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Abstract Mammalian Toll-like receptors (TLRs) were first identified in 1997 
based on their homology with Drosophila Toll, which mediates innate immunity 
in the fly. Over the past eight years, the number of manuscripts describing TLR 
expression and function in the central nervous system (CNS) has been increasing 
steadily and expanding beyond their traditional roles in infectious diseases to 
neurodegenerative disorders and injury. Interest in the field serves as the impetus 
for this volume in the Current Topics in Microbiology and Immunology series 
entitled Toll-Like Receptors: Roles in Infection and Neuropathology. The first five 
chapters highlight more traditional roles for TLRs in infectious diseases of the 
CNS. The second half of the volume discusses recently emerging roles for TLRs in 
noninfectious neurodegenerative diseases and the challenges faced by these models 
in identifying endogenous ligands. Several conceptual theories are introduced in 
various chapters that deal with the dual nature of TLR engagement and whether 
these signals favor neuroprotective versus neurodegenerative outcomes.

T. Kielian 
Department of Pathology and Microbiology, University of Nebraska Medical Center,  
Omaha, NE, USA 
e-mail: tkielian@unmc.edu
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Abbreviations

APC Antigen-presenting cell
CNS Central nervous system
CTMI Current Topics in Microbiology and Immunology
DAMP Danger-associated molecular pattern
dsRNA Double-stranded RNA
FACS Fluorescent-activated cell sorting
IFN Interferon
IkB Inhibitory kappa B
IkK Inhibitory-kB kinase
IL Interleukin
IL-1R Interleukin-1 receptor
IL-18R Interleukin-18 receptor
IRAK Interleukin-1 receptor-associated kinase
LPS Lipopolysaccharide
LTA Lipoteichoic acid
MAPK Mitogen-activated protein kinase
MyD88 Myeloid differentiation primary-response protein 88
NF-kB Nuclear factor kappa B
NIK NF-kB inducing kinase
ODN Oligodeoxynucleotide
Pam3Cys Tripalmitoyl-S-glyceryl-cysteine
PAMP Pathogen-associated molecular pattern
PGN Peptidoglycan
Poly I:C Polyinosine:cytosine
PRR Pattern recognition receptor
ssRNA Single-stranded RNA
TIRAP Toll-interleukin 1 receptor (TIR) domain-containing adaptor protein
TLR Toll-like receptor
TRAF Tumor necrosis factor receptor-associated factor
TRIF TIR-domain-containing adaptor inducing interferon-b

1  Historical Background of TLRs

The Toll gene was first identified in Drosophila when a mutation introduced into 
the gene led to defects in dorsal-ventral patterning in the fly and an inability to 
completely coalesce the abdominal cavity (Lemaitre et al. 1996). Fortuitously, the 
discovery was also made that the Toll mutation resulted in enhanced susceptibility 
to fungal infections, providing the first clue that this receptor may participate in the 
fly innate immune response. Additional evidence came with the finding that a 
mutation in a distinct Drosophila receptor related to Toll, 18-wheeler, led to an 
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increased prevalence of bacterial infections (Williams et al. 1997), reinforcing the 
pivotal roles that these receptors play in fly immunity. Subsequent sequencing of 
both the Toll and 18-wheeler genes revealed a significant degree of homology in the 
cytoplasmic tail with the cytoplasmic domain of the mammalian IL-1R (i.e., >90%) 
(Anderson 2000). Based on this extraordinary degree of similarity, the search for 
mammalian homologs of Toll began, and in 1997 the laboratory of the late 
Dr. Charles Janeway was the first to discover a Toll homolog in human monocytes, 
namely TLR4 (Medzhitov et al. 1997). Subsequent studies revealed that TLR4 was 
the receptor for LPS, a major immunostimulatory component of the outer cell wall 
of Gram-negative bacteria that had remained elusive for over 40 years. Later reports 
demonstrated that natural mutations in TLR4 were responsible for the LPS hypore-
sponsive nature of C3H/HeJ and B10 mice (Poltorak et al. 1998a; Hoshino et al. 
1999; Qureshi et al. 1999). To date, a total of 13 TLRs have been identified in mice 
and ten in humans, although ligands for a few of these receptors remain to be 
defined.

Innate immunity represents the first line of defense against invading microbes. 
In contrast, the adaptive immune response directed against microbial antigens takes 
several days to become established. Unlike adaptive immunity, where T and B cells 
can recognize an infinite repertoire of antigens due to random gene rearrangements 
of their receptors, cells of the innate immune system rely on a restricted set of 
germline-encoded receptors that are directed against highly conserved motifs 
expressed by large classes of microorganisms. These conserved motifs have been 
coined pathogen-associated molecular patterns (PAMPs), and the receptors that 
recognize these structures are referred to as pattern recognition receptors (PRRs) 
(Medzhitov and Janeway 2000; Qureshi and Medzhitov 2003; Kaisho and Akira 
2004). In addition to traditional PAMPs, recent evidence has indicated that TLRs 
can recognize an array of endogenous molecules that are typically sequestered from 
the immune response, so called “danger signals” or danger-associated molecular 
patterns (DAMPs) (Matzinger 2002). In this issue of Current Topics in Microbiology 
and Immunology, chapters dedicated to both pathogen-derived and endogenous 
TLR ligands will be discussed. However, it is likely that during the course of CNS 
infectious diseases, self-antigens will be liberated as a consequence of cell death/
necrosis, and as such, TLR engagement may be elicited by a combination of 
PAMPs and DAMPs in this context.

In addition to driving innate immune responses to infectious pathogens, 
TLR-dependent signaling also initiates adaptive immunity (Hoebe et al. 2004; 
Pasare and Medzhitov 2004). This is particularly evident when considering that 
the engagement of TLRs by bacterial antigens is required to induce co-stimula-
tory molecule expression on antigen-presenting cells (APC; i.e., dendritic cells 
and macrophages) for subsequent activation and expansion of antigen-specific 
T cells (Hertz et al. 2001; Boonstra et al. 2003; Pasare and Medzhitov 2003, 
2004; Hoebe et al. 2004). In addition, cytokines released by TLR-activated 
APCs, such as IL-12, play a pivotal role in regulating T cell development 
(Hoebe et al. 2004).
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2  TLR Subtypes and Ligand Classification

Currently, there are 13 TLR family members that have been described in mice 
and 11 in humans, although some still remain relatively poorly characterized 
(i.e., TLR11, TLR12, TLR13). In terms of this introductory chapter, a discus-
sion of classical microbial TLR ligands will be presented, followed by a 
description of endogenous TLR agonists that have been more recently described. 
This presentation order follows the organization of chapters in this volume: the 
first portion of the book deals with the roles of TLRs in CNS infectious dis-
eases, whereas the second portion addresses new emerging evidence that TLR 
signaling impacts the course of neurodegenerative disorders where pathogen 
etiologies are not apparent.

2.1  Extracellular TLRs and CNS Expression Patterns

There are several extracellular TLRs that recognize conserved structural motifs of 
large microbe populations. These motifs are typically less likely to undergo muta-
tion since they are essential for pathogen survival. The most well-characterized and 
studied extracellular TLRs are TLR2 and TLR4, which recognize bacterial pep-
tidoglycan (PGN)/lipoproteins and LPS, respectively. For the purposes of this 
introductory chapter, only these receptors will be discussed; however, the reader is 
directed to several excellent review articles on the subject for more information 
(Akira et al. 2006; O’Neill and Bowie 2007).

TLR2 is capable of recognizing the widest array of PAMPs identified to date, 
including PGN, bacterial lipoproteins (i.e., tripalmitoyl-S-glyceryl-cysteine; 
Pam3Cys), atypical LPS from Prophyromonas gingivitis and Leptospira interrogans, 
glycosylphosphotidylinositol lipid from Trypanosoma cruzi, and yeast zymosan 
(Qureshi and Medzhitov 2003; Takeda et al. 2003).

Several studies have demonstrated that microglia express TLR2 (Laflamme 
et al. 2001, 2003; Bsibsi et al. 2002; Kielian et al. 2002, 2005; Rasley et al. 2002; 
Zekki et al. 2002; Olson and Miller 2004) and receptor expression is elevated in 
response to a wide array of TLR2 agonists, including PGN and Pam3Cys as well 
as alternative TLR ligands (i.e., LPS) (Laflamme et al. 2001, 2003; Rasley et al. 
2002; Olson and Miller 2004). Another PRR that has been reported to cooperate 
with TLR2 is CD14, which is expressed on cells of the myeloid lineage including 
microglia and macrophages (Becher et al. 1996; Nadeau and Rivest 2000; Saito 
et al. 2000; Kielian et al. 2002, 2005). CD14 is a glycosylphosphatidyl inositol 
(GPI)-anchored receptor and is involved in the recognition of Gram-positive 
PAMPs such as PGN and LTA through its ability to interact with TLR2/TLR1 and/
or TLR2/TLR6 heterodimers (Cleveland et al. 1996; Gupta et al. 1996; Dziarski 
et al. 2000; Henneke et al. 2001; Schroder et al. 2003; Weber et al. 2003; Manukyan 
et al. 2005). More classically, CD14 is known for its ability to pair with TLR4 to 
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transduce activation signals in response to LPS (Haziot et al. 1988; Dobrovolskaia 
and Vogel 2002; Fitzgerald et al. 2004; Palsson-McDermott and O’Neill 2004).

Astrocytes also express TLR2, with augmented receptor levels observed upon 
exposure to various PAMPs (Bowman et al. 2003; Esen et al. 2004; Carpentier et al. 
2005). Strong evidence demonstrating that astrocytes express TLR2 in vivo was 
shown by Mishra et al. using immunofluorescence staining. In this study, robust 
TLR2 immunoreactivity was detected in astrocytes in both the normal and infected 
CNS (Mishra et al. 2006). Further support for astrocytic TLR2 expression was 
provided by a recent report by Kigerl et al. that utilized laser capture microdissec-
tion for astrocyte enrichment from control and injured spinal cord tissues and 
demonstrated TLR2 expression associated with astrocytes, although maximal 
expression was detected in microglia (Kigerl et al. 2007). However, studies examin-
ing TLR2 in other systems have produced some conflicting results with regard to 
astrocytic expression (Bsibsi et al. 2002; Rivest 2003; Farina et al. 2005; Owens 
2005). It is likely that the context of PAMP exposure and/or the strength of the 
activation signal received following astrocyte activation may dictate whether TLR2 
expression is induced. This “strength of signal” concept is proposed by Trevor 
Owens in the chapter “Toll-Like Receptors in Neurodegeneration” to address these 
discrepancies. Alternative explanations may include the species from which astro-
cytes were procured, the route of PAMP administration during in vivo studies, and/
or the length of time that astrocytes are co-cultured with microglia prior to purifica-
tion for in vitro studies.

As mentioned earlier, TLR4 is responsible for recognizing the Gram-negative 
cell wall component LPS (Poltorak et al. 1998a,b; Heine et al. 1999; Hoshino et al. 
1999; Qureshi et al. 1999; Takeuchi et al. 1999; Hirschfeld et al. 2000; Lien et al. 
2000; Tapping et al. 2000). With respect to glia, it has long been acknowledged that 
LPS serves as a potent stimulus for microglial activation typified by the robust 
production of numerous proinflammatory mediators. Therefore, it was not unex-
pected when microglia were reported to express TLR4 (Laflamme and Rivest 2001; 
Bsibsi et al. 2002; Lehnardt et al. 2002, 2003; Laflamme et al. 2003; Rivest 2003; 
Olson and Miller 2004; Chakravarty and Herkenham 2005; Jung et al. 2005). 
As previously mentioned, CD14 interacts with TLR4 to induce maximal responses 
to LPS in macrophages and microglia (Dobrovolskaia and Vogel 2002; O’Neill 
2004; Palsson-McDermott and O’Neill 2004; Esen and Kielian 2005).

In contrast to microglia, it appears more controversial as to whether astrocytes 
express TLR4. Several groups have been unable to demonstrate astrocytic TLR4 
expression in vitro (Farina et al. 2005; Kielian, unpublished observations) or 
in vivo (Laflamme and Rivest 2001; Lehnardt et al. 2002, 2003); however, others 
have detected low, constitutive expression of TLR4 in astrocytes that is increased 
upon cell activation (Bsibsi et al. 2002; Bowman et al. 2003; Carpentier et al. 
2005). It is important to acknowledge that great care must be taken when working 
with primary astrocytes to ensure that contamination with microglia is relatively 
low (Saura 2007). Since microglia express high levels of TLR4, a small number of 
residual microglia could introduce artifact signals that are not reflective of astro-
cytic receptor expression. This topic is also discussed in the chapter “Toll-Like 
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Receptors in Neurodegeneration” in this volume. Further studies using primary 
astrocyte cultures where microglia have been depleted by immunological means 
(i.e., magnetic bead purification or FACS using CD11b) will help to resolve this 
lingering issue.

2.2  Intracellular TLRs and CNS Expression Patterns

Not all TLRs are expressed at the plasma membrane; several—including TLR3, 
TLR7/8, and TLR9—are associated with endosomal membranes intracellularly. 
The intracellular expression patterns of these TLRs appear logical given the fact 
that their ligands represent nucleic acid motifs of pathogens that are typically not 
found extracellularly. Indeed, these nucleic acid motifs are typically encountered 
during intracellular replication and/or within intracellular compartments following 
phagocytosis. TLR3 recognizes dsRNA, which is an intermediate produced during 
viral replication in cells (Alexopoulou et al. 2001). Studies investigating the poten-
tial role of TLR3-mediated signaling commonly utilize the synthetic TLR3 agonist 
polyinosine:cytosine (poly I:C); however, TLR3 expression does not appear to be 
regulated by poly I:C in microglia (Bsibsi et al. 2002; Olson and Miller 2004), 
which differs from some of the other TLRs where receptor levels are augmented 
following exposure to their natural agonist(s) (Olson and Miller 2004; Kielian 
et al. 2005). Unlike the discrepancy in TLR4 expression, there is a consensus that 
astrocytes do express TLR3 (Bsibsi et al. 2002; Carpentier et al. 2005; Farina et al. 
2005, 2007; Scumpia et al. 2005). A central role for astrocytes in sensing viral 
infections in the CNS is supported by the finding that cells are responsive to the 
TLR3 agonist poly I:C, as is made evident by the production of several proinflam-
matory mediators.

TLR7 and TLR8 are highly homologous TLRs and their ligands include single-
stranded RNA (ssRNA) as well as structurally similar synthetic chemicals including 
antiviral and anticancer compounds (Kaisho and Akira 2004). TLR7 and TLR8 
expression has been reported in microglia (Bsibsi et al. 2002; Olson and Miller 
2004), astrocytes (Carpentier et al. 2005), and more recently neurons (Ma et al. 
2006, 2007), where TLR8 expression drives neuronal phenotypic changes and regu-
lates apoptosis.

TLR9 mediates responses to bacterial DNA, viral DNA, and synthetic oligode-
oxynucleotides (ODN), all of which contain unmethylated CpG motifs (Takeda 
et al. 2003). Both microglia (Takeshita et al. 2001; Dalpke et al. 2002; Iliev et al. 
2004; Olson and Miller 2004; Zhang et al. 2005) and astrocytes (Bowman et al. 
2003; Hosoi et al. 2004; Carpentier et al. 2005) express TLR9, and engagement of 
this PRR leads to a robust induction of proinflammatory mediators.

Following pathogen infection, it is likely that these intracellular TLRs serve 
to amplify the host immune response that was initially triggered by extracel-
lular TLRs to ensure effective pathogen clearance. However, in the context of 
noninfectious neurodegeneration, the pathologic engagement of intracellular 
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TLRs by endogenous ligands may contribute to exacerbated immune responses and 
enhance neuropathology. These issues are discussed in the chapters “Toll-Like 
Receptors in Neurodegeneration,” “Toll-Like Receptors in Spinal Cord Injury,” “ 
Toll-Like Receptors in Alzheimer’s Disease,” “Toll-Like Receptors in Multiple 
Sclerosis,” and “Toll-Like Receptors in Peripheral Nerve Injury and Neuropathic 
Pain” in this CMTI volume.

Recently, several studies have described endogenous molecules that are capable 
of triggering TLR-dependent signaling cascades (Tsan and Gao 2004). One issue 
that has confounded progress in this area is the concern of reagent purity; in 
particular, earlier studies describing TLR-dependent signaling pathways for endog-
enous molecules were complicated by contaminating LPS (Tsan and Gao 2004). 
However, in spite of this issue, convincing evidence has emerged documenting the 
ability of several endogenous molecules to engage TLRs, with the majority stimu-
lating either TLR2 or TLR4 (Tsan and Gao 2004; Kielian 2006). Despite the fact 
that several models of CNS injury have been shown to be influenced by TLR2 and/
or TLR4-dependent signaling, the identity of the ligand(s) that trigger these recep-
tors remains elusive.

3  TLR Signaling Pathways

TLR engagement culminates in the induction of NF-kB and MAPK signaling 
pathways, both of which regulate the expression of a wide array of genes involved 
in immune responses. Since the majority of TLRs utilize the central adaptor mol-
ecule MyD88 to transduce signaling cascades, this scheme will be discussed 
briefly with differences in TLR3-dependent signaling to follow (Akira 2006; 
O’Neill and Bowie 2007). TLR activation results in the recruitment of the adaptor 
protein MyD88, which is associated with the serine/threonine kinase interleukin-1 
receptor-associated kinase (IRAK). Subsequently, IRAK interacts with TNF 
receptor-associated factor (TRAF) adaptor protein TRAF6, which provides a 
bridge to the protein kinase NF-kB-inducing kinase (NIK). Next, NIK phosphory-
lates IKK (IkB kinase), leading to IkB phosphorylation. IkB phosphorylation 
targets the protein for ubiquitination and proteasome-mediated degradation, 
resulting in the release and nuclear translocation of NF-kB, whereupon it can 
influence the expression of numerous immune response genes. However, recent 
evidence has demonstrated the existence of alternative adaptor molecules that 
transduce signals from TLRs via a MyD88-independent pathway (Akira and 
Takeda 2004). These adaptors include TRAM and TRIF, which are pivotal for the 
expression of IFN-inducible genes following TLR4 activation (Yamamoto et al. 
2003, 2004; Akira and Takeda 2004). TRIF is also required for TLR3-
mediated signaling in response to dsRNA and is responsible for the induction of 
type I interferons (i.e., IFN-a and IFN-b) that are a hallmark host innate immune 
response to viral infection.
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4  Highlights of Contributing Chapters  
and Emerging Concepts

The objective of this volume is to provide a current synopsis on the role of TLRs 
during both infectious and noninfectious diseases affecting the CNS. Traditionally, 
TLRs have been regarded as pathogen sensors and, as such, the early TLR literature 
in the CNS was focused on this topic. However, recent studies utilizing various TLR-
deficient mouse strains have revealed that TLRs can also impact the course of 
distinct neurodegenerative diseases/pathologies. Although the ligands responsible 
for triggering TLR involvement in the absence of infectious insults have not yet been 
elucidated, it is apparent that these PRRs play a role, at some level, in influencing 
the subsequent host immune response to injury/trauma and the subsequent regenera-
tive response. It is anticipated that this book will serve as a forum to bring to light 
the various outstanding questions that remain in the field as well as to introduce new 
concepts regarding the roles of TLRs in CNS diseases and, importantly, acknowl-
edge the complexity of TLR signaling and the likelihood that TLRs act in concert 
with additional receptors to orchestrate the subsequent inflammatory profile.

The first four chapters of this book address the roles of TLRs in various models 
of CNS infectious disease, including bacterial meningitis, brain abscess, and viral 
and parasitic infections that target the brain. Several interesting concepts emerge 
from these discussions that emphasize the relatedness of TLR involvement despite 
the distinct infectious etiologies and diverse TLR engagement employed. This 
suggests that infectious insults may elicit a “common initial pathway” for inflam-
mation that can be further refined to accomplish the outcome required to neutralize 
the specific pathogen. This would translate to an early conserved innate immune 
response followed by a tailored pathogen-specific cascade. This concept remains to 
be supported or refuted, but nonetheless, comparisons between diverse infectious 
disease models should be made and the results utilized to make such determina-
tions. This is one objective of assimilating these chapters into one volume.

Another commonality shared between the various infectious disease models 
presented in this book is the fact that the resultant immune response (mediated, in 
part, via TLRs) not only leads to pathogen destruction but also bystander damage 
to surrounding CNS parenchyma by necrotic/apoptotic cell death. Therefore, it is 
also possible that during CNS infections, TLRs play two roles in ligand recogni-
tion: 1) to facilitate the initial response to the inciting pathogen and 2) upon tissue 
destruction, TLRs may also recognize newly liberated self-antigens as a result of 
necrotic cell death, a so-called “pathogen-necrosis-autoantigen triad” that is pro-
posed in the chapter “Toll-Like Receptors in Brain Abscess.” This could conceiv-
ably account for the exaggerated inflammatory response that typically accompanies 
these CNS infectious disorders. This concept remains to be tested; however, it 
remains an intriguing area for future investigation. It is clear from studies described 
in subsequent chapters of this book that agonist(s) liberated following CNS injury/
insult are indeed capable of interfacing with TLRs to modulate the host response to 
damage. It remains to be seen whether a protective anti-pathogen response could 
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be dissociated from a potential deleterious anti-self response following the lib-
eration of endogenous TLR ligands to minimize damage to surrounding normal 
CNS tissue during these infectious insults.

When comparing the roles of TLRs in bacterial meningitis (chapter “Toll-Like 
Receptors in Bacterial Meningitis”) versus brain abscess (chapter “Toll-Like 
Receptors in Brain Abscess”), although both infections occur in a distinct CNS 
compartment and involve different responding effector cells during the initial phase 
of disease, remarkably there are some commonalities observed. For example, both 
TLR2- and MyD88-dependent signals influence the pathogenesis of both infec-
tions. There is more consistency between the two models in terms of MyD88, 
where the loss of signaling leads to dramatic defects in host innate immunity and 
the failure to clear infection. In contrast, although TLR2-deficicient mice do exhibit 
some deficits in bacterial clearance and depressed proinflammatory mediator 
production, these mice do not experience overt clinical decline as compared to 
MyD88-deficient animals in either the bacterial meningitis or brain abscess models. 
These findings implicate the involvement of additional PRRs that participate in 
bacterial recognition and amplification of immune networks. In addition, the cross-
talk between TLRs and phagocytic PRRs must also be addressed, since changes in 
cytokine expression patterns can influence phagocytic indices (Mukhopadhyay 
et al. 2004; Underhill and Gantner 2004). Future studies utilizing mice that are 
deficient for both a particular TLR and phagocytic PRR would be interesting to test 
the interplay between these molecules.

Another example of the intriguing complexity that could impact TLR signaling 
during CNS infections is illustrated by helminth diseases, which is the topic of the 
chapter “Toll-Like Receptors in CNS Parasitic Infections” in this volume. Namely, 
many parasites that target the CNS harbor their own commensal bacteria. It is 
intriguing to speculate that parasite death results in a complex milieu of TLR 
ligands that not only originate from the parasite itself but also its endogenous 
microflora.

One intriguing observation that has emerged from studies of various models of 
neurodegeneration/injury is the finding of microglia/macrophage heterogeneity that 
is dependent on the context of inflammation. This concept is illuminated in the 
chapter “Toll-Like Receptors in Spinal Cord Injury” with regard to the divergent 
ability of infiltrating macrophages following traumatic spinal cord injury to exhibit 
either neurodestructive or neuroprotective properties. It has been proposed by the 
authors that TLR2 and TLR4 may favor inflammation during the acute stage of 
injury; however, these same TLRs may serve to promote repair processes/recovery 
during the later phases of disease (chapter “Toll-Like Receptors in Spinal Cord 
Injury”). Another explanation is provided in the chapter “Toll-Like Receptors in 
Neurodegeneration,” where a “strength of signal” hypothesis is introduced. This 
concept states that neuroprotective versus detrimental effects of microglia in the 
CNS are dictated by the concentration of TLR agonists that these cells are exposed 
to in vivo (chapter “Toll-Like Receptors in Neurodegeneration”). It is important to 
acknowledge that both lines of thought are not mutually exclusive and raise impor-
tant concepts that warrant further investigation in experimental systems.
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Additional complexities regarding TLR signaling are raised in the chapter “Toll-
Like Receptors in Alzheimer’s Disease”. In particular, it is evident that extensive 
receptor complexity exists involving TLRs and CD14 in the recognition of 
b-amyloid and dictating whether phagocytosis versus proinflammatory mediator 
production is induced. Likewise, the chapter “Toll-Like Receptors in Multiple 
Sclerosis” reveals divergent roles for MyD88-dependent versus -independent sig-
naling in either exacerbating or attenuating disease severity in rodent models of 
multiple sclerosis (i.e., experimental autoimmune encephalomyelitis), 
respectively.

The chapter “Toll-Like Receptors in Peripheral Nerve Injury and Neuropathic 
Pain” highlights recent evidence implicating TLR signaling in mediating nerve 
degeneration/regeneration and neuropathic pain following nerve injury. In common 
with the other contributions covering topics of neurodegeneration/injury, it remains 
to be determined which factor(s) dictates whether TLR signaling is beneficial for 
reparative processes or rather induces pathology and chronic pain responses. 
Teasing apart these mechanisms may afford new therapeutic treatment modalities 
for the management of neuropathic pain, which represents a significant socio-
economic burden.

Finally it is important to remind the reader that although it is tempting to assign 
the phenotypes obtained with MyD88-deficient mice to TLRs, this conclusion can-
not be assumed. This is namely because MyD88 is utilized for signaling via the 
IL-1R and IL-18R as well as TLRs, confounding the interpretations that can be 
made. This is all the more relevant since studies in models of CNS infectious dis-
eases have demonstrated important roles for IL-1 and IL-18 in the host antibacterial 
immune response (Zwijnenburg et al. 2003a,b; Kielian et al. 2004). Future studies 
using mice that are deficient for two TLRs that are suspected to influence the course 
of disease are needed, or alternatively, animals could be engineered that lack both 
the IL-1R/or IL-18R and a particular TLR of interest.
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