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Preface

The IWOTA 2018 was held at East China Normal University, Shanghai from July
23–27. To honor Ronald G. Douglas’ expansive and profound contributions to
mathematics, in particular his monumental contribution to operator theory research
in China for the past 30 years, the organizers had planned to take this occasion to
celebrate his 80th birthday. Sadly, Ron passed away at Brazos Valley Hospice in
Bryan, Texas on February 27. The organizers thus decided to make this Proceeding
of IWOTA 2018 a special memorial volume. In addition to papers pertinent to
the themes of the conference, this volume collected papers from some of his
collaborators and former students. Included also is an article by physicist Michael
R. Douglas which gives a personal account of his father’s influence.

Ron was born on December 10, 1938 in Osgood, Indiana. He earned his doctorate
at Louisiana State University in 1962. His first paper was in measure theory and
it was published in 1964 by Michigan Mathematical Journal. Ron’s early career
research centered mostly around classical operator theory topics such as invariant
subspaces, Toeplitz operators, operator model theory, and C∗-algebras, and he soon
emerged as one of the leaders in these fields. But in Ron’s view, there is indeed
no fence within mathematics. His work on operator theory extended naturally to
complex geometry. The definition of Cowen–Douglas operator was announced at a
symposium at Williamstown, Massachusetts in 1975. This notion made it possible
to use geometric tools such as holomorphic bundle and curvature to study unitary
equivalence of operators. The foundation of Brown–Douglas–Fillmore theory was
laid in a 1977 joint paper. Although its original intention was to use topological
methods to classify essentially normal operators, it in fact gave a simple analytic
version of K-homology. This work turned out to be fundamental to noncommutative
geometry and topology. His later work focused mainly on multivariable operator
theory and in particular its analytic framework Hilbert modules in function spaces.
The notion of Hilbert module was announced in a conference at Timişoara and
Herculane, Romania in 1984. In response to Shunhua Sun’s invitation, Ron gave
a series of lectures on this topic at Sichuan University, China in 1985. A more
extensive treatment was later carried out in a book coauthored with V. I. Paulsen in
1989. This framework greatly propelled the development of multivariable operator
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viii Preface

theory. A difficult problem in this field is the Arveson–Douglas conjecture which
connects essentially normal Hilbert modules with algebraic geometry, differential
equations, index theory, and K-homology.

Each of Ron’s aforementioned visionary work has nurtured a large community
of scholars. This volume contains a number of papers and surveys in these fields.
In this regard, it serves as a testimony that Ron’s mathematical ideas are still very
much alive. In closing, we would like to thank the contributors to this volume and the
many unnamed reviewers of the articles. Special thanks go to Huaxin Lin, Guoliang
Yu, the local organizers Xiaoman Chen, Kunyu Guo, Qin Wang, Yi-Jun Yao, and the
many volunteer helpers from East China Normal University and Fudan University,
without whom this grand scale conference would not have been possible. This
IWOTA 2018 is also indebted to East China Normal University, Fudan University,
and the U.S. National Science Foundation (award no. 1800780) for their financial
support.

St. Louis, MO, USA Xiang Tang
Albany, NY, USA Rongwei Yang
January 28, 2020
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Following in the Footsteps of Ronald
G. Douglas

Michael R. Douglas

Abstract Many of you knew my father Ronald Douglas as a mentor, a collaborator
or a colleague. While I never wrote a paper with him, he was a powerful influence
on my own career. Some of my most important works, such as those on Dirichlet
branes and noncommutative geometry, turned out to have strong connections with
his work. In this talk I will reminisce a bit and describe a few of these works and
connections.

As I reflect on my father’s life, I realize in how many ways I followed in his
footsteps. I was one of his three children, growing up in Ann Arbor and then
Stony Brook, and our father showed us how attractive the academic life could be—
bringing back gifts and photos from conferences in exotic countries, hosting dinner
parties for visiting friends and colleagues from around the world. Just as appealing
were the simple things: his home office filled with books, some of which he had
written, or his freedom to come home early from work when we needed him, say to
help with a difficult project for school.

We made several long family trips which had a huge influence on me: especially
a sabbatical semester in Newcastle-upon-Tyne in 1973, and a summer in France
in 1970 which included a month in Les Houches. There our mother (his first wife
Nancy) would take us walking in the mountains, while our father attended the well
known summer school which that year was on statistical mechanics and quantum
field theory. Arthur Jaffe has some nice reminiscences of that meeting in [1]. Later
as a young string theorist and mathematical physicist, when I would meet older
colleagues, I was often told that it was not for the first time, they remembered me
from when I was little, many from that meeting.

This trip was also the seed of what would become a lifelong relationship with
France. A year in 1990 visiting Volodya Kazakov and Edouard Brezin at the
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2 M. R. Douglas

Laboratoire de Physique Theorique of the ENS in Paris, my collaboration with Alain
Connes and Albert Schwarz at the IHES, my many visits there between 1999 and
2008 as the Louis Michel chair, and my current role as chairman of the Friends of
IHES, all were in some way fulfilling that early attraction to French and European
culture, to physics and to mathematics.

Although I was fascinated by mathematics, I chose to major in theoretical physics
in college, in part just to avoid following too closely in my father’s footsteps.
Operators were something I used in quantum mechanics, but my mathematical
education did not include operator algebras. In grad school I did take a course in
mathematical methods with Barry Simon, but that focused on topology as used to
study solitons and instantons. I had by then heard the initials BDF, but I have to
admit that when I first tried to read the paper, and for many years after that, I did not
understand any of it. Still, later on my own research would turn out to have many
points of contact with his, both by choice and by chance.

The most direct influence came in the early 1990s. In 1988, my first year as a
postdoc at Chicago, I started working with Steve Shenker on random matrix theory.
As many of you know, the usual starting point for this theory is the discussion of
matrix ensembles such as the Gaussian unitary ensemble, defined by the following
integral over N ×N hermitian matrices,

∫

∏

1≤i,j≤N
dMi,j e

−NtrM2
,

where the measure is independent and uniform for each of the matrix elements. We
were particularly interested in generalizations such as

Z[N,λ] ≡
∫

∏

1≤i,j≤N
dMi,j e

−N
(

1
2 trM2+ λ

3 trM3
)

where λ is a real parameter.
Our interest in this was not because M was an operator, or any other property of

the matrixM . Rather, it was because of a combinatorial interpretation of the integral,
first pointed out in the physics literature by Gerard ’t Hooft. It is a generating
function for the number of planar triangulations of a genus g Riemann surface with
F faces, call this Zg,F ,

Z[N,λ] =
∑

g,F

N2−2gλF Zg,F .

This is explained in many references such as [3], and very recently in section 4 of
[4], so I will not repeat it here.

One can go on, as proposed by Migdal and collaborators in the mid-1980s, to
regard the terms in this expansion at fixed g as defining a discrete approximation
to two-dimensional quantum gravity. The idea is that a planar triangulation can
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be thought of as defining a Riemannian metric on the surface, with curvature
concentrated at each of the vertices. This is a very special class of metrics, but if one
only looks at the total curvature for regions containing many triangles, since in two
dimensions the only invariant of a metric is the curvature scalar, one can argue that
a general metric can be approximated this way. Thus, a sum over all triangulations
is some sort of approximation to an integral over all Riemannian metrics, which
is what physicists mean by the term quantum gravity. The specific results will of
course depend on the choice of triangles versus squares or some other class of
diagrams, but if we just look at the asymptotics for F large, it is plausible that
some aspects of the results are universal, and thus can be thought of as properties
of a random Riemannian metric. This turns out to be true, and has even been shown
rigorously in some cases [5].

Now, two-dimensional quantum gravity can be thought of as a simplified “toy”
model of the quantum version of Einstein’s theory of general relativity, but it can
also be thought of as a simplified model of the two-dimensional world-sheet of a
string as defined in superstring theory. Our goal was to understand the latter and
in particular to find a model in which one could compute results for all genus
g, and perhaps resum them to get a “nonperturbative string theory.” To this end,
we developed what we called the double scaling limit of taking N → ∞ and
λ→ λc (the location of the singularity controlling the large F asymptotics) holding
an appropriate combination fixed. In this limit, the universal quantities could be
computed exactly in terms of a solution of the Painlevé I equation, related to the
integrable KdV hierarchy as first argued in [6].

This work was quite influential, to the point where my father started hearing
about it from other physicists. This brings me to the story of the second time I
went to visit Chen Ning Yang at Stony Brook. My father knew him well of course
and brought me to visit him when I was first deciding where to go to graduate
school and what to study. Yang explained that although particle physics might look
attractive, one had to keep in mind that ultimately it was based on experiments done
at colliders, and that the progress in such experiments was becoming more and more
difficult. In fact, he counseled me against going into the field. So I took his advice,
and decided to go to Caltech to work with John Hopfield on his new theory of neural
networks. This was fall 1983, but in the summer of 1984 came the famous paper of
Green and Schwarz on anomaly cancellation in ten-dimensional superstrings. Soon
most of my fellow graduate students were working on string theory, and I was caught
up in the excitement as well. But I had not forgotten Yang’s advice, and was rather
worried about what he would say when I returned to visit him in 1990. But he had
heard of my work too, and told me that perhaps I had been right not to follow his
advice.

After many discussions on random matrix theory with my father, he suggested I
talk to Dan Voiculescu. As you all know, Voiculescu had developed a framework
called free probability theory, which axiomatized the key properties of random
matrix integrals in the large N limit. This theory has been very influential in
mathematics, but what was more attractive about it for a physicist was that it led
to very simple and intuitive calculational tools, such as the R-transform and S-
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transform for additive and multiplicative free convolutions. Inspired by this, several
physicists including Rajesh Gopakumar and David Gross, Matthias Staudacher, as
well as Miao Li and myself, used free probability both to simplify the existing
random matrix works and to solve new problems, most notably a problem raised by
Is Singer of characterizing the master field for two-dimensional Yang–Mills theory.

Dan Voiculescu also invited me to a workshop he organized at the Fields
Institute in March 1995, which I attended along with Tony Zee, a theoretical
physicist who had moved from quantum field theory into statistical mechanics and
condensed matter theory. This is a good point for me to comment on the difficulties
of communication between physicists and mathematicians. Mathematicians often
complain that they can’t understand physicists because they never define what they
are talking about, but it is just as difficult to follow a talk based on precise definitions
which one is seeing for the first time, or even worse which are not spelled out in the
talk. Now as a string theorist and as my father’s son, I had some experience in
interpreting mathematics, but Tony found the talks impenetrable and I remember
having to give him many translations. Still this was time well spent, as Tony went
on to write many papers using these ideas with Edouard Brezin and others, and free
probability theory is now a well established tool in condensed matter physics.

While I first learned about the connection between random matrix theory and free
probability theory from my father, the most direct connection between the topics of
our research came a bit later and as a surprise to both of us. Now already by the
time of the workshop I just recalled, string theorists including myself were moving
on to a new topic, duality in supersymmetric field theory, epitomized by the famous
Seiberg–Witten solution of N = 2 super Yang–Mills theory. That summer came
the 1995 Strings conference held at USC, at which Chris Hull and Paul Townsend
proposed their unification of superstring dualities, and Edward Witten gave the first
talk on M theory. This was the beginning of the second superstring revolution, the
most exciting part of my scientific career. For the next three years, almost every
month there would be a new discovery which would force us to completely rethink
our concept of string theory and our research directions.

Arguably the most important of these discoveries was the central role of the
Dirichlet brane, explained at the end of 1995 by the late Joe Polchinski [7]. Now
from the beginning of string theory, people had studied both open strings, maps from
an oriented interval into space-time, and closed strings, maps from the circle into
space-time. And during the 1970s it was realized that quantizing the open strings
produced Yang–Mills theory, while quantizing the closed strings produced general
relativity. One sign that this made sense was that whereas a closed string is in some
sense unique, an open string can have “charged quarks” at its ends which couple to
a background U(N) Yang–Mills connection. In plainer mathematical terms, let V
be the defining representation of the Yang–Mills gauge group U(N), and let U(P)

be the holonomy for a path P of the Yang–Mills connection acting on V . Then the
“coupling” means that we redefine the operator expressing the motion of the string
from an initial interval Ii to a final interval If , by tensoring it with U(P0)⊗U†(P1),
where P0 is a path from the “left” end of Ii to the left end of If , and P1 is a path
from the “right” end of Ii to the right end of If . In the limit that the length of the
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interval goes to zero, we have P0 = P1 and this amounts to taking the holonomy in
the adjoint representation. But in general it is different.

In the physical applications of string theory, the strings are very small and this
difference is rather subtle. But one can vary the construction to make it much more
evident. For example, one could take the two ends of the open string to couple to
two different Yang–Mills connections. Next, although the original definition of the
open string allowed its ends to move anywhere in space-time, it is also consistent
to constrain the end to a single point, or to an affine subspace of Minkowski
space-time. In the terms of the path integral formalism this amounts to putting
Dirichlet boundary conditions on the coordinates of the embedding map and thus
the nomenclature. And once one considers a more general metric on space-time,
one generalizes the constraint from an affine subspace to an arbitrary submanifold.
Thus, the full definition of an open string requires maing a choice for each of the two
ends i = 0, 1 of the string, of data (�i,Ai) where �i is a submanifold of space-time
and Ai is a connection on �i .

All this had been pointed out by Dai, Leigh and Polchinski in 1989 [8], but what
Polchinski showed in 1995 was that the Dirichlet brane could also be interpreted
in closed string theory, as the natural object carrying Ramond–Ramond charge.
Without going deeply into the physics, each string theory (and M theory) has a
finite list of gauge fields. The philosophy of superstring duality then states that each
of these gauge fields is associated to two fundamental objects, one carrying electric
charge under the field and the other carrying magnetic charge. These fundamental
objects were then the key to understanding the strong coupling behavior of the
theory. Using arguments from supersymmetry, one could compute the mass of
every fundamental object as a function of parameters, and then whichever was the
lightest object would be “the” fundamental object in that regime. As an example,
in the closed superstring theories, one of the gauge fields is the so-called “Neveu–
Schwarz two-form field,” for which the closed string is the fundamental object. And
consistent with the philosophy, one finds that if the string coupling is weak, all of
the other candidate fundamental objects have large mass. Now these other masses
are proportional to an inverse power of the string coupling, so for strong coupling
a different object will be the lightest. Which one depends on the theory. In the IIa
superstring, one finds that the lightest object at strong coupling is a particle which is
electrically charged under the “Ramond–Ramond one-form field,” and treating it as
fundamental leads to the identification of the strong coupling limit of IIa theory as
M theory. But when this argument was made, there was no understanding of what
this special particle might actually be in string theory terms. Polchinski showed that
it is in fact the Dirichlet brane constrained to live at a point in space and move along
a world-line in time, the so-called D-particle.

Hopefully the reader will not need to follow the details to see that the discovery
of such a simple and intuitive idea led to another revolution in our understanding.
My own contributions to these developments largely focused on the geometric
interpretation of Dirichlet branes. It turned out that by just knowing how to calculate
with Dirichlet branes, and following one’s nose, one could rederive and extend many
important mathematical results relating noncommutative algebra and geometry. This
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line of work began with Witten’s “Small instantons in string theory” [9] and my
[10], which rederived the ADHM construction of instanton moduli spaces this way,
and with my joint work [11] with Greg Moore, which rederived and generalized the
Kronheimer–Nakajima construction of four-dimensional self-dual metrics and their
instanton moduli spaces.

Why do Dirichlet branes lead to noncommutative geometry? There should be a
purely conceptual explanation of this point, but let me give the original argument
in terms of the algebra of coordinates on space-time. In the physics of string
theory, rather than work directly with the strings, one often proceeds through an
intermediate step of “effective field theory,” in which one identifies the subset of all
of the degrees of freedom which are needed to describe the problem at hand. This
is closely related to the idea of separating fast and slow variables in the analysis
of ODE’s and PDE’s, and to the renormalization group. In particular, the relation
I described earlier between open strings and Yang–Mills theory is an example;
the effective theory of open strings is Yang–Mills theory. Following the physical
arguments which lead to a Yang–Mills connection in the case of open strings moving
in all of space-time, and modifying them to the case of a Dirichlet brane associated
with the submanifold � of space-time, we find that the counterpart of the Yang–
Mills connection is a map from� to its normal bundleN�, describing deformations
of the embedding of �. Combining this with the “coupling” argument we gave
earlier, this map to the normal bundle is tensored with an adjoint action of a gauge
group for a Yang–Mills connection on �, becoming a map

X : � → N� ⊗ End(V ),

an intrinsically noncommutative object. While a general map of this type would
contain far more data than a deformation of an embedding, the Yang–Mills
equations also generalize to a flatness condition on the deformation,

[δX, δX] ∼ 0.

In the simplest cases, say of Dirichlet branes in Minkowski space-time, this is zero
and we conclude that the deformation lives in a diagonal subgroup of End(V ), in
other words it is like a direct sum of N independent deformations. This is the case
that reduces to ordinary commutative geometry. But in more general problems the
right hand side is more interesting, and one finds that the Dirichlet branes realize a
noncommutative geometry.

Now I had lectured at the 1995 Les Houches lectures organized by Alain Connes
and Krzysztof Gawedzki, though not about Dirichlet branes as this was the summer
and these developments were still to come. But our writeups were not due until
1996, so after the Dirichlet brane revolution I decided that this was a much more
interesting subject and I devoted part of my Les Houches write-up to it [12]. I had
been intrigued by Connes’ lectures there about his work relating noncommutative
gauge theory and the Standard Model, and in my writeup I had a passage comparing
and contrasting the two pictures, that of Connes and that from Dirichlet branes, for
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how noncommutative geometry related to physics. When Alain saw this, I think
he was happy to see a string theorist giving his work the attention it deserved, and
perhaps this entered into the discussions which led the IHES to offer me a permanent
position late in 1996. By then I was convinced that noncommutative geometry had
a deep relationship to Dirichlet branes, and I happily accepted the position on a trial
basis. This led to a visit in the fall of 1997 and my collaboration with Alain and
Albert Schwarz in which we explained how M theory could be compactified on the
noncommutative torus. This was hugely influential and is still my most cited paper.

Although for family reasons I did not take up the permanent position, I continued
to visit the IHES frequently and during these visits I enjoyed discussions with
Maxim Kontsevich and his many visitors. Maxim had a somewhat different concept
of noncommutative geometry, based on algebraic geometry and concepts such as the
derived category of coherent sheaves. This was extremely difficult for a physicist
to get any purchase on, but as I continued to develop the geometry of Dirichlet
branes I found myself learning more and more of this mathematics, including quiver
algebras, tilting equivalences, and deformation theory. One point where Maxim’s
intuition was of immediate guidance was the role of the superpotential, which in
his terms was a reduction of the holomorphic Chern–Simons action. But the real
prize in the story was the role of the derived category of coherent sheaves, which
Maxim had brought in to formulate his homological mirror symmetry conjecture.
Since the Dirichlet brane theory was in some sense a generalization of Yang–Mills,
I and other physicists had brought in all of the successful approaches to Yang–Mills,
including the Donaldson–Uhlenbeck–Yau theorem and the necessary prerequisite
of stability of holomorphic bundles. Gradually we realized that the right approach
to understanding Dirichlet branes on Calabi–Yau manifolds was to generalize the
concepts entering this theorem. Thus holomorphic bundles became coherent sheaves
and then the derived category of coherent sheaves, and we were able to see how
to get all of these generalizations out of the physical constructions. On the other
hand there was no counterpart in the derived category of the stability condition of
DUY. During 1999–2000 I asked many mathematicians about this, and the universal
opinion was that it did not and could not exist, because there was no concept of
subobject in a derived category. Still, the physics said it had to exist.

The resolution of this contradiction involved a great deal of additional input
from string theory, which led to the formulation of �-stability [14], a definition of
stability which made sense for a derived category. With Paul Aspinwall we showed
that this formulation passed several nontrivial consistency checks, but at this point
the development was becoming too difficult for our physics techniques. Happily we
were able to the explain the ideas to mathematicians, as in my ICM lecture [15] and
most importantly at the M theory workshop we organized at the Newton Institute in
the winter of 2002. There Tom Bridgeland took up the mantle and was able to turn
these ideas into rigorous mathematics, now generally referred to as a Bridgeland
stability condition [16]. Much of this story is explained in our book [17].

While the rich structure of algebraic geometry allowed us to go very far, so far
this has only been for a small subset of the space-times possible in string theory,
the Calabi–Yau manifolds. For more general spaces one needs to start with more
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general foundations, and the most general mathematical context in which one study
the Dirichlet brane is K theory, as pointed out by Edward Witten and especially by
Greg Moore. This brings me to what is probably the most direct connection between
my father’s and my own respective bodies of research.

In 1982, working with Paul Baum, my father published “Index Theory, Bordism
and K-homology.” [2]. The introduction states that it was completed during a visit
to the IHES, I believe the family visit we made that summer. One of the stories we
still tell about that visit is about Bastille Day, when we went into Paris to watch the
fireworks. We had taken public transit (the RER), and as some of you will know, this
stops running around 1 in the morning, so we took care to leave a bit early to catch
our train. Unfortunately, so many other spectators had similar constraints that the
Metro was jam-packed, and we only made it in time for the last train. And the last
train did not go all the way to Bures, it stopped in Massy-Palaiseau, several miles
away. By the time we realized where the taxi stop was, they were all taken. So we
had to make the long hike home, under the moonlight. Still we made the best of
it, singing and playing word games, until my sister sprained her ankle, and we had
to carry her the rest of the way. The sun was just coming up as we arrived at the
Ormaille.

Despite having to watch us, evidently my father found time to do some work, and
the resulting paper is (I am told) a classic in K theory. I will not get any farther than
the first definition, however, which is that for a cycle in K-homology [2]:

Definition 1 A cycle for K0(X) is a triple (σ0, σ1, T ) where σ0 and σ1 are ∗-
representations of the algebra of complex continuous bounded functions on X, and
T is a bounded intertwining operator.

Amazingly enough, in [13] Jeff Harvey and Greg Moore showed that one can derive
this definition from Dirichlet branes as well. This uses the physical idea of “tachyon
condensation,” and since the map T in the definition corresponds physically to a
tachyon, Harvey and Moore even used the same notation for it. This is (more or
less) the reduction to K theory of the derived category constructions I was working
out at the same time.

So I was destined to walk in my father’s footsteps after all. Fortunately he had
chosen some very fruitful directions to walk in, and I am eternally grateful for that
and for all that we shared together.
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contractive operator tuple T = (T1, . . . , Td) having T = T1 · · · Td equal to a
completely nonunitary contraction. We identify additional invariants G�,W� in
addition to the Sz.-Nagy–Foias characteristic function �T for the product operator
T so that the combined triple (G�,W�,�T ) becomes a complete unitary invariant
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1 Introduction

A major development in the theory of nonnormal operator theory was the Sz.-Nagy
dilation theorem (any Hilbert-space contraction operator T can be represented as
the compression of a unitary operator to the orthogonal difference of two invariant
subspaces) and the concomitant Sz.-Nagy–Foias functional model for a completely
nonunitary contraction operator (we refer to [42] for a complete treatment). Since
then there have been many forays into extensions of the formalism to more general
settings. Perhaps the earliest was that of Andô [9] who showed that any pair of
commuting contractions can be dilated to a pair of commuting unitary operators,
but the construction had no functional form like that of the Sz.-Nagy–Foias model
for the single-operator case and did not lead to a functional model for a commutative
contractive pair. Around the same time the Commutant Lifting Theorem due to
Sz.-Nagy et al. [42] appeared, with a seminal special case due to Sarason [49].
It was soon realized that there is a close connection between the Andô Dilation
Theorem and Commutant Lifting (see [47, Section 3]). However in the same paper
of Parrott it was shown that Andô’s result fails for d commuting contractions as
soon as d ≥ 3. Arveson [11] gave a general operator-algebraic/function-algebraic
formulation of the general problem which also revealed the key role of the property
of complete contractivity as opposed to mere contractivity for representations of
operator algebras.

Since the appearance of [21], much work has focused on the d-tuple of coordinate
multipliers Mz1, . . . ,Mzd on the Hardy space over the polydisk H 2

Dd as well as
the coordinate multipliers Mζ1 , . . . ,Mζd on the Lebesgue space over the torus
L2
Td and variations thereof as models for commuting isometries, and the quest for

Wold decompositions related to variations of these two simple examples. While the
most definitive results are for the doubly-commuting case (see [40, 50, 52]), there
has been additional progress developing models to handle more general classes of
commuting isometries [29, 30, 56, 57]. One can then study examples of commutative
contractive tuples by studying compressions of such commutative isometric tuples
to jointly coinvariant subspaces (see e.g. the book of Douglas and Paulsen [35] for an
abstract approach and work of Yang [61]). This work has led to a wealth of distinct
new types of examples with special features, including strong rigidity results (see
e.g. [36]). In case the commutative contractive tuple itself is doubly commuting,
one can get a rather complete functional analogue of the Schäffer construction of
the minimal unitary dilation (see [24, 58]).
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More recent work of Agler and Young along with collaborators [1, 6, 7], inspired
by earlier work of Bercovici et al. [18] having motivation from the notion of
structured singular-value in Robust Control Theory (see [18, 38]), explored more
general domains on which to explore the Arveson program: a broad overview of
this direction is given in Sect. 2.2 below. Followup work by Bhattacharyya and
collaborators (including the second author of the present manuscript) [22, 23, 25–
28] as well as of Sarkar [51] found analogues of the Sz.-Nagy–Foias defect operator

DT = (I − T ∗T ) 1
2 and a more functional form for the dilation and model theory

results established for these more general domains (specifically, the symmetrized
bidisk 	 and tetrablock domain E to be discussed below).

The goal of the present paper is to adapt these recent advances in the theory
of 	- and E-function-theoretic operator theory to the original Andô-Parrott setting
where the domain is the polydisk Dd and the associated operator-theoretic object is
a operator-tuple T = (T1, . . . , Td) of commuting contraction operators on a Hilbert
space H. Specifically, we adapt the definition of Fundamental Operators, originally
introduced in [25] for 	-contractions and then adapted to E-contractions in [22],
to arrive at a definition of Fundamental Operators {Fj1, Fj2 : j = 1, . . . , d} for a
commutative contractive operator tuple T = (T1, . . . , Td). We then show that the
set of Fundamental Operators can be jointly Halmos-dilated to another geometric
object which we call an Andô tuple as it appears implicitly as a key piece in Andô’s
construction of a joint unitary dilation in [9] for the pair case. While the set of
Fundamental Operators is uniquely determined by T , there is some freedom in the
choice of Andô tuple associated with T . With the aid of an Andô tuple, we are
then able to construct a (not necessarily commutative) isometric lift for T which has
the form of a Berger–Coburn–Lebow (BCL) model (as in [21]) for a commutative
isometric operator-tuple. While any commutative isometric operator-tuple can be
modeled as a BCL-model, there is no tractable characterization as to which BCL-
models are commutative, except in the d = 2 case. For the d = 2 case it can
be shown that there is an appropriate choice of the Andô tuple which leads to a
commutative BCL-model—thereby giving a more succinct proof of Andô’s original
result. For the general case where d ≥ 3, we next show how the noncommutative
isometric lift constructed from the Andô tuple can be cut down to the minimal
isometric-lift space for the single product operator T = T1 · · · Td to produce an
analogue of the single-variable lift for the commutative tuple situation which we
call a pseudo-commutative contractive lift of T . For the case where T = T1 · · ·Td
is completely nonunitary, we model the minimal isometric-lift space for T as the

Sz.-Nagy–Foias functional-model space

[

H 2(DT ∗ )
��T

L2(DT )

]

for T based on the Sz.-

Nagy–Foias characteristic function �T for T and we arrive at a functional model
for the whole commutative tuple T = (T1, . . . , Td) consistent with the standard
Sz.-Nagy–Foias model for the product operator T = T1 · · · Td . Let us mention that
the basic ingredients of this model already appear in the work of Das et al. [31] for
the pure-pair case (d = 2 and T = T1T2 has the property that T ∗n → 0 strongly
as n → ∞). This leads to the identification of additional unitary invariants (in
addition to the characteristic function �T ) so that the whole collection {G,W,�T }
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(which we call a characteristic triple for the commutative contractive tuple T ) is a
complete unitary invariant for T for the case where T = T1 · · ·Td is completely
nonunitary. Here G = {Gj1,Gj2 : j = 1, . . . , d} consists of the Fundamental
Operators for the adjoint tuple T ∗ = (T ∗1 , . . . , T ∗d ) and W = {W�1, . . . ,W�d }
consists of a canonically constructed commutative unitary tuple of multiplication
operators on the Sz.-Nagy–Foias defect model space ��T · L2(D�T ) with product

equal to multiplication by the coordinate Mζ on ��T · L2(D�T ), all of which is
vacuous for the case where T = T1 · · ·Td is pure. Let us also mention that we
obtain an analogue of the Sz.-Nagy–Foias canonical decomposition for a contraction
operator, i.e.: any commutative contractive operator tuple T splits as an orthogonal
direct sum T = T u ⊕ T c where T u is a commutative unitary operator-tuple and
T c is a commutative contractive operator tuple with T = T1 · · · Td completely
nonunitary. As the unitary classification problem for commutative unitary tuples can
be handled by the spectral theory for commuting normal operators (see [10, 34]),
the results for the case where T = T1 · · · Td is completely nonunitary combined
with the spectral theory for the commutative unitary case leads to a model theory
and unitary classification theory for the general class of commutative contractive
operator-tuples.

Let us mention that Bercovici et al. [14–16] have also recently obtained a wealth
of structural information concerning commutative contractive tuples. This work also
builds off the BCL-model for the commutative isometric case, but also derives
additional insight concerning the BCL-model itself. There also appears the notion of
characteristic function for a commutative contractive operato-tuple, but this is quite
different from our notion of characteristic function (simply the Sz.-Nagy–Foias
characteristic function of the single operator equal to the product T = T1 · · ·Td ).

The paper is organized as follows. After the present Introduction, Sect. 2 on
preliminaries provides (1) a reference for some standard notations to be used
throughout, (2) a review of the rational dilation problem, especially in the context of
the specific domains 	 (symmetrized bidisk) and E (tetrablock domain), including
some discussion on how these domains arise from specific examples of the
structured singular value arising in Robust Control theory, (3) some background
on Fundamental Operators in the setting of the symmetrized bidisk, along with
some additional information (4) concerning Berger–Coburn–Lebow models for
commutative isometric-tuples [21] and (5) concerning the Douglas approach [32]
to the Sz.-Nagy–Foias model theory which will be needed in the sequel. Let us
also mention that the present manuscript is closely related to our companion paper
[13] where the results of the present paper are developed directly for the pair case
(T = (T1, T2) is a commutative contractive operator-pair) from a more general
point of view where additional details are developed. Finally this manuscript and
[13] subsume the preliminary report [54] posted on arXiv.

Acknowledgements Finally let us mention that this paper is dedicated to the
memory of Ron Douglas, a role model and inspiring mentor for us. Indeed it is his
approach to the Sz.-Nagy–Foias model theory in [32] which was a key intermediate
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step in our development of the multivariable version appearing here. In addition his
recent work with Bercovici and Foias [14–16] has informed our work as well.

2 Preliminaries

2.1 Notation

We here provide a reference for a core of common notation to be used throughout
the paper.

Given an operator A on a Hilbert space X , we write

• ν(A) = numerical radius of A= sup{|〈Ax, x〉X | : x ∈ X with ‖x‖ = 1}.
• ρspec(A) = spectral radius of A = sup{|λ| : λ ∈ C and λI − A not invertible}.
• If T ∈ L(X ) with ‖T ‖ ≤ 1, then DT denotes the defect operator of T defined as

DT = (I − T ∗T ) 1
2 and DT = Ran DT .

• Given the set of d indices {j : 1 ≤ j ≤ d}, (j) denotes the tuple of d − 1 indices
(1, . . . , j − 1, j + 1, . . . , d).

• For a d-tuple (T1, T2, . . . , Td) of operators and an index j such that 1 ≤ j ≤ d ,
T(j) denotes the operator T1 · · ·Tj−1Tj+1 · · · Td .

2.2 Domains with Motivation from Control: The Symmetrized
Bidisk G and the Tetrablock E

The symmetrized bidisk G is the domain in C2 defined as

G = {(s, p) ∈ C
2 : ∃ (λ1, λ2) ∈ D

2 such that s = λ1+λ2 and p = λ1λ2}. (2.1)

The study of this domain from a function-theoretic and operator-theoretic point of
view was initiated in a series of papers by Agler and Young starting in the late
1990s (see [3–8]) with original motivation from Robust Control Theory (see [38]
and the papers of Bercovici et al. [17–20]). The control motivation can be explained
as follows.

A key role is played by the notion of structured singular value introduced in the
control literature by Packer and Doyle [45]. The structured singular valueμ�(A) of
a N ×N matrix over C with respect to an uncertainty set � (to be thought of as the
admissible range for an additional unknown variable � which is used to parametrize
the set of possible true plants around the chosen nominal (oversimplified) model
plant) is defined to be

μ�(A) = [sup{r ∈ R+ : I −�A invertible for � ∈ � with ‖�‖ ≤ r}]−1
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After appropriate normalizations, it suffices to test whether μ�(A) < 1;

μ�(A) < 1 ⇔ I − A� invertible for all � ∈ � with ‖�‖ ≤ 1.

In the control theory context, this appears as the test for internal stability not only for
the nominal plant but for all other possible true plants as modeled by the uncertainty
set �. In practice the uncertainty set is taken to be the set of all matrices having a
prescribed block diagonal structure.

For the case of 2× 2 matrices, there are three possible block-diagonal structures:

�full =
{[

z11 z12

z21 z22

]

: zij ∈ C

}

= all 2× 2 matrices.

�scalar =
{[

z 0
0 z

]

: z ∈ C

}

= all scalar 2× 2 matrices.

�diag =
{[

z1 0
0 z2

]

: z1, z2 ∈ C

}

= all diagonal matrices.

An easy exercise using the theory of singular-value decompositions is to show
that

μ�full(A) = ‖A‖.

To compute μ�scalar (A), one can proceed as follows. Given A = [

a11 a12
a21 a22

]

, from
the definitions we see that

μ�scalar (A) < 1 ⇔ det

([

1− za11 −za12

−za21 1− za22

])

�= 0 for all z with |z| ≤ 1

⇔ 1− (trA)z+ (detA)z2 �= 0 for all z with |z| ≤ 1. (2.2)

Thus the decision as to whether μ�scalar(A) < 1 depends only on trA and detA, i.e.,
on trA = λ1 + λ2 and detA = λ1λ2 where λ1, λ2 are the eigenvalues of A. This
suggests that we define a map πG : C2×2 → C2 by

πG(A) = (trA, detA)

and introduce the domain

G
′ ={x = (x1, x2) ∈ C

2 : ∃A = [ a11 a12
a21 a22

] ∈ C
2×2

with πG(A) = x and μ�scalar(A) < 1}. (2.3)

Note next that the first form of the criterion (2.2) for μ�scalar (A) < 1 can also be
interpreted as saying that A has no inverse-eigenvalues inside the closed unit disk,
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i.e., all eigenvalues of A are in the open unit disk, meaning that ρspec(A) < 1. In this
way we see that the symmetrized bidisk G (2.1) is exactly the same as the domain
G′ given by (2.3). This equivalence gives the connection between the symmetrized
bidisk and the structured singular value A �→ μ�scalar(A).

Noting that similarity transformations

A �→ A′ = SAS−1 for some invertible S

preserve eigenvalues and using the fact that ρspec(A) < 1 if and only if A is
similar to a strict contraction (known as Rota’s Theorem [48] among mathematicians
whereas engineers think in terms of X = S∗S � 0 being a solution of the Linear
Matrix Inequality A∗XA−X ≺ 0—see e.g. [38, Theorem 11.1 (i)]), we see that yet
another characterization of the domain G is

G = {x = (s, p) ∈ C
2 : ∃A ∈ C

2×2 with πG(A) = x and ‖A‖ < 1}. (2.4)

The fact that one can always write down a companion matrix A whose characteristic
polynomial det(zI −A) is equal to a given polynomial 1− sz+ps2 leads us to one
more equivalent definition of G:

G = {(s, p) ∈ C
2 : 1− sz+ pz2 �= 0 for |z| ≤ 1}. (2.5)

The closure of G is denoted by 	.
A similar story holds for the tetrablock domain E defined as

E = {x = (x1, x2, x3) ∈ C
3 : 1− x1z − x2w + x3zw �= 0 whenever |z| ≤ 1, |w| ≤ 1}

(2.6)

(the analogue of definition (2.5) for the symmetrized bidisk G) and its connection
with the structured singular value A �→ μ�diag(A). From the definitions we see that,
for A = [ a11 a12

a21 a22

]

,

μ�diag(A) < 1 ⇔ det

([

1 0
0 1

]

−
[

z 0
0 w

] [

a11 a12

a21 a22

])

�= 0 for |z| ≤ 1, |w| ≤ 1

⇔ 1− za11 − wa22 + zw · detA �= 0 whenever |z| ≤ 1, |w| ≤ 1.

This suggests that we define a mapping πE : C2×2 → C
3 by

πE
([

a11 a12
a21 a22

]) = (a11, a22, a11a22 − a12a21)

and we define a domain E by

E = {x = (x1, x2, x3) ∈ C
3 : ∃A ∈ C

2×2 with πE(A) = x and μ�diag(A) < 1}.
(2.7)
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If x = (x1, x2, x3) belongs to E as defined in (2.6) above, we can always take

A =
[

x1 x1x2−x3
1 x2

]

to produce a matrix A with πE(A) = (x1, x2, x3) and then this A

has the property that μ�diag(A) < 1. Thus definitions (2.6) and (2.7) are equivalent.
Among the many equivalent definitions of E (see [1, Theorem 2.2]), one of the more
remarkable ones is the following variation of definition (2.7):

E={x=(x1, x2, x3) ∈ C
3 : ∃A ∈ C

2×2 with πE(A) = x and ‖A‖ < 1}. (2.8)

That (2.7) and (2.8) are equivalent can be seen as a consequence of the 2s + f

theorem in the control literature (with s = 0, f = 2 so that 2s + f = 2 ≤ 3)—see
[38, Theorem 8.27], but is also proved in [1] directly.

While the original motivation was the control theory connections, most of
the ensuing research concerning the domains G and E focused on their role
as new concrete domains to explore operator- and function-theoretic questions
concerning general domains in Cd . One such question is the rational dilation
problem formulated by Arveson [11]. Let us assume that K is a compact set in
Cd (as is the case for K equal to 	 = G or E). Suppose that we are given a
commutative tuple T = (T1, . . . , Td) of Hilbert space operators with Taylor joint
spectrum contained in K (if the Hilbert space H is finite-dimensional, one can take
Taylor joint spectrum to mean the set of joint eigenvalues). If r is any function
holomorphic in a neighborhood of K ( if K is polynomially convex, one can take
r to be polynomial) any reasonable functional calculus can be used to define r(T ).
We say that T is aK-contraction (sometimes also phrased as K is a spectral set for
T ), if for all r ∈ Rat(K) (rational functions holomorphic in a neighborhood of K)
it is the case that the following von Neumann inequality holds:

‖r(T )‖B(H) ≤ ‖r‖∞,K = sup
z∈K
{|r(z)|}

where B(H) is the Banach algebra of bounded linear operators on H with the
operator norm. Let us say that operator tuple U = (U1, . . . , Ud) is K-unitary if
U is a commutative tuple of normal operators with joint spectrum contained in the
distinguished boundary ∂eK of K . We say that T has a K-unitary dilation if there
is a K-unitary operator-tuple U on a larger Hilbert space K containing H such that
r(T ) = PHr(U)|H for all r ∈ RatK . If T has a K-unitary dilation U , it follows
that

‖r(T )‖ = ‖PHr(U)|H‖ ≤ ‖r(U)‖ = sup
z∈∂eK

|r(z)|

(by the functional calculus for commutative normal operators)

= sup
z∈K

|r(z)| (by the definition of the distinguished boundary)
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and it follows that T has K as a spectral set. The rational dilation question asks: for
a given compact set K , when is it the case that the converse direction holds, i.e., that
T being a K-contraction implies that T has a K-unitary dilation U? For the case of

K equal to the closed polydisk D
d
, the rational dilation question is known to have

an affirmative answer in case d = 1 (by the Sz.-Nagy dilation theorem [43]) as well
as d = 2 (by the Andô dilation theorem [9]) but has a negative answer for d ≥ 3 by
the result of Parrott [47]. For the case of K = 	 it is known that the rational dilation
question has an affirmative answer ([7, 25]) while the case of K = E was initially
thought to be settled in the negative [46] but now appears to be still undecided [12].

It is known that existence of a K-unitary dilation for T is equivalent to the
existence of a K-isometric lift for T . Here a commutative operator-tuple V =
(V1, . . . , Vd) defined on a Hilbert space K+ is said to be a K-isometry if there is a
K-unitary d-tuple U = (U1, . . . , Ud) on a Hilbert space K containing K+ such that
K+ is invariant for U and U restricted to K+ is equal to V , i.e.,

UjK+ ⊂ K+ and Uj |K+ = Vj for j = 1, . . . , d.

Then we say that the K-contraction T has a K-isometric lift if there is a K-isometric
operator-tuple V on a Hilbert space K+ containing H such that V is a lift of T , i.e.,
for each j = 1, . . . , d ,

V ∗j H ⊂ H and V ∗j |H = T ∗j .

It is known that a K-contraction T has a K-unitary dilation if and only if T has a K-
isometric lift. In practice K-isometric lifts are easier to work with, so in the sequel
we shall only deal with K-isometric lifts. This point has been made in a number of
places (see e.g. the introduction in [12]).

We define a couple of terminologies here. To add flexibility to the construction
of such lifts, we often drop the requirement that H be a subspace of K+ but instead
require only an isometric identification map � : H → K+. We summarize the
precise language which we shall be using in the following definition.

Definition 2.1 We say that (�,K+, S = (S1, . . . , Sd)) is a lift of T = (T1, . . . , Td)

on H if

• � : H→ K+ is isometric, and
• S∗j �h = �T ∗j h for all h ∈ H and j = 0, 1, 2, . . . , d .

A lift (�,K+, S) of T is said to be minimal if

K+ = span{Sm1
1 S

m2
2 · · · Smd

d h : h ∈ H,mj ≥ 0}.

Two lifts (�,K+, S) and (�,′ K′+, S ′) of the same (T1, . . . , Td) are said to be
unitarily equivalent if there is a unitary operator τ : K+ → K′+ so that

τSj = S′j τ for each j = 1, . . . , d, and τ� = �′.
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It is known (see Chapter I of [42]) that when K = D, any two minimal isometric
lifts of a given contraction are unitarily equivalent. However, minimality in several

variables does not imply uniqueness, in general. For example, two minimal D
2
-

isometric lifts need not be unique (see [41]).
Instead of E-contraction, the terminology tetrablock contraction was used in

[22]. We follow this terminology.

2.3 Fundamental Operators

For our study of commutative contractive tuples T = (T1, . . . , Td), we shall have
use for the following theorem concerning 	-contractions. We refer back to Sect. 2.1
for other notational conventions.

Theorem 2.2 Let (S, T ) be a 	-contraction on a Hilbert spaceH. Then

1. (See [25, Theorem 4.2].) There exists a unique operatorF ∈ B(DT )with ν(F ) ≤
1 such that

S − S∗T = DT FDT .

2. (See [22, Lemma 4.1].) The operator F in part (1) above is the unique solution
X = F of the operator equation

DT S = XDT +X∗DT T .

This theorem has been a major influence on further developments in the theory
of both 	-contractions [26, 27] and tetrablock contractions [22, 28, 53]. The unique
operator F in Theorem 2.2 is called the fundamental operator of the 	-contraction
(S, T ).

2.4 Models for Commutative Isometric Tuples

The following result of Berger, Coburn and Lebow for commutative-tuples of
isometries is a fundamental stepping stone for our study of commutative-tuples of
contractions.

Theorem 2.3 Let d ≥ 2 and (V1, V2, . . . , Vd) be a d-tuple of commutative
isometries acting on K. Then there exit Hilbert spaces F and Ku, unitary opera-
tors U1, . . . , Ud and projection operators P1, . . . , Pd on F , commutative unitary
operatorsW1, . . . ,Wd on Ku, such that K can be decomposed as

K = H 2(F)⊕Ku (2.9)


