorff dimension is well-known for the Sierpiński triangle,
Cantor dust in R

2, and Cantor dust in R
3. The Hausdorff dimension for the Cantor

set cross the interval can be shown to be 1 + log3(2), which follows from [30,
Theorem 9.3] or [48, Theorem III]). In Sect. 5.2 we define these fractal shapes in
detail, and we also explain our computational technique for sampling points from
them at random.

Summarizing the experimental results for self-similar fractals, we find reason-
ably good estimates of fractal dimension for homological dimension i = 0. More

https://github.com/CSU-PHdimension/PHdimension
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Fig. 3 Log scale plots and slope estimates of the number n of sampled points versus L0(Xn)

(left) or L1(Xn) (right). Subsets Xn are drawn uniformly at random from (top) the unit disc in R
2,

(middle) the unit square, and (bottom) the unit triangle. All cases have slope estimates close to 1/2,
which is consistent with the expected dimension. The asymptotic scaling estimates of the slope are
computed as described in Sect. 8
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Fig. 4 Log scale plots of the number n of sampled points from the cube versus L0(Xn) (left),
L1(Xn) (right), and L2(Xn) (bottom). The dimension estimate from zero-dimensional persistent
homology is reasonably good, while the one- and two-dimensional cases are less accurate, likely
due to computational limitations

specifically, for the Cantor set cross the interval, we expect d−1
d
≈ 0.3869, and we

find slope estimates from a linear fit of all data and an asymptotic fit to be 0.3799
and 0.36488, respectively. In the case of the Sierpiński triangle, the estimate is
quite good: we expect d−1

d
≈ 0.3691, and the slope estimates from both a linear

fit and an asymptotic fit are approximately 0.37. Similarly, the estimates for Cantor
dust in R

2 and R
3 are close to the expected values: (1) For Cantor dust in R

2,

we expect d−1
d
≈ 0.2075 and estimate d−1

d
≈ 0.25. (2) For Cantor dust in R

3,

we expect d−1
d

≈ 0.4717 and estimate d−1
d

≈ 0.49. For i > 0 many of these
estimates of the persistent homology fractal dimension are not close to the expected
(Hausdorff) dimensions, perhaps because the number of points n is not large enough.
The experiments in R

2 are related to [61, Corollary 1], although our experiments are
with the Vietoris–Rips complex instead of the Čech complex.

It is worth commenting on the Cantor set, which is a self-similar fractal in R.
Even though the Hausdorff dimension of the Cantor set is log3(2), it is not hard to
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Fig. 5 (Top) Cantor set cross the unit interval for i = 0, 1. (Second row) Sierpiński triangle in
R

2 for i = 0, 1. (Third row) Cantor dust in R
2 for i = 0, 1. (Bottom) Cantor dust in R

3 for
i = 0, 1, 2. In each case, the zero-dimensional estimate is close to the expected dimension. The
higher-dimensional estimates are not as accurate; we speculate that this is due to computational
limitations

see that the zero-dimensional persistent homology fractal dimension of the Cantor
set is 1. This is because as n→ ∞ a random sample of points from the Cantor set
will contain points in R arbitrarily close to 0 and to 1, and hence L0(Xn) → 1 as
n→∞. This is not surprising—we do not necessarily expect to be able to detect a
fractional dimension less than one by using minimal spanning trees (which are one-


