Thomas Tille (Hrsg.)

Automobil-Sensorik 3

Prinzipien, Technologien und Anwendungen

Automobil-Sensorik 3

Thomas Tille (Hrsg.)

Automobil-Sensorik 3

Prinzipien, Technologien und Anwendungen

Dr.-Ing. Thomas Tille BMW AG Knorrstr. 147 80788 München

Technische Universität München Arcisstr. 21 80333 München

ISBN 978-3-662-61259-0 https://doi.org/10.1007/978-3-662-61260-6 ISBN 978-3-662-61260-6 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer-Verlag GmbH, DE und ist ein Teil von Springer Nature

Die Anschrift der Gesellschaft ist: Heidelberger Platz 3, 14197 Berlin, Germany

Vorwort

Die Sensorik nimmt im Automobil einen bedeutenden und stark wachsenden Stellenwert ein. Im Zuge der rasanten Entwicklungen auf dem Gebiet der Fahrzeugtechnik, wie Automatisiertes Fahren und Elektro-Mobilität, sind immer präzisere und robustere Sensorinformationen unabdingbar. Diese Informationen werden in komplexen Regelalgorithmen der Fahrzeugelektronik insbesondere zur Objekterkennung, Systemüberwachung, Antriebssteuerung, Fahrstabilität, Sicherheits- und Komforterhöhung genutzt. Zur Generierung dieser Informationen gewinnen neben der Optimierung etablierter Sensorprinzipien zunehmend auch neue und hybride Sensorkonzepte und -technologien an Bedeutung. Die daraus resultierenden Sensorsysteme unterliegen neben den hohen technischen Anforderungen auch immer höheren Ansprüchen hinsichtlich Kosten, Miniaturisierung, Qualität und Zuverlässigkeit.

In der Buchreihe *Automobil-Sensorik* werden innovative Sensoren unter dem anwendungsbezogenen Fokus der Automobilindustrie diskutiert. Die Buchinhalte spiegeln den Trend aktueller Sensorentwicklungen für zukunftsweisende Fahrzeug-Anwendungsbereiche wider. Der Themenschwerpunkt dieser Ausgabe liegt auf Sensorsystemen, die ihren Einsatz im Bereich Automatisiertes Fahren, Elektro-Mobilität, Innenraumdetektion und Bedien-Erkennung finden.

Einer der Treiber für künftige Sensorik-Entwicklungen im Automobil ist das Automatisierte Fahren. Dahingehend wird eine Szenarien-basierte Validierungsmethode eines hybriden Radarmodells für autonome Fahrzeuge vorgestellt, die physikalische, statistische und datengetriebene Ansätze vereint und dabei parametrierbar bleibt. Ein weiterer Treiber für die Automobil-Sensorik ist die Elektrifizierung des Antriebsstrangs von Fahrzeugen im Rahmen der Elektro-Mobilität. Für den Einsatz in Elektrofahrzeugen werden dahingehend hochintegrierte magnetoresistive Stromsensoren und kernlose magnetische Stromsensoren für Hochleistungs-E-Antriebe behandelt. Um die thermische Spitzenbelastung von Steckverbindern beim Hochleistungs-Laden von Elektrofahrzeugen zu kontrollieren, wird eine modellgestützte Temperaturüberwachungsmethode für Hoch-Volt-Komponenten vorgestellt. Zur Ladezustandsbestimmung von Lithium-Ionen-Akkus in Elektrofahrzeugen wird ein Verfahren auf Basis der optischen Sensorik betrachtet, das über Lichtleitfasern in der Batteriezelle Informationen für das Batteriemanagement liefert. Für Elektrofahrzeuge mit Brennstoffzelle wird ein H2-Sensorsystem vorgestellt, dass auf der Kombination von Metalloxid-Halbleitersensoren und eines Wärmeleitfähigkeitsdetektors basiert. Für die Anwendung im Abgasstrang wird ein Verfahren zur direkten Beladungsüberwachung von Benzinpartikelfiltern mittels Hochfrequenz-Sensorik behandelt. Ebenfalls ein Treiber künftiger Sensorik-Entwicklungen ist die Bedien-Erkennung und Innenraumdetektion im Automobil. Dahingehend werden verschiedene optische 3D-Sensorsysteme vorgestellt, die mittels Time-of-Flight-Kamera und Echtzeit-Bildverarbeitung die Erfassung von relevanten Nutzerbewegungen ermöglichen. Dadurch lassen sich sowohl eine gestengesteuerte Fahrzeugbedienung und ein kontaktloser Fahrzeugzugang, als auch eine präzise Insassen-Positionserkennung für Sicherheitsfunktionen realisieren. Des Weiteren wird ein datenfusionsbasiertes, thermodynamisches Sensormodell zur Fahrzeug-Innentemperaturerfassung vorgestellt, das eine Substitution des zentralen, physischen Innentemperatursensors ermöglicht. Aus dem Gebiet der Positionserkennung werden hochintegrierte Motorpositionssensoren für Bremssysteme und elektrische Antriebe, innovative 3D-Hallsensoren mit intelligenter Energieverwaltung und Streufeldunterdrückung sowie ein Positionserfassungsverfahren mittels Sensor-Array aus Tunnel-Magnetoresistiven Vortex-Dots und lernender Signalverarbeitung vorgestellt.

Das Buch richtet sich an Professionals in Wirtschaft und Wissenschaft, insbesondere im Tätigkeitsfeld der Automobilindustrie, bei Sensorherstellern und Forschungseinrichtungen.

An dieser Stelle gilt mein besonderer Dank allen Autoren, durch deren Beiträge dieses Fachbuch entstehen konnte.

München, im April 2020

Dr. Thomas Tille

Inhaltsübersicht

Vorwort	5
Kapitel 1	
Szenarienbasierte Validierung eines hybriden Radarmodells für Test und	
Absicherung automatisierter Fahrfunktionen	21
Thomas Eder, Alexander Prinz, Ludwig Brabetz, Erwin Biebl	
Kapitel 2	
Kernlose magnetische Stromsensoren für Hochleistungs-E-Antriebe	45
Leo Aichriedler, Gerald Wriessnegger	
Kapitel 3	
Hochintegrierte Stromsensoren für Elektrofahrzeuge	85
Thomas Holtij, Rolf Slatter	
Kapitel 4	
Modellgestützte Temperaturüberwachung von HV-Komponenten in	
Elektrofahrzeugen	119
Marco Wolf, Tobias Meissner, Michael Ludwig, Uwe Hauck	
Kapitel 5	
Ansätze der optischen Zustandsbestimmung in Lithium-Ionen-Batterien für	
die Nutzung in Elektro-Fahrzeugen	139
Florian Rittweger, Christian Modrzynski, Valentin Roscher,	
Karl-Ragmar Riemschneider	

Inhaltsüt	persicht
-----------	----------

Kapitel 6	
Innovative H ₂ -Sensorik für Brennstoffzellen-Fahrzeuge	163
Olaf Kiesewetter, Alexander Kraußer, Nils Kiesewetter, Jürgen Müller,	
Marcus Bose, Stefan Schenk, Matthias May	
Kapitel 7	
Hochfrequenzsensorik zur direkten Beladungserkennung von	
Benzinpartikelfiltern	185
Stefanie Walter, Peter Schwanzer, Gunter Hagen, Gerhard Haft,	
Markus Dietrich, Hans-Peter Rabl, Ralf Moos	
Kapitel 8	
3D-Sensorik auf Basis einer Time-of-Flight-Kamera zur kontaktlosen	
Fahrzeugbedienung	209
Niko Clemens Schmidt-Fischer, Robert Krannich, Thomas Findeisen	
Kapitel 9	
Miniaturisierte 3D Time-of-Flight-Kamera zur Innenraumüberwachung	
und Gestensteuerung im Automobil	235
Cliff De Locht, Gaetan Koers, Gualtiero Bagnuoli, Kristof Lieben,	
Andreas Ott, Andreas Menath, Thomas Ewender, Christin Gassner,	
Robert Brüning, Johanna Awada, Foti Coleca, Niklas Hermes,	
Ercan Küçükkaraca, Josephine Zillmann	
Kapitel 10	
Intelligente kontaktlose Gestensensoren für zukünftige	
Fahrzeugzugangssysteme	269
Boudewijn Venema, Andreas Gornik, Xi Chen, Steffen Leib,	
Frederik Hempelmann	
Kapitel 11	
Datenfusionsbasiertes, thermodynamisches Sensormodell zur	
Innentemperaturerfassung	291
Tobias Glohr, José Manuel Briones Ayala, Thomas Tille	
Kapitel 12	
Hochintegrierte Motorpositionssensoren für Bremssysteme und	
elektrische Antriebe	325
Nils Labahn, Fabian Utermöhlen, Harry Weber	

8

Kapitel 13Innovative 3D-Hallsensoren mit intelligenter Energieverwaltung undStreufeldunterdrückung345Andreas P. Friedrich, Fabian Winkler, Till-Jonas Ostermann, Christophe LutzKapitel 14

Positionserfassung mittels Sensor-Array aus Tunnel-Magnetoresistiven	
Vortex-Dots und lernender Signalverarbeitung	373
Thorben Schüthe, Oleg Petrak, Klaus Jünemann, Karl-Ragmar Riemschneider	

Inhaltsverzeichnis

Kapi	tel 1		
Szen	arienbas	sierte Vali	dierung eines hybriden Radarmodells für Test und
Absi	cherung	automati	sierter Fahrfunktionen
Thon	as Eder,	Alexande	r Prinz, Ludwig Brabetz, Erwin Biebl
1.1	Einleit	ung	
	1.1.1	Modellie	erung und Validierung von Radardetektionslisten
	1.1.2	Beitrag	zur Sensormodellvalidierung
1.2	Hybric	le Radarde	etektionsmodelle
	1.2.1	Strahlen	basierte Radardetektionsmodellierung
		1.2.1.1	Modellierung radarspezifischer Charakteristiken
		1.2.1.2	Berücksichtigung fahrzeugspezifischer
			Radarrückstreuzentren
		1.2.1.3	Modellierungsansätze weiterer radarspezifischer
			Effekte
		1.2.1.4	Der Algorithmus des parametrierbaren
			Radardetektionsmodells
	1.2.2	Paramet	rierung des Radardetektionsmodells
		1.2.2.1	Beispielhafte Parameterwahl
		1.2.2.2	Datenbasierte Optimierung
1.3	Statisti	ische Valio	dierung von Radarmodellen
	1.3.1	Testen v	on Hypothesen
		1.3.1.1	Zweistichprobenproblem und Kolmogorov-Smirnov-
			Test
		1.3.1.2	Methodik zur Validierung räumlicher
			Radardetektionsverteilungen

	1.3.2	Anwend 1.3.2.1	ung der hypothesentestbasierten Validierung Szenarienbasierte Anwendung Zeitliche und positionsbasierte Anwendung	36 36 36
14	Datena	ufzeichnu	ng und Anwendung der Validierung	37
1.7	1 4 1	Szenarie	enbeschreibung und Messdatenaufzeichnung	38
	142	Datenha	sierte Parametrierung	38
	1.1.2	Validier	ung des hybriden Sensormodells	39
1.5	Zusam	menfassur	ng und Ausblick	40
Kapi	tel 2			
Kern	lose mag	gnetische	Stromsensoren für Hochleistungs-E-Antriebe	45
Leo A	Aichriedl	er, Gerald	Wriessnegger	
2.1	Einleit	ung		45
	2.1.1	Bedeutu	ng der Stromsensorik in der Regelungstechnik	45
		2.1.1.1	Stromsensorik für elektrische Antriebe	46
	2.1.2	Impleme	entierungsprinzipien von Hochstrom-Sensoren für	
		elektrisc	he Antriebe	49
		2.1.2.1	Einbindung der Stromsensoren in die Leistungs-	
			Endstufe	49
	2.1.3	Messpri	nzipien für die Strommessung.	53
		2.1.3.1	Strommessung über Leistungswiderstände	53
		2.1.3.2	Strommessung über magnetische Prinzipien	56
2.2	Stroms	ensorik fü	ir moderne Leistungshalbleiter	58
	2.2.1	Höhere	Schaltgeschwindigkeiten für höhere Schaltfrequenzen	58
	2.2.2	Reduktio	on von Leitungsverlusten vs. Verringerung der	
		Kurschlu	ussfestigkeit	59
	2.2.3	Erhöhun	g der Sättigungsströme	59
2.3	Kernlo	se magnet	ische Sensorik	60
	2.3.1	Immunit	ät gegenüber Streufeldern	60
		2.3.1.1	Schirmung und Feldkonzentrator	61
		2.3.1.2	Kernlose Sensoren mit differenziellem Messprinzip	62
	2.3.2	Intrinsis	che und extrinsische Streufeld-Robustheit	67
	2.3.3	Vor- uno	d Nachteile gegenüber kernbasierten Sensorsystemen	68
		2.3.3.1	Komplexität des Sensor-Elements	68
		2.3.3.2	Sattigungsverhalten	68
		2.3.3.3		69
		2.3.3.4	Ottset	70
		2.3.3.5	System-Integration.	70

	2.3.4	Beispiele	e für System-Implementierungen	71		
		2.3.4.1	Laterale Implementierung mit Mehrlagen Leistungs-			
			РСВ	72		
		2.3.4.2	Vertikale Implementierung mit massivem Kupferleiter .	76		
2.4	Zusam	menfassur	ıg	83		
Kapi	itel 3					
Hoch	nintegrie	rte Strom	sensoren für Elektrofahrzeuge	85		
Thon	as Holti	i, Rolf Slat	ter			
3.1	Einleit	ung		85		
3.2	Grund	lagen Mag	netoresistive (MR) Technologie	89		
	3.2.1	AMR		89		
	3.2.2	GMR		91		
	3.2.3	TMR		91		
3.3	MR-Se	ensorchip.		92		
	3.3.1	Wheatsto	onebrücke	92		
	3.3.2	Barberpo	ble-Struktur	93		
	3.3.3	Closed-loop Prinzip.				
	3.3.4	Störfeldunterdrückung				
3.4	MR-St	romsensor	en	98		
	3.4.1	Aufbau-	und Funktionsweise des Sensors	99		
		3.4.1.1	Feld in x-Richtung (Gradienten-Feld)	100		
		3.4.1.2	Feld in v-Richtung (Stabilisierungs-Feld)	101		
	3.4.2	Stromscl	nienen-Design	102		
	3.4.3	Bandbre	ite	104		
	3.4.4	Integrier	te Überstromerkennung	105		
	3.4.5	Kalibrie	<i>c</i> ung	106		
3.5	Anwer	dungsbeis	piele im Elektrofahrzeug.	106		
	3.5.1	Phasenst	rommessung (1-Phase)	108		
	3.5.2	DC-Link-Strommessung				
	3.5.3	Phasenst	rommessung (3-Phasen)	110		
		3.5.3.1	Neues Stromschienenkonzept für hohe Ströme	111		
		3.5.3.2	Funktionsprinzip	112		
		3.5.3.3	Messergebnisse.	114		
3.6	Zusam	menfassur	Ig	116		
			5	-		

Kapitel 4

Mod	ellgestüt	zte Temperaturüberwachung von HV-Komponenten in	
Elek	trofahrz	eugen	1
Marc	o Wolf,	Tobias Meissner, Michael Ludwig, Uwe Hauck	
4.1	Einleit	ung	
	4.1.1	Bedeutung des High-Power-Chargings	
	4.1.2	Herausforderung des High-Power-Chargings	
4.2	Ausleg	gung elektrischer Komponenten im HV-Pfad	
4.3	Model	lgestützte Temperaturüberwachung im HV-Pfad	
	4.3.1	Physikalische Modelle und Netzwerksimulation	
	4.3.2	Temperatursensor-Technologien	
	4.3.3	Sensorkonzept und Integration	
	4.3.4	Applikationseinflüsse	
	4.3.5	Sicherheitszuwachs	
4.4	Zusam	menfassung	
Riem	an Kiiw schneide	eger, Christian Moarzynski, valenan Koscher, Kart-Kagmar er	
51	Einleit	י חוחס	
5.2	Video	mikroskopische Beobachtung der Elektroden	
	5.2.1	Messsystem und Aufbau der Testzelle	
	5.2.2	Ladungsbestimmung durch Reflektivitätsmessungen	
	5.2.3	Bestimmung von Elektrodenparametern	
	5.2.4	Ladezustandsbestimmung mittels Farb-Referenzierung	
5.3	Fasero	ptische Sensoren	
	5.3.1	Messprinzip	
	5.3.2	Herstellung der faseroptischen Sensoren.	
	5.3.3	Einbringen der faseroptischen Sensoren in die Zelle	
	5.3.4	Signalerfassung	
	5.3.5	Ladungsbestimmung durch Transmissionsmessungen	
	5.3.6	Kalibrierung, Quereinflüsse und Referenzierung	
	5.3.7	Ausblick auf eine industrielle Fertigung	
5.4	Zusam	menfassung und Ausblick	

7.5.1

7.5.2

7.6

Kapitel 6

Inno	vative H	I2-Sensorik für Brennstoffzellen-Fahrzeuge.	163
Olaf	Kiesewe	tter, Alexander Kraußer, Nils Kiesewetter, Jürgen Müller,	
Marc	cus Bose,	Stefan Schenk, Matthias May	
6.1	Einleit	tung	163
6.2	Sensor	ren zur H ₂ -Messung	164
	6.2.1	Ausgewählte Sensorfunktionsprinzipien	164
	6.2.2	H ₂ -Sensor auf Basis des Semicon-Prinzips	167
		6.2.2.1 Funktionsweise	167
		6.2.2.2 MOX-Gassensorelemente in Hybridtechnologie	168
6.3	Sensor	rsystem	172
	6.3.1	Anforderungen	172
	6.3.2	Aufbau	176
	6.3.3	Messergebnisse	178
6.4	Zusam	menfassung	183
Карі	itel 7		
Hoch	hfrequer	nzsensorik zur direkten Beladungserkennung von	
Benz	vinpartik	xelfiltern	185
Stefa	nie Walt	er, Peter Schwanzer, Gunter Hagen, Gerhard Haft,	
Mark	kus Dietr	ich, Hans-Peter Rabl, Ralf Moos	
7.1	Einleit	ung	185
7.2	Grund	lagen der Rußmassenüberwachung	186
	7.2.1	Problematik beim Einsatz von Differenzdrucksensoren	186
	7.2.2	Grundlagen des HF-Sensors	187
7.3	Verhal	Iten des HF-Sensors bei Rußbeladung am Motorprüfstand	189
7.4	Ouerer	mpfindlichkeiten auf das HF-Signal.	193
	7.4.1	Einfluss der Filtertemperatur.	195
	7.4.2	Einfluss der Abgasfeuchtigkeit	196
7.5	Einflu	ss der Rußabbrandkinetik auf die Sensorgenauigkeit	198

Reaktionskinetische Analyse.....

Simulative Betrachtung unvollständiger Regenerationen.....

Zusammenfassung

15

199

201

205

Kapitel 8

Fahrzeugbedienung 209 Niko Clemens Schmidt-Fischer, Robert Krannich, Thomas Findeisen 209 8.1 Einleitung 209 8.2 Motivation 210 8.2.1 Sicherheit 210 8.2.2 Reduzierung Bedienelemente 210 8.2.3 Komfort 211 8.3 Sensor-Vergleich 211 8.3.1 Stereo-Kamera und Triangulationssystem 212 8.3.2 Kapazitive Sensorik 213 8.3.3 TOF-System 213 8.3.4 Gegenüberstellung 3D-Sensoren 214 8.4.1 Time-of-Flight 214 8.4.1 Funktionsprinzip 214 8.4.1.3 Tiefendarstellung 217 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung 219 8.4.2.1 TOF-System im Fahrzeug 221 8.4.2.1 Hardware 222 8.4.2.1 ToF-System im Fahrzeug 222 8.4.3.3 Oprickte Algorithmus Merkmalbestim	3D-S	ensorik	auf Basis	einer Time-of-Flight-Kamera zur kontaktlosen	
Niko Clemens Schmidt-Fischer, Robert Krannich, Thomas Findeisen 209 8.1 Einleitung. 209 8.2 Motivation 210 8.2.1 Sicherheit 210 8.2.2 Reduzierung Bedienelemente 210 8.2.3 Komfort 211 8.3 Sensor-Vergleich 211 8.3.1 Stereo-Kamera und Triangulationssystem 212 8.3.2 Kapazitive Sensorik 213 8.3.3 TOF-System 213 8.3.4 Gegenüberstellung 3D-Sensoren 214 8.4.1 Fune-of-Flight 214 8.4.1 Fune-of-Flight 214 8.4.1 Fune-of-Flight 214 8.4.1.4 Ausleuchtung 216 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung 216 8.4.1.4 Ausleuchtung 217 8.4.2 Aufdware 221 8.4.2.1 TOF-System im Fahrzeug 221 8.4.2.2 Aufdware 225 <th>Fahr</th> <th>zeugbed</th> <th>ienung</th> <th></th> <th>209</th>	Fahr	zeugbed	ienung		209
8.1 Einleitung. 209 8.2 Motivation 210 8.2.1 Sicherheit 210 8.2.2 Reduzierung Bedienelemente 210 8.2.3 Komfort. 211 8.3 Sensor-Vergleich 211 8.3.1 Stereo-Kamera und Triangulationssystem 212 8.3.2 Kapazitive Sensorik 213 8.3.3 TOF-System 213 8.3.4 Gegenüberstellung 3D-Sensoren 214 8.4.4 Technik. 214 8.4.1 Fune-of-Flight 214 8.4.1 Fune-of-Flight 214 8.4.1.1 Funktionsprinzip 214 8.4.1.2 Kamera Field-of-View 215 8.4.1.3 Tiefendarstellung 216 8.4.1.4 Ausleuchtung 217 8.4.2.1 TOF-System in Fahrzeug 211 8.4.2.1 TOF-System in Fahrzeug 221 8.4.2.1 Aufbau kompaktes TOF-System 222 8.4.3.2 Algorithmus Merkmalbestimmung 225 8.4.3.3 Direkte Algorithmusentwicklu	Niko	Clemens	Schmidt-	Fischer, Robert Krannich, Thomas Findeisen	
8.2 Motivation 210 8.2.1 Sicherheit 210 8.2.2 Reduzierung Bedienelemente 210 8.2.3 Komfort 211 8.3 Sensor-Vergleich 211 8.3.1 Stereo-Kamera und Triangulationssystem 212 8.3.2 Kapazitive Sensorik 213 8.3.3 TOF-System 213 8.3.4 Gegenüberstellung 3D-Sensoren 214 8.4.1 Time-of-Flight 214 8.4.1 Time-of-Flight 214 8.4.1.1 Funktionsprinzip 214 8.4.1.2 Kamera Field-of-View 215 8.4.1.3 Tiefendarstellung 217 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung 219 8.4.2 Aufbau kompaktes TOF-System 222 8.4.2.1 TOF-System im Fahrzeug 221 8.4.2.3 Performance des TOF-Systems 225 8.4.3 Handerkennung 225 8.4.3.4 Maschinelles Lernen 228 8.5.1 Bedeutung <t< td=""><td>8.1</td><td>Einleit</td><td>ung</td><td></td><td>209</td></t<>	8.1	Einleit	ung		209
8.2.1 Sicherheit 210 8.2.2 Reduzierung Bedienelemente 210 8.2.3 Komfort 211 8.3 Sensor-Vergleich 211 8.3.1 Stereo-Kamera und Triangulationssystem 212 8.3.2 Kapazitive Sensorik 213 8.3.3 TOF-System 213 8.3.4 Gegenüberstellung 3D-Sensoren 214 8.4.1 Technik 214 8.4.1 Functionsprinzip 214 8.4.1 Functionsprinzip 214 8.4.1 Functionsprinzip 214 8.4.1 Tiefendarstellung 216 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamera kalibrierung 219 8.4.2 Hardware 221 8.4.2.1 TOF-System im Fahrzeug 221 8.4.2.2 Aufbau kompaktes TOF-System 222 8.4.2.3 Performance des TOF-Systems 225 8.4.3.1 Handerkennung 225 8.4.3.2 Algorithmus Merkmalbestimmung 227 8.4.3.4 Maschinelles Lernen<	8.2	Motiva	ation		210
8.2.2 Reduzierung Bedienelemente 210 8.2.3 Komfort 211 8.3 Sensor-Vergleich 211 8.3.1 Stereo-Kamera und Triangulationssystem 212 8.3.2 Kapazitive Sensorik 213 8.3.3 TOF-System 213 8.3.4 Gegenüberstellung 3D-Sensoren 214 8.4 Technik. 214 8.4.1 Time-of-Flight 214 8.4.1 Funktionsprinzip 214 8.4.1.2 Kamera Field-of-View 215 8.4.1.3 Tiefendarstellung 216 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung 219 8.4.2 Hardware 221 8.4.2.1 TOF-System im Fahrzeug 222 8.4.2 Aufbau kompaktes TOF-System 222 8.4.2 Aufbau kompaktes TOF-Systems 225 8.4.3 Software Gestensteuerung 225 8.4.3 Direkte Algorithmus Merkmalbestimmung 227 8.4.3.4 Maschinelles Lernen 228 8.5.1		8.2.1	Sicherhe	eit	210
8.2.3 Komfort 211 8.3 Sensor-Vergleich 211 8.3.1 Stereo-Kamera und Triangulationssystem 212 8.3.2 Kapazitive Sensorik 213 8.3.3 TOF-System 213 8.3.4 Gegenüberstellung 3D-Sensoren 214 8.4.1 Time-of-Flight 214 8.4.1 Time-of-Flight 214 8.4.1 Time-of-Flight 214 8.4.1.1 Funktionsprinzip 214 8.4.1.2 Kamera Field-of-View 215 8.4.1.3 Tiefendarstellung 216 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung 219 8.4.2 Hardware 221 8.4.2.1 TOF-System im Fahrzeug 221 8.4.2.2 Aufbau kompaktes TOF-System 222 8.4.2.3 Derformance des TOF-Systems 225 8.4.3 Software Gestensteuerung 225 8.4.3.1 Handerkennung 227 8.4.3.2 Algorithmus Merkmalbestimmung 227 8.4.3.3 Dire		8.2.2	Reduzie	rung Bedienelemente	210
8.3 Sensor-Vergleich 211 8.3.1 Stereo-Kamera und Triangulationssystem 212 8.3.2 Kapazitive Sensorik 213 8.3.3 TOF-System 213 8.3.4 Gegenüberstellung 3D-Sensoren 214 8.4.1 Time-of-Flight 214 8.4.1 Fune-of-Flight 214 8.4.1 Stereo-Kamera Field-of-View 215 8.4.1.3 Tiefendarstellung 216 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung 217 8.4.2 Hardware 221 8.4.2.1 TOF-System im Fahrzeug 222 8.4.2.2 Aufbau kompaktes TOF-System 222 8.4.3 Software Gestensteuerung 22		8.2.3	Komfor	t	211
8.3.1 Stereo-Kamera und Triangulationssystem 212 8.3.2 Kapazitive Sensorik 213 8.3.3 TOF-System 213 8.3.4 Gegenüberstellung 3D-Sensoren 214 8.4 Technik 214 8.4.1 Time-of-Flight 214 8.4.1 Functionsprinzip 214 8.4.1 Ausleuchtung 215 8.4.1.3 Tiefendarstellung 216 8.4.1.4 Ausleuchtung 217 8.4.2 Hardware 221 8.4.2 Hardware 221 8.4.2 Aufbau kompaktes TOF-System 222 8.4.2.3 Performance des TOF-Systems 225	8.3	Sensor	-Vergleich	1	211
8.3.2 Kapazitive Sensorik 213 8.3.3 TOF-System 213 8.3.4 Gegenüberstellung 3D-Sensoren 214 8.4 Technik. 214 8.4 Technik. 214 8.4.1 Time-of-Flight 214 8.4.1 Functionsprinzip 214 8.4.1 Functionsprinzip 214 8.4.1.2 Kamera Field-of-View 215 8.4.1.3 Tiefendarstellung 216 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung 219 8.4.2 Hardware 221 8.4.2.1 TOF-System im Fahrzeug 221 8.4.2 Aufbau kompaktes TOF-System 222 8.4.2.3 Performance des TOF-Systems 225 8.4.3 Software Gestensteuerung 225 8.4.3 Software Gestensteuerung 225 8.4.3.1 Handerkennung 225 8.4.3.2 Algorithmus Merkmalbestimmung 227 8.4.3.3 Direkte Algorithmusentwicklung 227 8.4.3.4 Maschinelles		8.3.1	Stereo-k	Kamera und Triangulationssystem	212
8.3.3 TOF-System 213 8.3.4 Gegenüberstellung 3D-Sensoren 214 8.4 Technik. 214 8.4.1 Time-of-Flight 214 8.4.1 Funktionsprinzip 214 8.4.1 Funktionsprinzip 214 8.4.1 Funktionsprinzip 214 8.4.1 Funktionsprinzip 214 8.4.1.2 Kamera Field-of-View 215 8.4.1.3 Tiefendarstellung 216 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung 219 8.4.2 Hardware 221 8.4.2 Hardware 221 8.4.2 Aufbau kompaktes TOF-System 222 8.4.2 Aufbau kompaktes TOF-Systems 225 8.4.3 Software Gestensteuerung 225 8.4.3 Performance des TOF-Systems 225 8.4.3 Direkte Algorithmus Merkmalbestimmung 227 8.4.3 Direkte Algorithmusentwicklung 227 8.5.1 Bedeutung 228 8.5.2 Validierung		8.3.2	Kapaziti	ve Sensorik	213
8.3.4 Gegenüberstellung 3D-Sensoren 214 8.4 Technik 214 8.4.1 Time-of-Flight 214 8.4.1.1 Funktionsprinzip 214 8.4.1.2 Kamera Field-of-View 215 8.4.1.3 Tiefendarstellung 216 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung 219 8.4.2 Hardware 221 8.4.2.1 TOF-System im Fahrzeug 221 8.4.2.2 Aufbau kompaktes TOF-System 222 8.4.2.3 Performance des TOF-Systems 225 8.4.3 Software Gestensteuerung 225 8.4.3.1 Handerkennung 225 8.4.3.2 Algorithmus Merkmalbestimmung 227 8.4.3.3 Direkte Algorithmusentwicklung 227 8.4.3.4 Maschinelles Lernen 228 8.5.1 Bedeutung 229 8.5.2.1 Funktionale Validierung 229 8.5.2.2 Feldtest 229 8.5.2.3 Key-Performance-Index 230 8.6		8.3.3	TOF-Sy	stem	213
8.4 Technik. 214 8.4.1 Time-of-Flight. 214 8.4.1 Funktionsprinzip 214 8.4.1.1 Funktionsprinzip 214 8.4.1.2 Kamera Field-of-View 215 8.4.1.3 Tiefendarstellung 216 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung 219 8.4.2 Hardware 221 8.4.2.1 TOF-System im Fahrzeug 221 8.4.2.2 Aufbau kompaktes TOF-System 222 8.4.2.3 Performance des TOF-Systems 225 8.4.3 Software Gestensteuerung 225 8.4.3 Software Gestensteuerung 225 8.4.3 Direkte Algorithmus Merkmalbestimmung 227 8.4.3.2 Algorithmus Merkmalbestimmung 227 8.4.3.4 Maschinelles Lernen 228 8.5.1 Bedeutung 228 8.5.2 Validierungsvarianten 229 8.5.2.1 Funktionale Validierung 229 8.5.2.3 Key-Performance-Index 230 8.6 </td <td></td> <td>8.3.4</td> <td>Gegenül</td> <td>perstellung 3D-Sensoren</td> <td>214</td>		8.3.4	Gegenül	perstellung 3D-Sensoren	214
8.4.1 Time-of-Flight 214 8.4.1.1 Funktionsprinzip 214 8.4.1.2 Kamera Field-of-View 215 8.4.1.3 Tiefendarstellung 216 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung 219 8.4.2 Hardware 221 8.4.2.1 TOF-System im Fahrzeug 221 8.4.2.2 Aufbau kompaktes TOF-System 222 8.4.2.3 Performance des TOF-Systems 225 8.4.3 Software Gestensteuerung 225 8.4.3 I Handerkennung 227 8.4.3.2 Algorithmus Merkmalbestimmung 227 8.4.3.3 Direkte Algorithmusentwicklung 227 8.4.3.4 Maschinelles Lernen 228 8.5.1 Bedeutung 228 8.5.2 Validierungsvarianten 229 8.5.2.1 Funktionale Validierung 229 8.5.2.2 Feldtest 229 8.5.2.3 Key-Performance-Index 230 8.6 Anwendungsgebiete 231 8.7 <t< td=""><td>8.4</td><td>Techni</td><td>k</td><td></td><td>214</td></t<>	8.4	Techni	k		214
8.4.1.1 Funktionsprinzip 214 8.4.1.2 Kamera Field-of-View 215 8.4.1.3 Tiefendarstellung 216 8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung 219 8.4.2 Hardware 221 8.4.2.1 TOF-System im Fahrzeug 221 8.4.2.2 Aufbau kompaktes TOF-System 222 8.4.2.3 Performance des TOF-Systems 225 8.4.3 Software Gestensteuerung 225 8.4.3.1 Handerkennung 225 8.4.3.2 Algorithmus Merkmalbestimmung 227 8.4.3.3 Direkte Algorithmusentwicklung 227 8.4.3.4 Maschinelles Lernen 228 8.5.1 Bedeutung 228 8.5.2 Validierungsvarianten 229 8.5.2.1 Funktionale Validierung 229 8.5.2.2 Feldtest 229 8.5.2.3 Key-Performance-Index 230 8.6 Anwendungsgebiete 231 8.7 Zusammenfassung und Ausblick 232		8.4.1	Time-of	-Flight	214
8.4.1.2Kamera Field-of-View2158.4.1.3Tiefendarstellung2168.4.1.4Ausleuchtung2178.4.1.5Kamerakalibrierung2198.4.2Hardware2218.4.2.1TOF-System im Fahrzeug2218.4.2.2Aufbau kompaktes TOF-System2228.4.2.3Performance des TOF-Systems2258.4.3Software Gestensteuerung2258.4.3.1Handerkennung2258.4.3.2Algorithmus Merkmalbestimmung2278.4.3.3Direkte Algorithmusentwicklung2278.4.3.4Maschinelles Lernen2288.5.1Bedeutung2288.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung2298.5.2.2Feldtest2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.4.1.1	Funktionsprinzip	214
8.4.1.3Tiefendarstellung2168.4.1.4Ausleuchtung2178.4.1.5Kamerakalibrierung2198.4.2Hardware2218.4.2.1TOF-System im Fahrzeug2218.4.2.2Aufbau kompaktes TOF-System2228.4.2.3Performance des TOF-Systems2258.4.3Software Gestensteuerung2258.4.3.1Handerkennung2258.4.3.2Algorithmus Merkmalbestimmung2278.4.3.3Direkte Algorithmusentwicklung2278.4.3.4Maschinelles Lernen2288.5.1Bedeutung2288.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung2298.5.2.1Funktionale Validierung2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.4.1.2	Kamera Field-of-View	215
8.4.1.4 Ausleuchtung 217 8.4.1.5 Kamerakalibrierung. 219 8.4.2 Hardware. 221 8.4.2.1 TOF-System im Fahrzeug 221 8.4.2.2 Aufbau kompaktes TOF-System. 222 8.4.2.3 Performance des TOF-Systems 225 8.4.3 Software Gestensteuerung 225 8.4.3.1 Handerkennung 225 8.4.3.2 Algorithmus Merkmalbestimmung 227 8.4.3.3 Direkte Algorithmusentwicklung 227 8.4.3.4 Maschinelles Lernen 228 8.5 Validierung 228 8.5.1 Bedeutung 229 8.5.2.2 Feldtest 229 8.5.2.3 Key-Performance-Index 230 8.6 Anwendungsgebiete 231 8.7 Zusammenfassung und Ausblick 232			8.4.1.3	Tiefendarstellung	216
8.4.1.5Kamerakalibrierung.2198.4.2Hardware.2218.4.2.1TOF-System im Fahrzeug2218.4.2.2Aufbau kompaktes TOF-System.2228.4.2.3Performance des TOF-Systems2258.4.3Software Gestensteuerung2258.4.3.1Handerkennung2258.4.3.2Algorithmus Merkmalbestimmung.2278.4.3.3Direkte Algorithmusentwicklung2278.4.3.4Maschinelles Lernen2288.5.1Bedeutung.2288.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung.2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.4.1.4	Ausleuchtung	217
8.4.2Hardware.2218.4.2.1TOF-System im Fahrzeug2218.4.2.2Aufbau kompaktes TOF-System.2228.4.2.3Performance des TOF-Systems2258.4.3Software Gestensteuerung2258.4.3.1Handerkennung2258.4.3.2Algorithmus Merkmalbestimmung2278.4.3.3Direkte Algorithmusentwicklung2278.4.3.4Maschinelles Lernen2288.5Validierung2288.5.1Bedeutung2298.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.4.1.5	Kamerakalibrierung	219
8.4.2.1TOF-System im Fahrzeug2218.4.2.2Aufbau kompaktes TOF-System2228.4.2.3Performance des TOF-Systems2258.4.3Software Gestensteuerung2258.4.3.1Handerkennung2258.4.3.2Algorithmus Merkmalbestimmung2278.4.3.3Direkte Algorithmusentwicklung2278.4.3.4Maschinelles Lernen2288.5Validierung2288.5.1Bedeutung2298.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232		8.4.2	Hardwar	re	221
8.4.2.2Aufbau kompaktes TOF-System2228.4.2.3Performance des TOF-Systems2258.4.3Software Gestensteuerung2258.4.3.1Handerkennung2258.4.3.2Algorithmus Merkmalbestimmung2278.4.3.3Direkte Algorithmusentwicklung2278.4.3.4Maschinelles Lernen2288.5.1Bedeutung2288.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung2298.5.2.2Feldtest2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.4.2.1	TOF-System im Fahrzeug	221
8.4.2.3Performance des TOF-Systems2258.4.3Software Gestensteuerung2258.4.3.1Handerkennung2258.4.3.2Algorithmus Merkmalbestimmung2278.4.3.3Direkte Algorithmusentwicklung2278.4.3.4Maschinelles Lernen2288.5Validierung2288.5.1Bedeutung2298.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.4.2.2	Aufbau kompaktes TOF-System	222
8.4.3Software Gestensteuerung2258.4.3.1Handerkennung2258.4.3.2Algorithmus Merkmalbestimmung2278.4.3.3Direkte Algorithmusentwicklung2278.4.3.4Maschinelles Lernen2288.5Validierung2288.5.1Bedeutung2298.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung2298.5.2.2Feldtest2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.4.2.3	Performance des TOF-Systems	225
8.4.3.1Handerkennung2258.4.3.2Algorithmus Merkmalbestimmung2278.4.3.3Direkte Algorithmusentwicklung2278.4.3.4Maschinelles Lernen2288.5Validierung2288.5.1Bedeutung2288.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung2298.5.2.2Feldtest2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232		8.4.3	Software	e Gestensteuerung	225
8.4.3.2Algorithmus Merkmalbestimmung.2278.4.3.3Direkte Algorithmusentwicklung2278.4.3.4Maschinelles Lernen2288.5Validierung2288.5.1Bedeutung2288.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung2298.5.2.2Feldtest2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.4.3.1	Handerkennung	225
8.4.3.3Direkte Algorithmusentwicklung2278.4.3.4Maschinelles Lernen2288.5Validierung2288.5.1Bedeutung2288.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung2298.5.2.2Feldtest2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.4.3.2	Algorithmus Merkmalbestimmung	227
8.4.3.4Maschinelles Lernen2288.5Validierung2288.5.1Bedeutung2288.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung2298.5.2.2Feldtest2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.4.3.3	Direkte Algorithmusentwicklung	227
8.5Validierung2288.5.1Bedeutung2288.5.2Validierungsvarianten2298.5.2.1Funktionale Validierung2298.5.2.2Feldtest2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.4.3.4	Maschinelles Lernen	228
8.5.1Bedeutung.2288.5.2Validierungsvarianten.2298.5.2.1Funktionale Validierung.2298.5.2.2Feldtest.2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete.2318.7Zusammenfassung und Ausblick.232	8.5	Validie	erung		228
8.5.2Validierungsvarianten.2298.5.2.1Funktionale Validierung.2298.5.2.2Feldtest.2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete.2318.7Zusammenfassung und Ausblick.232		8.5.1	Bedeutu	ng	228
8.5.2.1Funktionale Validierung2298.5.2.2Feldtest2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232		8.5.2	Validier	ungsvarianten	229
8.5.2.2Feldtest.2298.5.2.3Key-Performance-Index2308.6Anwendungsgebiete.2318.7Zusammenfassung und Ausblick.232			8.5.2.1	Funktionale Validierung	229
8.5.2.3Key-Performance-Index2308.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.5.2.2	Feldtest.	229
8.6Anwendungsgebiete2318.7Zusammenfassung und Ausblick232			8.5.2.3	Key-Performance-Index	230
8.7 Zusammenfassung und Ausblick	8.6	Anwer	ndungsgeb	iete	231
	8.7	Zusam	menfassui	ng und Ausblick	232

Kapitel 9

Minia	turisiert	e 3D Tim	e-of-Flight-Kamera zur Innenraumüberwachung	
und G	estenste	uerung ir	n Automobil	235
Cliff D	e Locht,	Gaetan K	oers, Gualtiero Bagnuoli, Kristof Lieben,	
Andree	as Ott, A	ndreas Me	enath, Thomas Ewender, Christin Gassner,	
Robert	t Brüning	g, Johanna	a Awada, Foti Coleca, Niklas Hermes,	
Ercan	Küçükka	araca, Jos	ephine Zillmann	
9.1	Einleitu	ng		235
9.2	ToF-Te	chnik		236
	9.2.1	Direkte T	CoF (dToF)	238
	9.2.2	Indirekte	ToF (iToF)	238
	9.2.3	ToF für E	Exterior Cocooning	238
	9.2.4	2D- versu	ıs 3D-ToF	239
9.3	MinTO	FKA-Proj	ektziele	239
9.4	Simulat	ionen und	Messungen.	241
	9.4.1	Optik		241
		9.4.1.1	Konzept	241
		9.4.1.2	Optische Performance	244
	9.4.2	ToF-Kan	nera	246
		9.4.2.1	VGA-ToF-Sensor MLX75027	246
		9.4.2.2	VGA-ToF-Kamera	248
		9.4.2.3	Messung der Tiefengenauigkeit	249
	9.4.3	Erkennur	gsalgorithmen	250
		9.4.3.1	Versuchsaufbau	250
		9.4.3.2	Validierung	251
		9.4.3.3	Gestenerkennung	252
		9.4.3.4	Hand-am-Lenkrad-Erkennung	253
		9.4.3.5	Sitzbelegungserkennung	256
		9.4.3.6	Synthetische Datengenerierung	257
	9.4.4	Messung	en im Fahrzeuginnenraum	258
		9.4.4.1	Vorbereitungen und Testaufbau im Fahrzeug	258
		9.4.4.2	Ablauf der Fahrzeugtests	259
		9.4.4.3	Anwendungsfall Hand-am-Lenkrad-Erkennung	259
		9.4.4.4	Anwendungsfall Gestikerkennung	262
		9.4.4.5	Anwendungsfall Sitzbelegungserkennung	264
	9.4.5	Demonst	rator D2	265
9.5	Zusamn	nenfassun	g	266

296

297

Kapitel 10

Intell	igente k	ontaktlose Gestensensoren für zukünftige
Fahr	zeugzug	angssysteme
Boud	ewijn Ve	nema, Andreas Gornik, Xi Chen, Steffen Leib,
Frede	erik Hem	pelmann
10.1	Einleit	ung
10.2	Stroms	parendes kapazitives Messsystem für den Einsatz in
	Elektro	fahrzeugen
	10.2.1	Grundlagen
	10.2.2	Maßnahmen zur Optimierung der Stromaufnahme
	10.2.3	EMV und Störrobustheit
10.3	Gesten	gesteuertes Heckklappenöffnungssystem auf LiDAR-Basis
	10.3.1	Allgemeines
	10.3.2	Funktionsprinzip
	10.3.3	Auswahl der Beleuchtung
	10.3.4	Systemübersicht
	10.3.5	Software-Algorithmus
		10.3.5.1 Smoothing
		10.3.5.2 Background-Suppression
		10.3.5.3 Segmentation
		10.3.5.4 Tracking und Klassifikation
	10.3.6	Validierung und Ergebnisse
		10.3.6.1 2D-/3D-Messungen
		10.3.6.2 Freifeldstudien
10.4	Zusam	menfassung und Ausblick
		-
Kapi	tel 11	
Dater	fusions	basiertes, thermodynamisches Sensormodell zur
Inner	ntempera	aturerfassung
Tobia	s Glohr,	José Manuel Briones Ayala, Thomas Tille
11.1	Einleit	ung
11.2	Stand c	ler Technik
	11.2.1	Verfahren zur Erfassung der Innenraumtemperatur
		11.2.1.1 Infrarotstrahlung
		11.2.1.2 Zwangsbelüfteter Ansatz
		11.2.1.3 Unbelüfteter Ansatz
		11.2.1.4 Modellbasierter Ansatz
	11.2.2	Funktionsweise von Klimageräten
	11.2.3	Relevante thermische Grundlagen

11.2.3.1 Energieerhaltung und Wärmemenge

11.2.3.2 Arten der Wärmeübertragung

11.3	Thermodynamische Modellierung	298
	11.3.1 Grundlagenmodell	298
	11.3.2 Modell zur Integration im HVAC-System	300
	11.3.3 Modell zur Integration der Starttemperatur.	302
	11.3.4 Modell zur Integration der Umschließungsflächen	307
	11.3.5 Modell zur Integration der Insassen	313
	11.3.6 Modell zur Integration der Störgrößen	314
11.4	Optimierung des thermodynamischen Modells	316
11.5	Evaluation des thermodynamischen Modells	317
11.6	Zusammenfassung	322

Kapitel 12

Hochi	integrierte Motorpositionssensoren für Bremssysteme und	
elektr	ische Antriebe	325
Nils L	abahn, Fabian Utermöhlen, Harry Weber	
12.1	Einleitung	325
12.2	CIPOS	326
	12.2.1 Funktionsprinzip MPS	326
	12.2.2 Aufbau und Integrationsmöglichkeiten	330
12.3	Anwendungen	331
	12.3.1 Bremssysteme	332
	12.3.2 Elektrische Antriebe	335
12.4	Zusammenfassung	343
12.3 12.4	Anwendungen 12.3.1 Bremssysteme 12.3.2 Elektrische Antriebe Zusammenfassung	

Kapitel 13

Innov	vative 31	D-Hallsensoren mit intelligenter Energieverwaltung und	
Streu	feldunte	erdrückung	345
Andre	eas P. Fr	iedrich, Fabian Winkler, Till-Jonas Ostermann, Christophe Lutz	
13.1	Einleit	ung	345
13.2	3D-Ha	llsensoren	347
13.3	Power-	Modi	350
13.4	Interru	pt Pin	351
13.5	Anwen	dungsmöglichkeiten	351
	13.5.1	Bedienelement-Joystick	351
	13.5.2	Linearbewegungsdetektion	356
		13.5.2.1 Single-Ended-Messung	357
		13.5.2.2 Einfluss von Streufeldern	360
		13.5.2.3 Differentielle Messung	361

13.6	Sensorsysteme im Vergleich.	367
	13.6.1 ALS31313 versus A3131x Single-Ended	367
	13.6.2 ALS31313 versus A3131x Differentiell	368
	13.6.3 ALS31313 versus A3131x Rauschen Single-Ended	369
13.7	Zusammenfassung und Ausblick	370

Kapitel 14

Positi	ionserfa	ssung mittels Sensor-Array aus Tunnel-Magnetoresistiven	
Vorte	ex-Dots u	und lernender Signalverarbeitung	373
Thore	ben Schüt	the, Oleg Petrak, Klaus Jünemann, Karl-Ragmar Riemschneider	
14.1	Einleitu	ung	373
14.2	Tunnel	-Magnetoresistive Sensoren	374
	14.2.1	Aufbau und Funktion von TMR-Sensoren	374
	14.2.2	Automatisierter Messplatz	376
	14.2.3	Charakterisierung durch zweidimensionale Kennfelder	377
	14.2.4	TMR-Sensor mit Vorzugsrichtung	378
	14.2.5	TMR-Sensor mit Vortex-Struktur.	379
14.3	Magne	toresistive Sensor-Arrays	381
	14.3.1	Signalverarbeitung für Sensor-Arrays	381
	14.3.2	Aufbau und Simulationsmodell.	382
	14.3.3	Störunterdrückung im Ortsfrequenzbereich	384
	14.3.4	Störunterdrückung mit Filtermasken	386
	14.3.5	Modellbasierte Signalverarbeitung	387
	14.3.6	Modellfreie Signalverarbeitung	390
14.4	Zusami	menfassung und Ausblick	394

Kapitel 1 Szenarienbasierte Validierung eines hybriden Radarmodells für Test und Absicherung automatisierter Fahrfunktionen

Thomas Eder^{1, 2, *}, Alexander Prinz^{1, 3, *}, Ludwig Brabetz², Erwin Biebl³

Kurzfassung Virtuelle Testmethoden im Bereich der Absicherung automatisierter Fahrfunktionen benötigen Modelle für die Umfeldsensorik. Gängige Modellierungsansätze konnten bisher nicht validiert werden, da keine ausreichenden Kriterien bekannt sind. In diesem Kapitel wird daher eine statistische Validierungsmethodik für die Positionsverteilung von Radardetektionen vorgestellt. Herausforderungen und Anwendungsmöglichkeiten der Methodik werden mit Hilfe realer und simulierter Radardaten diskutiert.

1.1 Einleitung

Die Entwicklung und Absicherung hochautomatisierter Fahrfunktionen stellt die Automobilindustrie derzeit vor große Herausforderungen. Gängige Entwicklungs- und Absicherungsmethoden erfordern einen immer umfangreicheren Testaufwand und sind folglich sowohl kosten- als auch zeitintensiv. Virtuelle Testmethoden, die zusätzlich die frühzeitige Identifikation von Problemen während des Entwicklungszyklus erlauben, sind dabei vielversprechend, um neuartige Technologien zur Serienreife zu bringen. Dabei muss sowohl das Fahrzeugumfeld, als auch die Sensorik simuliert werden. Im Gegensatz zur Umfeldsimulation, bei der beispielsweise Fahrzeuge und deren Dynamik simuliert werden, ist es bei der Sensorsimulation das Ziel, die spezifische Wahrnehmung zu simulieren. Diese besteht unter anderem aus Koordinatentransformationen, Messabweichungen und Zielerkennungsausfällen. Die Daten werden anschließend einer Fahrfunktion bereitgestellt (vgl. Bild 1).

¹ BMW AG.

² Technische Universität München.

³ Universität Kassel.

^{*} Gleicher Beitrag beider Autoren.

[©] Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020,

T. Tille (Hrsg.), Automobil-Sensorik 3, https://doi.org/10.1007/978-3-662-61260-6_1

Bild 1: Darstellung der Simulationswirkkette. Dabei übergibt die Umfeldsimulation eine objektbasierte Abstraktion der Szene an das Sensormodell. Dieses bildet die sensorspezifische Erfassung nach und stellt die Sensordaten der Fahrfunktion zu Verfügung.

Insbesondere hat sich die Radarsensorik aufgrund zahlreicher Effekte, wie beispielsweise das stetig schwankende Signal-Rausch-Verhältnis, die Mehrwegeausbreitung oder die Interferenz, als eine besonders herausfordernde Aufgabe herausgestellt [1]. Eine exakte physikalische Modellierung mit Hilfe der Maxwell-Gleichungen ist wegen des Kosten- und Rechenaufwands nicht möglich. Darüber hinaus kommt erschwerend hinzu, dass aktuelle Umfeldsimulationen eine derart detailgetreue Modellierung schlichtweg unmöglich machen.

Die Umfeldsimulation ist eine vereinfachte Darstellung der Realität. Dabei werden Fahrzeuge, Verkehrsteilnehmer und Gebäude durch geometrische Flächen angenähert. Zum einen ist die Beschreibung der virtuellen Szene nicht einheitlich und damit abhängig vom Simulationshersteller. Zum anderen bieten diese Hersteller meist nur eingeschränkte Möglichkeiten (z. B. OptiX), grafische Elemente für die Sensorsimulation zu verwenden. Aus diesem Grund hat sich unter den Automobilherstellern ein Modellierungsstandard für automatisierte Fahrfunktionen, Fahrsimulationen und Sensormodelle etabliert [2].

Die Standardisierung führt jedoch, gegenüber der grafischen Visualisierung, zu einer starken Vereinfachung. Infolgedessen werden Objekte durch einhüllende Quader, sogenannte *Bounding-Boxes*, dargestellt. Eine einzelne Szene besteht somit aus einer Menge an, für einen Sensor erfassbaren, Objekten $X = \{X_1, X_2, ..., X_n\}$, die sowohl Position als auch deren Kinetik beinhaltet. Das Sensormodell kann nun als mathematische Abbildung

$$M: X \to Y \tag{1}$$

aufgefasst werden [3]. Die Menge *Y* ist dabei abhängig von der festgelegten sensorspezifischen Ausgangsgröße, in dem hier relevanten Fall sogenannte Radardetektionen.

Zur Generierung der Detektionen werten automobile Radarsensoren Reflexionspunkte aus. Jeder Detektion kann eine Position $(x, y) \in \mathbb{R}^2$ und eine radiale Geschwindigkeit $v_r \in \mathbb{R}$ zugeordnet werden. Darüber hinaus werden weitere radarspezifische Informationen (für eine detaillierte Betrachtung der Radarsignalverarbeitung siehe [4], [5]) ermittelt.

Man unterscheidet für die oben genannten Abbildungen, die einen Radarsensor auf Detektionsebene repräsentieren, verschiedene Modellierungstiefen. Die einfachsten Modelle ordnen allen Objekten ein oder mehrere Detektionen zu und werden als *idealisierte Modelle* bezeichnet. Dabei ist es möglich, geometrisch verdeckte Objekte in der Liste der Detektionen zu berücksichtigen, indem diese aus der Detektionsliste entfernt werden. Die Erweiterung der idealisierten Modelle um zusätzliche sensorspezifische Messcharakteristiken, beispielsweise Messabweichungen, Zielausfälle oder Geisterziele, wird als *phänomenologisches Sensormodell* bezeichnet. Dabei ist eine Berücksichtigung physikalischer Gesetzmäßigkeiten mittels einfacher Gleichungen möglich. Ebenso ist eine statistische, oftmals auf Daten basierte, Modellierung denkbar. Die letzte Ebene bilden *physikalische Sensormodelle*, die das Ausbreitungsverhalten elektromagnetischer Wellen simulieren und nur zusammen mit einer Signalverarbeitung ein Detektionsmodell bilden. Der aktuelle Detailgrad des Standardisierungslevels erlaubt keine hinreichend genaue physikalische Modellierung in diesem Sinne. Modelle, wie beispielsweise von Holder [6] und Berthold [7], die einen hohen Anteil physikalischer Gesetzmäßigkeiten beinhalten, werden deshalb im Folgenden ebenso zu den phänomenologischen Sensormodellen gezählt.

1.1.1 Modellierung und Validierung von Radardetektionslisten

Um eine einfache, verständliche Übersicht gängiger Modellierungsansätze zu geben, wird im Folgenden die Wirkweise einzelner Modelle mit deren Prinzipdarstellungen erklärt. Erste Radardetektionsmodelle zur Anwendung in der Automobilindustrie gehen auf Bühren und Yang [8] zurück. Beobachtungen realer Radardetektionen rechtfertigten die Definition charakteristischer Rückstreuzentren für PKWs und wurden durch Simulationen von Buddendick [9] bestätigt. Das Bühren-Modell bildet dabei Detektionen in Abhängigkeit der radialen Entfernung auf den vordefinierten Reflexionsflächen sowie den bereits genannten Rückstreuzentren.

Ein weiterer Ansatz, der in kommerzieller Software zur Simulation von Radardetektionen verwendet wird, basiert auf dem im Datenblatt angegebenen Auflösungsvermögen eines Radarsensors [10]. Das Sensorsichtfeld (FoV: Field of View) wird dazu in Auflösungszellen unterteilt, die sich aus Strahlen und konzentrischen Kreisen zusammensetzen. Die Schnittpunkte einzelner Objekte mit den Strahlen sowie den konzentrischen Kreisen bilden die Grundlage einer Detektion. Liegen diese nahe an den von den Strahlen und konzentrischen Kreisen gebildeten Gitterpunkten, so führt dies zu einer Radardetektion (vgl. Bild 2).

Ein umfangreiches Modell, das auf einer Diskretisierung des Sensorerfassungsbereichs in Polarkoordinaten beruht, wurde von Berthold et al. vorgestellt [7]. Diese Diskretisierung ähnelt dem Prinzip der oben genannten Auflösungszellen, basiert jedoch auf einer Modellierung des Energieflusses, der sich aus Transmission, Reflexion und Absorbtion zusammensetzt. Überschreitet die für den Radarsensor relevante reflektierte Leistung einer Zelle einen adaptiven Schwellwert, so wird eine Radardetektion zurückgegeben. Der Schwellwert berechnet sich aus den umliegenden Entfernungszellen. Die Messabweichungen werden gesondert modelliert.

Bild 2: Darstellung zweier phänomenologischer Modellansätze. Im linken Schaubild werden Radardetektionen aufgrund sichtbarer charakteristischer Rückstreuzentren gebildet. Das Auflösungsmodell in der rechten Darstellung erzeugt Radardetektion (kariert) sofern Schnittpunkte (weiß) nahe an diskreten Auflösungsgitterpunkten liegen.

Die zuvor angesprochenen physikalisch motivierten Ansätze haben das Ziel, die zugrundeliegenden Gesetzmäßigkeiten nachzubilden, ohne jedoch auf einen expliziten Sensor einzugehen. Dahingegen versuchen rein datenbasierte Modelle auf Basis aufgezeichneter Sensormessdaten, die beobachtete Charakterstik nachzubilden [11]. Diese sind weder anpassbar, noch betrachten sie physikalische Zusammenhänge. Darüber hinaus hat die Methode zur Datengenerierung in der Praxis erhebliche Schwierigkeiten. Der im Folgenden vorgestellte hybride Modellierungsansatz versucht, die Vorteile beider Ansätze zu kombinieren.

1.1.2 Beitrag zur Sensormodellvalidierung

Zunächst ist jeder Modellierungsansatz legitim, jedoch muss dessen Anwendbarkeit im Einzelnen geprüft werden. Für eine anwendungsspezifische Prüfung müssen Gütekriterien festgelegt werden. Da das Modell einen Sensor jedoch niemals vollumfänglich nachbilden kann, bleibt es bezüglich weiterer Kriterien stets falsifizierbar.

Zur Bewertung und zum Vergleich einzelner Sensormodelle hat sich in der Praxis die Aufzeichnung und anschließende Re-Simulation unter Verwendung des Sensormodells etabliert [12–14]. Aufgrund ihrer Relevanz für eine nachgelagerte Sensorfusion, ist die Bewertung der räumlichen Verteilung [15] der Radardetektionen oftmals ein wesentliches Kriterium. Die dabei entstehenden Schwierigkeiten in der Anwendung sollen durch das nachfolgende einfache Beispiel verdeutlicht werden.

Beispiel. In der Realität werden vier Radardetektionen, die im Koordinatensystem des Zielfahrzeugs durch $Y_{real} = \{(2,5;0,5), (3,5;0,25), (4,75;0,25), (5;1)\}$ gegeben sind (vgl. Bild 3), beobachtet. Nun wird die gleiche Szene in der Simulation wiederholt. Dabei werden jedoch nur drei Detektionen $Y_{sim} = \{(3;0,5), (5;0), (5;1)\}$ generiert.

Bild 3: Darstellung der realen (Kreuz) und simulierten Daten (Kreis) aus dem Beispiel von Abschnitt 1.1.2. Links eine denkbare Szene aus der sich die Beispieldaten ergeben. Im rechten Bild sind die Detektionen jener Szene in einem Koordinatensystem des Zielfahrzeugs dargestellt.

Aufgrund der unterschiedlichen Detektionszahl ist eine direkte Berechnung der Messabweichung nicht möglich. Assoziiert man jedoch die Detektionen mit Hilfe eines Nächste-Nachbarn-Verfahrens f_{NN} , das einer simulierten Detektion die nächstliegende Detektion im Realdatensatz zuordnet, so kann der Fehler im quadratischen Mittel durch

$$E_{RMS}(Y_{sim}, Y_{real}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left\| \begin{pmatrix} x_{sim}^{(i)} \\ y_{sim}^{(i)} \end{pmatrix} - f_{NN} \begin{pmatrix} \begin{pmatrix} x_{sim}^{(i)} \\ y_{sim}^{(i)} \end{pmatrix} \right\|_{2}^{2}}$$
(2)

berechnet werden. Im vorliegenden Fall gilt daher $E_{RMS} = 0,533$.

Für das genannte Beispiel muss nun ein Schwellwert festgelegt werden, der definiert, ab wann ein Modell als valide bezüglich der Positionsverteilung einzustufen ist. Ein solcher Schwellwert ist jedoch rein subjektiver Natur und nur schwer interpretierbar. Ein Maß für die Validität eines Modells sollte daher im mathematischen Sinne durch eine Abbildung

$$V: Y_{real} \times Y_{sim} \to [0; 1] \tag{3}$$

gegeben sein. Im Falle eines perfekten Modells sollte $V(Y_{real}, Y_{sim}) = 1$ gelten. In den beiden Sonderfällen, in denen die zu validierenden Datensätze nur aus Real- oder Simulationsdaten bestehen, sollte zusätzlich

$$V(Y_{real}^{(1)}, Y_{real}^{(2)}) = 1 \quad \text{und} \quad V(Y_{sim}^{(1)}, Y_{sim}^{(2)}) = 1$$
(4)

gelten. Die Forderung aus Gleichung (4) wird als Konsistenzkriterium bezeichnet. Dieses Kapitel stellt eine im Bereich der Radarmodellierung neuartige Validierungsmethodik vor. Ferner wird die Methodik unter Anwendung eines hybriden Radarmodells erprobt.

1.2 Hybride Radardetektionsmodelle

Hybride Radardetektionsmodelle vereinen zunächst einfach nur mehrere Modellierungsansätze. Die Kombination physikalisch motivierter Ansätze mit einer messdatenbasierten Optimierung soll die Nachbildung eines expliziten Sensors ermöglichen. Im Gegensatz zu rein datenbasierten Modellen ist dieser Ansatz für Entwickler besser interpretierbar. Darüber hinaus ergeben sich in allen Phasen der Entwicklung Möglichkeiten zur Anwendung. Im Folgenden wird ein Radardetektionsmodell auf Basis ausgesendeter Strahlen vorgestellt und um eine datenbasierte Optimierung erweitert.

1.2.1 Strahlenbasierte Radardetektionsmodellierung

Strahlenbasierte Radardetektionsmodelle orientieren sich am Modell eines Lidars [16]. Im dreidimensionalen Raum kann dieser Ansatz als strahlenoptische Hochfrequenzapproximation der Maxwell-Gleichungen betrachtet werden [17]. Der zu modellierende Radarsensor lässt sich nicht ausschließlich, aber insbesondere durch seinen maximalen Entfernungs- und Winkelbereich charakterisieren. Innerhalb des Sensorsichtfeldes werden $n \in \mathbb{N}$ Strahlen im Abstand von $\Delta \varphi = \varphi_{FoV}/(n-1)^{\circ}$ ausgesendet. Trifft einer der Strahlen ein Objekt, dargestellt durch seinen einhüllenden Quader, so wird eine Radardetektion generiert.

1.2.1.1 Modellierung radarspezifischer Charakteristiken

Das einfache Modell muss um radarspezifische Charakteristiken erweitert werden. Dabei ist eine entfernungs- und winkelabhängige Existenzwahrscheinlichkeit p der strahlenbasierten Detektionen wichtig. Fällt ein Strahl beispielsweise in einem hohen Einfallswinkel auf ein Objekt ein, so ist eine Reflexion und daher auch eine Detektion eher unwahrscheinlich. Um dies bei der Modellierung zu berücksichtigen, wird für jeden Strahl eine Zufallszahl $\theta \sim \mathcal{U}(0, 1)$ gezogen. Die strahlenbasierte Detektion im Punkt $(x, y) \in \mathbb{R}^2$ erscheint nur dann in der Liste der Detektionen, wenn für den Einfallswinkel ϑ und die Distanz $d = \sqrt{x^2 + y^2}$ die Bedingung $\theta \leq p(d, \vartheta)$ erfüllt ist.

Zusätzlich dazu müssen Abweichungen in der Positionsmessung miteinbezogen werden. Im einfachsten Fall geschieht dies durch Addition eines normalverteilten Fehlers. Trifft ein Strahl das Zielfahrzeug im Punkt (x, y) so wird zunächst die Existenzbedingung überprüft. Ist Letztere erfüllt, so gilt

$$(x_{neu}, y_{neu}) = (x, y) + (x_{\varepsilon}, y_{\varepsilon}),$$
(5)

mit der zufälligen Messabweichung $x_{\varepsilon}, y_{\varepsilon} \sim \mathcal{N}(\mu, \sigma^2)$. Der Algorithmus (1) fasst dies nochmal zusammen.

Algorithmus (1) Einfaches strahlenbasiertes Radarmodell
Input: Position des Zielfahrzeuges zum Zeitpunkt t in Sensorkoordinaten X_t
Output: Modellierte Radardetektionsliste Z_t
1: Erzeugen der Strahlen $\{r_i\}_{i=1,2,\dots,n}$ im Winkel $\varphi_i = \varphi_{FoV}/2 - (i-1)/(n-1)\varphi_{FoV}$
2: while $i \leq n$ do
3: if r_i triff das Zielfahrzeug X_t then
4: $(x, y) \leftarrow \text{Auftreffposition}$
5: $d \leftarrow $ Strahlenlänge
6: $\vartheta \leftarrow \text{Einfallswinkel}$
7: $\Theta \leftarrow $ Zufallszahl aus $\mathcal{U}(0, 1)$
8: if $\Theta \le p(d, \vartheta)$ then
9: $x_{\varepsilon}, y_{\varepsilon} \leftarrow \text{normalverteilte Messabweichung aus } \mathcal{N}(\mu, \sigma^2)$
10: $Z_t \leftarrow (x, y) + (x_{\varepsilon}, y_{\varepsilon})$
11: end if
12: end if
13: end while
14: return $Z_t = \{(x_i, y_i)\}_{i=1,2,,n_t}$

1.2.1.2 Berücksichtigung fahrzeugspezifischer Radarrückstreuzentren

Die Darstellung in Bild 4 verdeutlicht, dass der Einfallswinkel ϑ des Strahls gegenüber der einhüllenden Box nur eine grobe Näherung zum tatsächlichen Einfallswinkel darstellt. Zusätzlich kann in Messungen beobachtet werden, dass in gewissen Bereichen häufiger Radardetektionen auftreten. Dies ist vor allem auf die stärker reflektierenden geometrischen Strukturen zurückzuführen. Als Beispiel hierfür können Scheinwerfer und Radkästen genannt werden. Eine rein distanz- und winkelabhängige Existenzwahrscheinlichkeit ist daher nicht ausreichend. Eine zusätzliche Berücksichtigung charakteristischer Rückstreuzentren, wie bereits im Bühren-Modell angewendet, ist deshalb naheliegend.

Im Falle eines Treffers muss das Modell prüfen, ob dieser nahe an einem Rückstreuzentrum liegt. Anschließend können unterschiedliche Existenzkriterien angewendet werden. Ist die Existenzwahrscheinlichkeit in der Nähe eines charakteristischen Rückstreuzentrums größer, so kann eine Detektionshäufung in Simulationsdaten nachgebildet werden. Die Wahrscheinlichkeit für charakteristische Treffer wird im Folgenden mit p_{char} bezeichnet. Alle anderen Existenzwahrscheinlichkeiten werden mit p_{ord} (engl. ordinary) bezeichnet.

Bild 4: Darstellung eines strahlenbasierten Radardetektionsmodells. Unter Berücksichtigung des Einfallswinkels ϑ und der Distanz d werden Detektionen gebildet. Detektionen nahe charakteristischer Rückstreuzentren treten dabei häufiger auf und werden durch elliptische Bereiche beschrieben. Deren Verteilungen sind oftmals asymmetrisch (Crystal-Ball-Funktion).

1.2.1.3 Modellierungsansätze weiterer radarspezifischer Effekte

Ein wesentliches Merkmal von Radarsensoren ist die Detektion scheinbar verdeckter Objekte aufgrund von Bodenreflexionen. So konnten beispielsweise Berthold et al. [7] in ihren Messaufzeichnungen beobachten, dass Radardetektionen nicht nur an den Kanten und charakteristischen Rückstreuzentren der Fahrzeuge auftreten, sondern auch die gegenüberliegenden Räder detektiert werden. In den meisten Fällen, beispielsweise wenn sich das Zielfahrzeug mit einem Gierwinkel von ca. 45° vor dem Radar befindet, können beide Hinterräder auf dem direkten, strahlenoptischen Wege detektiert werden. In seltenen Fällen ist eine Detektion aufgrund von Unterbodenreflexionen ebenfalls möglich (vgl. Bild 5).

Rein geometrisch lassen sich für fast jeden Strahl (außer im Falle eines Treffers der Ecken) zwei Schnittpunkte S_1 , S_2 mit der einhüllenden Box des Zielfahrzeugs berechnen. Dabei sei S_1 der direkt beobachtbare Schnittpunkt und S_2 der Schnittpunkt, an dem der Strahl aus der Box austritt. Liegt S_2 nahe an einem Rad, so kann nach Berücksichtigung der Strahlenlänge, Bodenfreiheit und Sensorverbauposition eine weitere Detektion auftreten. Zur Anwendung in dem vorgestellten Modellierungsansatz muss eine weitere Existenzwahrscheinlichkeit p_{add} (engl. additional) festgelegt werden.

Bild 5: Entstehung von Detektionen innerhalb der einhüllenden Box, bzw. an nicht direkt sichtbaren Kanten. Im Schaubild a) entstehen derartige Detektionen aufgrund von Mehrfachreflektionen. Darüber hinaus können, wie in Bild b) dargestellt, gegenüberliegende Räder bei hinreichend großer Distanz auch direkt detektiert werden.

Ein weiterer Radareffekt, der von Kellner et al. [18] beobachtet wurde und oftmals *Micro-Doppler* genannt wird, ist die Abweichung der Geschwindigkeiten von Radardetektionen auf Rad und Karosserie. Die radiale Geschwindigkeit v_r kann durch

$$v_r = v \cos \alpha \tag{6}$$

berechnet werden und so in einem strahlenbasierten Radarmodell berücksichtigt werden. Dabei bezeichnet α den Gierwinkel in Sensorkoordinaten und ν die relative Geschwindigkeit des Zielfahrzeugs. Die auf dem Rad auftretenden Detektionen weisen nun Geschwindigkeiten im Intervall $[0, 2\nu \cos \alpha]$ auf. Jeder horizontale Bereich eines Rades deckt dabei nur einen bestimmten Geschwindigkeitsbereich ab. Die idealisierten Geschwindigkeiten folgen daher der Verteilung

$$v \sim c_{\alpha} \sqrt{1 - \left(\frac{x}{v \cos \alpha} - 1\right)^2} \quad \text{für } x \in [0; \ 2v \cos \alpha], \tag{7}$$

mit einer Integrationskonstante $c_{\alpha} > 0$. Bei einem Gierwinkel von 25° liegt die Wahrscheinlichkeit für eine Geschwindigkeit im Intervall $[1,7v_r; 2v_r]$ näherungsweise bei 9,4%. Durch ziehen aus der Verteilung kann der Effekt so berücksichtigt werden.

Für die folgende Ausarbeitung werden die beiden oben genannten Effekte jedoch nicht berücksichtigt, zumal die Geschwindigkeit nicht Teil der positionsbasierten Validierungsmethodik ist und die Realdaten des Fahrmanövers (vgl. Abschnitt 1.4) keinerlei Detektionen an gegenüberliegenden Rädern erkennen lassen.

1.2.1.4 Der Algorithmus des parametrierbaren Radardetektionsmodells

Die Herleitung des strahlenbasierten Radarmodells in Kombination mit charakteristischen Rückstreuzentren ist im Wesentlichen in den vorangegangenen Abschnitten beschrieben worden. In Algorithmus (2) werden acht charakteristische Rückstreuzentren $c_k = (x_{c_k}, y_{c_k})$ für k = 1, 2, ..., 8 unterschieden. Für jeden der Punkte c_k kann prinzipiell eine andere Existenzwahrscheinlichkeit $p_{char}^{(k)}$ und Messabweichung $\mathcal{F}_{char}^{(k)}$ definiert werden. In ähnlicher Weise werden auch die Existenzwahrscheinlichkeiten und Messabweichungen aller anderen Detektionen beschrieben. Dabei wird zwischen verschiedenen Seiten $l \in \{\text{vorne'}, \text{hinten'}, \text{links'}, \text{rechts'} \}$ unterschieden. Dies erlaubt eine Berücksichtigung der Abweichung von einhüllender Box und Fahrzeugaußenkontur.

Die Aussendung der Strahlen in stets gleichbleibenden Winkelschritten führt in statischen Fällen zu Detektionsanhäufungen außerhalb charakteristischer Rückstreuzentren. Um eine stark multimodale Detektionsverteilung zu vermeiden, kann der Strahlenwinkel φ_i variiert werden. Die Variation φ_{noise} kann dabei im Bereich $[-\Delta \varphi/2; \Delta \varphi/2]$ liegen. Dabei bezeichnet $\Delta \varphi$ den Winkelabstand der einzelnen Strahlen. Reduziert man das Intervall um 2δ , so kann ein Mindestabstandwinkel δ einzelner Detektionen berücksichtigt werden.

Algorithmus (2) Hybrides Radarmodell

Input: Position und Typ des Zielfahrzeuges zum Zeitpunkt t in Sensorkoordinaten X_t **Output:** Modellierte Radardetektionsliste Z_t 1: Erzeugen der Strahlen $\{r_i\}_{i=1,2,\dots,n}$ im Winkel $\varphi_i = \varphi_{FoV}/2 - (i-1)/(n-1)\varphi_{FoV} + (i-1)/(n-1)\varphi_{FoV}$ φ_{noise} mit Winkelrauschen $\varphi_{noise} \sim \mathcal{U}(-\Delta \varphi/2 + \delta, \Delta \varphi/2 - \delta)$ und $0 \le \delta \le \Delta \varphi/2$ 2: while $i \leq n$ do if r_i triff das Zielfahrzeug X_t then 3: $(x, y) \leftarrow$ Auftreffposition 4: 5: $l \leftarrow$ Auftreffort {vorne, hinten, rechts, links} 6: $d \leftarrow \text{Strahlenlänge}$ 7: $\vartheta \leftarrow \text{Einfallswinkel}$ $\Theta \leftarrow$ Zufallszahl aus $\mathcal{U}(0, 1)$ 8: if Auftreffpunkt nahe an einem der charakteristischen Rückstreuzentrum c_k and 9: $\Theta \leq p_{char}^{(k)}(d, \vartheta, \varphi_i)$ {Wahrscheinlichkeit für eine Detektion ist erreicht} **then** $x_{\varepsilon}, y_{\varepsilon} \leftarrow$ zufällige Messabweichung aus $\mathcal{F}_{char}^{(k)}$ 10: $Z_t \leftarrow (x_{c_k}, y_{c_k}) + (x_{\varepsilon}, x_{\varepsilon})$ 11: else if $\Theta \leq p_{ord}^{(l)}(d, \vartheta, \varphi_i)$ then 12: $x_{\varepsilon}, y_{\varepsilon} \leftarrow$ zufällige Messabweichung aus $\mathcal{F}_{ord}^{(l)}$ 13: $Z_t \leftarrow (x, y) + (x_\varepsilon, y_\varepsilon)$ 14: 15: end if 16: end if 17: end while 18: return $Z_t = \{(x_i, y_i)\}_{i=1,2,...,n_t}$

1.2.2 Parametrierung des Radardetektionsmodells

Die Parameter des strahlenbasierten Modells können in zwei Gruppen unterteilt werden. Man unterscheidet zwischen *fahrzeugspezifischen* und *modellspezifischen* Parametern. Beispielsweise ist die Wahl der charakteristischen Rückstreuzentren ein fahrzeugspezifischer Parameter, wohingegen die Strahlendichte modellspezifischer Natur ist.

Das nachfolgende Beispiel nutzt Informationen auf Basis exemplarischer Produktanforderungen und leitet daraus die Existenzwahrscheinlichkeiten ab. Zusätzlich dazu werden die verwendeten Messabweichungen vorgestellt. Der darauffolgende Abschnitt erläutert eine Parametrierung mit Hilfe synthetischer Messdaten.

1.2.2.1 Beispielhafte Parameterwahl

Die Parametrierung der distanz- und winkelabhängigen Existenzwahrscheinlichkeit einzelner Radardetektionen ist einer der wichtigsten Parameter des Modells. Dieser ist stark an die Anzahl der Strahlen und deren Dichte ρ gekoppelt. Für die Anzahl der Strahlen, die auf ein meterlanges Kreisbogensegment mit dem Radius r eintreffen, gilt

$$\rho(r) = \frac{n-1}{\pi r \frac{\varphi_{FoV}}{180^{\circ}}} \sim \frac{1}{r}.$$
(8)

Ein Radar mit einem Sichtfeld von 150 Grad wird mit 76 Strahlen modelliert. Bei einem mittleren Strahlenabstand von zwei Grad beträgt die Strahlendichte $\rho(30 \text{ m}) = 0,968$ Strahlen pro Meter. Folglich wird ein Fahrzeug mit einer Breite von 2 Metern in 30 Metern Entfernung im Mittel von 1,936 Strahlen getroffen. Wird von dem Sensor die Detektion eines solchen Objekts in 99% der Fällen gefordert, so muss für die Existenzwahrscheinlichkeit in Abhängigkeit der Distanz

$$p_D(30) = \frac{0.99}{2\rho(30 \text{ m})} = 0.51$$
 (9)

gelten. Legt man zusätzlich die maximale Anzahl an Detektionen im Nahbereich fest, so kann man die distanzabhängige Existenzwahrscheinlichkeit bestimmen. Dies erfolgt unter der empirischen Annahme eines exponentiellen Abfalls der Detektionszahlen. Die winkelabhängige Existenzwahrscheinlichkeit kann beispielsweise durch die rechte Hälfte einer adaptierten Kosinus-Fensterfunktion gemäß Gleichung (10) beschrieben werden.

$$p_W(x) = \begin{cases} 0.5 \left(1 - \cos\left(\pi \frac{x+b}{b}\right)\right) & \text{, für } x \le b \\ 0 & \text{, sonst} \end{cases} \quad \text{mit } b \in [0^\circ; 90^\circ] \qquad (10)$$