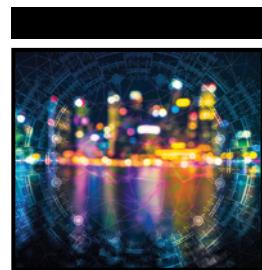


SECOND EDITION

Machine Learning

HANDS-ON FOR DEVELOPERS
AND TECHNICAL PROFESSIONALS


JASON BELL

WILEY

Machine Learning

Machine Learning

Hands-On for Developers and Technical
Professionals

Second Edition

Jason Bell

WILEY

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-64214-5

ISBN: 978-1-119-64225-1 (ebk)

ISBN: 978-1-119-64219-0 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at <http://www.wiley.com/go/permissions>.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at <http://booksupport.wiley.com>. For more information about Wiley products, visit www.wiley.com.

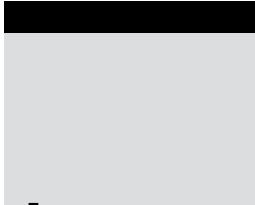
Library of Congress Control Number: 2019956691

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

To all the developers who just wanted to get the code working without reading all the math stuff first.

About the Author

Jason Bell has worked in software development for more than 30 years. Currently he focuses on large-volume data solutions and helping retail and finance customers gain insight from data with machine learning. He is also an active committee member for several international technology conferences.



About the Technical Editor

Jacob Andresen works as a senior software developer based in Copenhagen, Denmark. He has been working as a software developer and consultant in information retrieval systems and web applications since 2002.

Acknowledgments

“Never again!” I think those were my final words after completing the first edition of this book. Five years later, and here we are again. When the call comes, you immediately think, “Well, it can’t be hard, can it?”

To the Team

Jim Minatel, Devon Lewis, Janet Wehner, Pete Gaughan, and the rest of the team at Wiley, thank you for giving your blessing to this second edition and putting your faith in me to revise an awful lot of content. Apologies for the spelling mistakes and those *colour/color* occurrences. Many thanks to Jacob Andresen for giving a technical overview on the content of the book. His enthusiasm for the project was wonderful.

Most Excellent Friends and Collaborators

Dearest friends and acquaintances, thank you: Jennifer Michael, Marie Bentall, Tim Brundle, Stephen Houston, Garrett Murphy, Clare Conway, Tom Spinks, Matt Johnston, Alan Edwards, Colin Mitchell, Simon Hewitt, Mary McKenna, Alan Thorburn, Colin McHale, Dan Lyons, Victoria McCallum, Andrew Bolster, Eoin McFadden, Catherine Muldoon, Amanda Paver, Ben Lorica, Alastair Croll, Mark Madsen, Ellen Friedman, Ted Dunning, Sophia DeMartini, Bruce Durling, Francine Bennett, Michelle Varron, Elise Huard, Antony Woods, John Stephenson, McCraigMcCraig of the Clan McCraig, everyone on the Clojurians Slack Channel, the Strata Data community, Carla Gaggini, Kiki Schirr, Wendy

Devolder, Brian O'Neill, Anthony O'Connor, Tom Gray, Deepa Mann-Kler, Alan Hook, Michelle Douglas, Pete Harwood, Jen Samuel, and Colin Masters. There are loads I've forgotten, I know. I'm sorry.

And Finally

To my wife, Wendy, and my daughter, Clarissa, for absolutely everything and encouraging me to do these projects to the best of my nerdy ability. I couldn't have done it without you both.

To the rest of my family, Maggie, Fern, Andrew, Kerry, Ian and Margaret, William and Sylvia, thank you for all the support and kind words. William, if I need any more help, I'll call you.

The Bios That Never Made It. . .

"He has the boots and jacket that were the envy of many men."

"A dab hand at late-night YouTube videos of 80s pop stars."

"Jason Bell learned to play bass guitar on Saturday afternoons while pretending to work in a music shop."

Thanks to everyone who reads this book. I hope it's helpful in your journey. It's an honor and privilege that you chose to read it. Now I believe it's time for a cup of tea.

Contents

Introduction	xxvii
Chapter 1 What Is Machine Learning?	1
History of Machine Learning	1
Alan Turing	1
Arthur Samuel	2
Tom M. Mitchell	2
Summary Definition	3
Algorithm Types for Machine Learning	3
Supervised Learning	3
Unsupervised Learning	4
The Human Touch	4
Uses for Machine Learning	4
Software	4
Spam Detection	5
Voice Recognition	5
Stock Trading	5
Robotics	6
Medicine and Healthcare	6
Advertising	7
Retail and E-commerce	7
Gaming Analytics	9
The Internet of Things	10
Languages for Machine Learning	10
Python	10
R	11
Matlab	11
Scala	11
Ruby	11

Software Used in This Book	11
Checking the Java Version	12
Weka Toolkit	12
DeepLearning4J	13
Kafka	13
Spark and Hadoop	13
Text Editors and IDEs	13
Data Repositories	14
UC Irvine Machine Learning Repository	14
Kaggle	14
Summary	14
Chapter 2 Planning for Machine Learning	15
The Machine Learning Cycle	15
It All Starts with a Question	16
I Don't Have Data!	16
Starting Local	17
Transfer Learning	17
Competitions	17
One Solution Fits All?	18
Defining the Process	18
Planning	18
Developing	19
Testing	19
Reporting	19
Refining	19
Production	20
Avoiding Bias	20
Building a Data Team	20
Mathematics and Statistics	20
Programming	21
Graphic Design	21
Domain Knowledge	21
Data Processing	22
Using Your Computer	22
A Cluster of Machines	22
Cloud-Based Services	22
Data Storage	23
Physical Discs	23
Cloud-Based Storage	23
Data Privacy	23
Cultural Norms	24
Generational Expectations	24
The Anonymity of User Data	25
Don't Cross the "Creepy Line"	25
Data Quality and Cleaning	26
Presence Checks	26
Type Checks	27

Length Checks	27
Range Checks	28
Format Checks	28
The Britney Dilemma	28
What's in a Country Name?	31
Dates and Times	33
Final Thoughts on Data Cleaning	33
Thinking About Input Data	34
Raw Text	34
Comma-Separated Variables	34
JSON	35
YAML	37
XML	37
Spreadsheets	38
Databases	39
Images	39
Thinking About Output Data	39
Don't Be Afraid to Experiment	40
Summary	40
Chapter 3 Data Acquisition Techniques	43
Scraping Data	43
Copy and Paste	44
Google Sheets	46
Using an API	47
Acquiring Weather Data	48
Using the Command Line	48
Using Java	49
Using Clojure	50
Migrating Data	50
Installing Embulk	51
Using the Quick Run	51
Installing Plugins	52
Migrating Files to Database	53
Bulk Converting CSV to JSON	55
Summary	56
Chapter 4 Statistics, Linear Regression, and Randomness	57
Working with a Basic Dataset	57
Loading and Converting the Dataset	58
Loading Data with Clojure	58
Loading Data with Java	59
Introducing Basic Statistics	59
Minimum and Maximum Values	60
Mathematical Notation	60
Clojure	60
Java	61
Sum	61
Mathematical Notation	61

Clojure	61
Java	61
Mean	62
Arithmetic Mean	62
Harmonic Mean	62
Geometric Mean	63
The Relationship Between the Three Averages	63
Clojure	63
Java	64
Mode	65
Clojure	65
Java	66
Median	66
Clojure	66
Java	66
Range	67
Clojure	67
Java	67
Interquartile Ranges	67
Clojure	68
Java	68
Variance	68
Clojure	68
Java	68
Standard Deviation	69
Clojure	69
Java	69
Using Simple Linear Regression	70
Using Your Spreadsheet	70
Using Excel	70
Loading the CSV Data	70
Creating a Scatter Plot	71
Showing the Trendline	72
Showing the Equation and R2 Value	72
Making a Prediction	73
Writing a Program	73
Embracing Randomness	75
Finding Pi with Random Numbers	76
Using Monte Carlo Pi in Clojure	77
Is the Dart Within the Circle?	77
Now Throw Lots of Darts!	78
Summary	80
Chapter 5 Working with Decision Trees	81
The Basics of Decision Trees	81
Uses for Decision Trees	81
Advantages of Decision Trees	82
Limitations of Decision Trees	82

Different Algorithm Types	82
ID3	83
C4.5	83
CHAID	83
MARS	84
How Decision Trees Work	84
Building a Decision Tree	85
Manually Walking Through an Example	85
Calculating Entropy	86
Information Gain	87
Rinse and Repeat	87
Decision Trees in Weka	88
The Requirement	88
Training Data	89
Relation	90
Attributes	90
Data	90
Using Weka to Create a Decision Tree	90
Creating Java Code from the Classification	94
Testing the Classifier Code	99
Thinking About Future Iterations	101
Summary	101
Chapter 6 Clustering	103
What Is Clustering?	103
Where Is Clustering Used?	104
The Internet	104
Business and Retail	104
Law Enforcement	105
Computing	105
Clustering Models	105
How the K-Means Works	106
Initialization	107
Assignments	107
Update	108
Calculating the Number of Clusters in a Dataset	108
The Rule of Thumb Method	108
The Elbow Method	109
The Cross-Validation Method	109
The Silhouette Method	109
K-Means Clustering with Weka	110
Preparing the Data	110
The Workbench Method	111
Loading Data	111
Clustering the Data	113
Visualizing the Data	115
The Command-Line Method	116
Converting CSV File to ARFF	116

The First Run	117
Refining the Optimum Clusters	118
Name That Cluster	119
The Coded Method	120
Create the Project	120
The Cluster Code	122
Printing the Cluster Information	124
Making Predictions	124
The Final Code Listing	125
Running the Program	127
Further Development	128
Summary	128
Chapter 7 Association Rules Learning	129
Where Is Association Rules Learning Used?	129
Web Usage Mining	130
Beer and Diapers	130
How Association Rules Learning Works	131
Support	133
Confidence	133
Lift	134
Conviction	134
Defining the Process	134
Algorithms	135
Apriori	135
FP-Growth	136
Mining the Baskets—A Walk-Through	136
The Raw Basket Data	136
Using the Weka Application	137
Inspecting the Results	141
Summary	142
Chapter 8 Support Vector Machines	143
What Is a Support Vector Machine?	143
Where Are Support Vector Machines Used?	144
The Basic Classification Principles	144
Binary and Multiclass Classification	144
Linear Classifiers	146
Confidence	147
Maximizing and Minimizing to Find the Line	147
How Support Vector Machines Approach Classification	148
Using Linear Classification	148
Using Non-Linear Classification	150
Using Support Vector Machines in Weka	151
Installing LibSVM	151
Weka LibSVM Installation	151
A Classification Walk-Through	152
Setting the Options	154
Running the Classifier	156

Dealing with Errors from LibSVM	158
Saving the Model	158
Implementing LibSVM with Java	158
Converting .csv Data to .arff Format	158
Setting Up the Project and Libraries	159
Training and Predicting with the Existing Data	162
Summary	164
Chapter 9 Artificial Neural Networks	165
What Is a Neural Network?	165
Artificial Neural Network Uses	166
High-Frequency Trading	166
Credit Applications	167
Data Center Management	167
Robotics	167
Medical Monitoring	168
Trusting the Black Box	168
Breaking Down the Artificial Neural Network	169
Perceptrons	169
Activation Functions	170
Multilayer Perceptrons	171
Back Propagation	173
Data Preparation for Artificial Neural Networks	174
Artificial Neural Networks with Weka	175
Generating a Dataset	175
Loading the Data into Weka	177
Configuring the Multilayer Perceptron	178
Learning Rate	179
Hidden Layers	179
Training Time	179
Training the Network	180
Altering the Network	182
Which Bit Is Which?	182
Adding Nodes	182
Connecting Nodes	182
Removing Connections	182
Removing Nodes	182
Increasing the Test Data Size	183
Implementing a Neural Network in Java	183
Creating the Project	183
Writing the Code	185
Converting from CSV to Arff	188
Running the Neural Network	188
Developing Neural Networks with DeepLearning4J	189
Modifying the Data	189
Viewing Maven Dependencies	190
Handling the Training Data	191
Normalizing Data	191

Building the Model	192
Evaluating the Model	193
Saving the Model	193
Building and Executing the Program	194
Summary	195
Chapter 10 Machine Learning with Text Documents	197
Preparing Text for Analysis	198
Apache Tika	198
Downloading Tika	198
Tika from the Command Line	199
Tika Within an Application	202
Cleaning the Text Data	203
Convert Words to Lowercase	203
Remove Punctuation	204
Stopwords	205
Stemming	206
N-grams	206
TF/IDF	207
Loading the Documents	207
Calculating the Term Frequency	208
Calculating the Inverse Document Frequency	208
Computing the TF/IDF Score	209
Reviewing the Final Code Listing	209
Word2Vec	211
Loading the Raw Text Data	212
Tokenizing the Strings	212
Creating the Model	212
Evaluating the Model	213
Reviewing the Final Code	214
Basic Sentiment Analysis	216
Loading Positive and Negative Words	216
Loading Sentences	217
Calculating the Sentiment Score	217
Reviewing the Final Code	218
Performing a Test Run	220
Further Development	220
Summary	221
Chapter 11 Machine Learning with Images	223
What Is an Image?	223
Introducing Color Depth	224
Images in Machine Learning	225
Basic Classification with Neural Networks	226
Basic Settings	226
Loading the MNIST Images	226
Model Configuration	227
Model Training	228
Model Evaluation	228

Convolutional Neural Networks	228
How CNNs Work	228
Feature Extraction	228
Activation Functions	230
Pooling	230
Classification	230
CNN Demonstration	231
Downloading the Image Data	231
Basic Setup	232
Handling the Training and Test Data	233
Image Preparation	233
CNN Model Configuration	234
Model Training	236
Model Evaluation	236
Saving the Model	237
Transfer Learning	237
Summary	238
Chapter 12 Machine Learning Streaming with Kafka	239
What You Will Learn in This Chapter	239
From Machine Learning to Machine Learning Engineer	240
From Batch Processing to Streaming Data Processing	241
What Is Kafka?	241
How Does It Work?	241
Fault Tolerance	243
Further Reading	243
Installing Kafka	243
Kafka as a Single-Node Cluster	244
Starting Zookeeper	244
Starting Kafka	245
Kafka as a Multinode Cluster	245
Starting the Multibroker Cluster	246
Topics Management	247
Creating Topics	248
Finding Out Information About Existing Topics	248
Deleting Topics	249
Sending Messages from the Command Line	249
Receiving Messages from the Command Line	250
Kafka Tool UI	250
Writing Your Own Producers and Consumers	251
Producers in Java	251
Properties	252
The Producer	253
Messages	253
The Final Code	253
Message Acknowledgments	254
Consumers in Java	255
Properties	255

Fetching Consumer Records	256
The Consumer Record	256
The Final Code	257
Building and Running the Applications	258
The Consumer Application	258
The Producer Application	259
The Streaming API	260
Streaming Word Counts	261
Building a Streaming Machine Learning System	262
Planning the System	263
What Topics Do We Require?	264
What Format Is the Data In?	264
Continuous Training	265
How to Install the Crontab Entries	265
Determining Which Models to Use for Predictions	266
Setting Up the Database	267
Determining Which Algorithms to Use	268
Decision Trees	268
Simple Linear Regression	271
Neural Network	274
Data Importing	275
Hidden Nodes	275
Model Configuration	276
Model Training	277
Evaluation	277
Saving the Model Results to the Database	277
Persisting the Model	277
The Final Code	278
Kafka Topics	281
Creating the Topics	281
Kafka Connect	283
Why Persist the Event Data?	283
Persisting Event Data	283
Persisting Training Data	284
Installing the Connector Configurations	284
The REST API Microservice	285
Processing Commands and Events	287
Finding Kafka Brokers	288
A Command or an Event?	289
Making Predictions	293
Prediction Streaming API	293
Prediction Functions	296
Predicting with Decision Tree Models	297
Predicting Linear Regression	298
Predicting the Neural Network Model	299
Running the Project	301
Run MySQL	301

Run Zookeeper	301
Run Kafka	301
Create the Topics	301
Run Kafka Connect	301
Model Builds	302
Run Events Streaming Application	302
Run Prediction Streaming Application	302
Start the API	302
Send JSON Training Data	302
Train a Model	302
Make a Prediction	303
Summary	303
Chapter 13 Apache Spark	305
Spark: A Hadoop Replacement?	305
Java, Scala, or Python?	306
Downloading and Installing Spark	306
A Quick Intro to Spark	306
Starting the Shell	307
Data Sources	307
Testing Spark	308
Load the Text File	308
Make Some Quick Inspections	308
Filter Text from the RDD	309
Spark Monitor	309
Comparing Hadoop MapReduce to Spark	310
Writing Stand-Alone Programs with Spark	313
Spark Programs in Java	313
Using Maven to Build the Project	315
Creating Packages in Maven	316
Spark Program Summary	318
Spark SQL	318
Basic Concepts	318
Wrapping Up SparkSQL	323
Spark Streaming	323
Basic Concepts	323
Creating Your First Spark Stream	324
Spark Streams from Kafka	326
MLib: The Machine Learning Library	327
Dependencies	328
Decision Trees	328
Clustering	330
Association Rules with FP-Growth	332
Summary	335
Chapter 14 Machine Learning with R	337
Installing R	337
macOS	337

Windows	338
Linux	338
Your First Run	338
Installing R-Studio	339
The R Basics	340
Variables and Vectors	340
Matrices	341
Lists	342
Data Frames	343
Installing Packages	344
Loading in Data	345
CSV Files	345
MySQL Queries	346
Creating Random Sample Data	346
Plotting Data	347
Bar Charts	347
Pie Charts	347
Dot Plots	348
Line Charts	349
Simple Statistics	350
Simple Linear Regression	350
Creating the Data	351
The Initial Graph	351
Regression with the Linear Model	351
Making a Prediction	352
Basic Sentiment Analysis	353
Using Functions to Load in Word Lists	353
Writing a Function to Score Sentiment	354
Testing the Function	354
Apriori Association Rules	355
Installing the arules Package	355
Gathering the Training Data	356
Importing the Transaction Data	356
Running the Apriori Algorithm	357
Inspecting the Results	358
Accessing R from Java	358
Installing the rJava Package	358
Creating Your First Java Code in R	359
Calling R from Java Programs	359
Setting Up an Eclipse Project	360
Creating the Java/R Class	361
Running the Example	361
Extending Your R Implementations	363
Connecting to Social Media with R	364
Summary	366
Appendix A Kafka Quick Start	367
Installing Kafka	367
Starting Zookeeper	367

Starting Kafka	368
Creating Topics	368
Listing Topics	369
Describing a Topic	369
Deleting Topics	369
Running a Console Producer	370
Running a Console Consumer	370
Appendix B The Twitter API Developer Application Configuration	371
Appendix C Useful Unix Commands	375
Using Sample Data	375
Showing the Contents: cat, more, and less	376
Example Command	376
Expected Output	376
Filtering Content: grep	377
Example Command for Finding Text	377
Example Output	377
Sorting Data: sort	378
Example Command for Basic Sorting	378
Example Output	378
Finding Unique Occurrences: uniq	380
Showing the Top of a File: head	381
Counting Words: wc	381
Locating Anything: find	382
Combining Commands and Redirecting Output	383
Picking a Text Editor	383
Colon Frenzy: Vi and Vim	383
Nano	384
Emacs	384
Appendix D Further Reading	385
Machine Learning	385
Statistics	386
Big Data and Data Science	386
Visualization	387
Making Decisions	387
Datasets	388
Blogs	388
Useful Websites	389
The Tools of the Trade	389
Index	391

Introduction

Well, times have changed since writing the first edition of this book. Between 2014 and now there is more emphasis on data and what it can do for us but also how that power can be used against us. Hardware has gotten better, processing has gotten much faster, and the ability to classify, predict, and decide based on our data is extraordinary. At the same time, we've become much more aware of the risks of how data is used, the biases that can happen, and that a lot of black-box models don't always get things right.

Still, it's an exciting time to be involved. We still create more data than we can sensibly process. New ideas involving machine learning are being presented daily. The appetite for learning has grown rapidly, too.

Data mining and machine learning have been around a number of years already. When you look closely, the machine learning algorithms that are being applied aren't any different from what they were years ago; what is new is how they are applied at scale. When you look at the number of organizations that are creating the data, it's really, in my opinion, a minority. Google, Facebook, Twitter, Netflix, and a small handful of others are the ones getting the majority of mentions in the headlines with a mixture of algorithmic learning and tools that enable them to scale. So, the real question you should ask is, "How does all this apply to the rest of us?"

Data with large scale, near-instant processing, has come to the fore. The emphasis has moved from batch systems like Hadoop to more streaming-based systems like Kafka. I admit there will be times in this book when I look at the Big Data side of machine learning—it's a subject I can't ignore—but it's only a small factor in the overall picture of how to get insight from the available data. It is important to remember that I am talking about tools, and the key is figuring out which tools are right for the job you are trying to complete.

Aims of This Book

This book is about machine learning and not about Big Data. It's about the various techniques used to gain insight from your data. By the end of the book, you will have seen how various methods of machine learning work, and you will also have had some practical explanations on how the code is put together, leaving you with a good idea of how you could apply the right machine learning techniques to your own problems.

There's no right or wrong way to use this book. You can start at the beginning and work your way through, or you can just dip in and out of the parts you need to know at the time you need to know them.

“Hands-On” Means Hands-On

Many books on the subject of machine learning that I've read in the past have been very heavy on theory. That's not a bad thing. If you're looking for in-depth theory with really complex-looking equations, I applaud your rigor. Me? I'm more hands-on with my approach to learning and to projects. My philosophy is quite simple.

- Start with a question in mind.
- Find the theory I need to learn.
- Find lots of examples I can learn from.
- Put them to work in my own projects.

As a software developer, I like to see lots of examples. As a teacher, I like to get as much hands-on development time as possible but also get the message across to students as simply as possible. There's something about fingers on keys, coding away on your IDE, and getting things to work that's rather appealing, and it's something that I want to convey in the book.

Everyone has his or her own learning styles. I believe this book covers the most common methods, so everybody will benefit.

“What About the Math?”

Like arguing that your favorite football team is better than another or trying to figure out whether Jimmy Page is a better guitarist than Jeff Beck (I prefer Beck), there are some things that will be debated forever and a day. One such debate is how much math you need to know before you can start doing machine learning.