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Preface

Plant genetic resources have supported humankind for several millennia. These 
resources are the basis for food security in addition to the sources of energy, animal 
feed, fibre and other ecosystem services. They are important in addressing the 
global challenges that are currently facing the human population, particularly the 
twin challenge of climate change and food scarcity. Owing to their great impor-
tance, effective conservation and sustainable utilization of these resources is criti-
cally important and has never been more urgent. Plant domestication is an 
evolutionary process in which humans have used wild species to develop new and 
altered forms of plants with morphological or physiological traits that meet human 
needs. Limited number of individuals of progenitor species were used by early 
farmers and the traits selected usually were related to overall yield, harvesting, and 
edibility. As a consequence, this strong selection process produced genetic bottle-
necks of varying degrees that have resulted in a heterogeneous reduction in the level 
of genetic variation among annual herbaceous crops. The domestication process has 
resulted in reduced diversity at both the genome and morphological levels. The 
domestication has reduced or eliminated genetic diversity at certain loci in modern 
crops, thus limiting their potential for developing novel varieties with improved 
traits. Moreover, the selective approach during domestication had left behind vari-
ous valuable alleles of biotic, abiotic stress resistance, yield and quality traits in the 
crop wild relative (CWR) species and landraces. There is urgent need to relook at 
and explore the available genetic resources for future food and nutritional security.

Crop evolution under domestication has led to increased productivity of crop 
species, but at the same time has narrowed their genetic basis. The potential of the 
genetic diversity stored in CWRs and landraces for use in crop improvement appears 
to be much greater than we previously imagined. Recent increases in the use of wild 
resources have occurred because of the recognition of the usefulness of CWRs 
along with the availability of various genomic resources. With the advent of modern 
technologies, such as next-generation sequencing (NGS) and other omics-based 
high throughput techniques, various genomic resources have promised to revolu-
tionize genetics, plant breeding and biotechnology through molecular characteriza-
tion, transcript profiling and cloning of whole genomes to understand the structure, 
function and evolution of genes. A combination of Genome-Wide Association 
Studies (GWASs) and next-generation-mapping populations have improved our 
ability to connect phenotypes and genotypes and explore the genetic diversity of 
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wild relatives for crop improvement. The combination of these approaches with the 
promise of improved genomic technologies provides an opportunity for compara-
tive genomics to apply our understanding of the past to the future for crop improve-
ment. These genomic resources can be deployed to rediscover and explore the new 
genes/alleles and traits from CWRs for developing novel crop varieties resistance to 
various biotic and abiotic stresses, and other quality traits.

Genomic approaches have been widely used to identify genes or genomic regions 
controlling complex traits. High-throughput next-generation sequencing technolo-
gies offer opportunities to efficiently discover SNPs associated with important traits 
in landraces and crop wild relatives of both diploid and polyploid plant species. 
With recent significant cost reductions, scientists are now able to genotype thou-
sands of individuals by genotyping-by-sequencing (GBS) or resequencing. With the 
availability of increasing numbers of SNPs and phenotypic data, researchers have 
been able to validate and fine-map previously identified genes and to discover novel 
genomic regions underlying valuable agronomic traits in crop wild species by asso-
ciation mapping. The availability of genome-wide data and efficient phenotyping 
approaches will continue to accelerate the discovery of genes controlling superior 
traits in CWRs. Other functional omics approaches, including transcriptomics, pro-
teomics and metabolomics, have provided alternative opportunities for global anal-
ysis of regulatory genes, expressed proteins or metabolite candidates underlying 
important traits in CWRs. These omics approaches are also particularly suitable for 
dissection of the variation in CWRs for further utilization in crop improvement. 
However, the development of a high-throughput phenotyping pipeline remains chal-
lenging, especially in the field conditions. Some of the genomic regions associated 
with domestication traits have enhanced our understanding of their genetic basis, 
and will encourage further investigation to see whether allelic variation in those 
regions in wild relatives can additionally benefit crop improvement.

Rapid progress in advanced biotechnologies that can bridge genotype-phenotype 
gaps will facilitate the use of CWRs for crop improvement. Thus a number of QTL 
and SNPs associated with agronomically and ecologically important traits have 
been identified in wild species by linkage analyses, GWAS and/or combined 
“omics” approaches. The rapid improvement of biotechnological tools, such as 
diverse omics approaches, has resulted in promising advances, and no doubt will 
become routine in plant breeding programmes. Advanced biotechnologies are con-
tinuously being developed and will accelerate the conservation and use of genetic 
diversity retained in CWRs, resulting in agriculture sustainability. Utility of these 
resources is important in increasing the resilience and productivity of agricultural 
production systems. However, despite their importance, utility of these resources is 
poor. This book reviews the real and potential application of the current advances in 
genomics-based technologies in exploring and utilization of these resources for 
crop improvement. This book also describes in detail about exploring the untapped 
genes and traits for crop improvement from wild species which had been ignored 
during the domestication process. This will also give insight about how to utilize 
untapped and unexplored genetic diversity of wild species, wild relatives and land-
races for crop improvement.
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Rediscovery of Genetic and Genomic Resources for Future Food Security is 
designed to focus on the importance of plant genetic resources in achieving food 
security in the near future. It describes how the recent genomic resources techniques 
can be efficiently used in plant breeding programmes to achieve food security in the 
future. This book describes in detail about exploring the new genes and traits for 
crop improvement from wild species at the shortest possible time. The book also 
gives insight about how to utilize untapped and unexplored genetic diversity of wild 
species, wild relatives and landraces for crop improvement. It breaks the mould, 
offering an impressive array of balanced analyses, fresh ideas and perspectives, and 
thoughtful and realistic prescriptions which could help in the sustainable utilization 
of plant genetic resources with modern biotechnological techniques. The presenta-
tion style of the book is easy to follow and comprehend. Professionals, researchers 
and students are constantly reminded of previous topics of relevance to current top-
ics being discussed. This book is not only an excellent teaching tool, but it is also a 
suitable reference source for professionals.

Jammu, Jammu and Kashmir, India Romesh Kumar Salgotra
Srinagar, Jammu and Kashmir, India Sajad Majeed Zargar
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Abstract
Plant genetic resources (PGR) are the major natural resources on which human 
being has relied on for their livelihood, and their demand will increase in the 
future due to the continuing growth of population. Scientifically use of PGR is 
important in increasing the resilience and productivity of agricultural production 
systems for future food security. However, despite their importance in crop 
improvement, utility of these resources has been poor. With the advent of new 
high-throughput technologies like next-generation sequencing (NGS), new 
genomic resources have been generated. The advancement in genomic tools and 
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reduction in their costs are bringing many more plants within the range of 
genome- and transcriptome-level analysis. The genomic resources thus gener-
ated will be useful for genetic improvement of crops through applications of 
resources such as marker-assisted breeding (MAB) for gene introgression, map-
ping quantitative trait loci (QTLs) or identifying new or rare alleles associated 
with a particular trait. The effective and complementary use of all of genomic 
resources and available PGR will be required for meeting the challenge posed by 
the world’s expanding demand for food. This chapter focuses on how genomic 
resources can be used in PGR for crop improvement particularly for major food 
crops. The real and potential application of the current advances in genomic 
technologies can be used for efficient utilization of PGR for crop improvement 
to secure food security.

Acronyms

AB-QTL Advanced backcrossed QTL
AM Association mapping
CGA Candidate gene approach
CGIAR Consultative Group for International Agricultural Research
CMS Cytoplasmic genic male sterility
CRS Core reference set
CWR Crop wild relatives
DH Doubled haploid
EcoTILLING Ecotype TILLING
EST Expressed sequence tag
GAB Genomic-assisted breeding
LD Linkage disequilibrium
MAB Marker-assisted breeding
MAS Marker-assisted selection
NGS Next-generation sequencing
PCR Polymerase chain reaction
PGRs Plant genetic resources
QTLs Quantitative trait loci
RAD-seq Restriction-site-associated DNA sequencing
RAPD Random amplified polymorphic DNA
RFLP Restriction fragment length polymorphism
SCAR Sequence characterized amplified region
SNPs Single nucleotide polymorphism
SSR Simple sequence repeats
STS Sequence tagged site
TILLING Targeting induced local lesions in genomes
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1.1  Introduction

Genetic resources are sometimes called the “first resource” of the natural resources 
which can be used for crop improvement. At one level, plant genetic resources 
(PGRs) include all the individuals of a species, particularly if it is threatened with 
extinction. PGRs also include populations, gene pools or races of a species which 
possess important attributes not found uniformly throughout the species. PGR can 
also be defined as all materials such as wild species, wild relatives, landraces, etc. 
that are available for improvement of a cultivated plant species. Breeding lines and 
research materials, such as mutant, genetic or chromosomal stocks, are also genetic 
resources and are important in animal and plant breeding and in all phases of bio-
logic research. Finally, genetic resources can refer to genes themselves, maintained 
in selected individuals or cloned and maintained in plasmids. The effort required to 
utilize these resources in crop improvement is enormous but well justified as the 
genetic diversity present in these represents a critical component in the world’s fight 
against hunger. These resources are the basis for food security which can be effi-
ciently utilized for crop improvement through various biotechnological 
interventions.

To feed the ever-increasing population in the scenario of climate change, the 
demand for the development resilient crop cultivars is imperative. Development of 
such cultivars through conventional plant breeding methods depends on the avail-
ability of natural genetic variations in PGR of a given crop species. Moreover, 
genetic variability that exists is very low and needs to be widened for further improv-
ing the productivity of the crop. Further, there is a need to protect the loss of genetic 
diversity in several plant species. Efforts have been made since long to collect, con-
serve and evaluate PGRs, to support the plant breeders with diverse genetic materi-
als, to widen the genetic base and to create new varieties to enhance the crop 
productivity. Out of 240,000 plant species, only 25–30 are used for human con-
sumption, and of these, rice, wheat and maize together constitute about 75% of 
global grain production (Cordain 1999). Therefore, conservation, multiplication 
and sustainable utilization of the existing PGRs, which comprise cultivars, landra-
ces and wild relatives, are essential to combat the food security.

In classical plant breeding, PGR may also include those genetic materials that do 
not have any immediate use for the plant breeders (Hallauer and Miranda 1981). To 
satisfy the ever-increasing demands of a growing human population for more food, 
plant breeders require access to new genetic diversity in plant species (Brozynska 
et al. 2016). According to the extended gene pool concept, PGR may be divided into 
primary gene pool, secondary gene pool, tertiary gene pool and isolated genes 
(Harlan and de Wet 1971). The primary gene pool comprises of the crop species 
itself and other species that can be easily crossable. The secondary gene pool con-
sists of related species that are more difficult to cross with the target crop. In this 
case crossing is less successful, and if crossing is there, the progenies are partially 
sterile. The tertiary gene pool is composed of species which can only be crossed by 
employing techniques like embryo rescue or protoplast fusion. In fourth class PGR, 
the isolated genes, may derive from related or unrelated plant species, from animals 
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or microorganisms. The importance of the different classes of PGR for crop 
improvement depends on the target crop species. The utility of PGR is important in 
increasing the productivity and production of food crops. However, despite their 
importance, utility of genetic resources has been poor. The array of PGR together 
with new genomic resources and other technological tools provides us with a healthy 
solution to meet the world’s future food demands. PGRs or genomic resources alone 
will not serve the purpose; rather, the complementary utilization of these resources 
will be required for crop improvement to meet the food requirements.

In plant genome about 50–60,000 genetic loci are present, and in crop improve-
ment, the correct combination of specific alleles is required. The knowledge of 
where these alleles are best found and how these can be combined in a single spe-
cies is important for crop improvement. With the emergence of NGS techniques 
with reduced cost, various genomic resources such as genome sequences, functional 
genomic resources including microarrays and RNA-seq, sufficient numbers of 
molecular markers, expressed sequence tags (ESTs) and high-density genetic maps 
are causing a rapid acceleration of genetics and genomic research of crops. The 
completion of reference genome sequences of important crops and the ability to 
perform high-throughput resequencing are providing opportunities for improving 
our understanding of the PGR for utilization in crop improvement. This is leading 
to an increase in our knowledge of the genes that are linked to many agronomical 
and quality traits. These genomic resources have the potential to accelerate gene 
discovery which are being introgressed/pyramided in crops to enhance crop produc-
tivity to ensure food security. This chapter focuses on the potential use of PGR and 
genomic resources to meet the continually expanding demand for major food crops. 
This reviews the real and potential application of the current advances in genomic 
technologies in improving the utilization of these resources. This will also indicate 
how potentially these resources and technological tools can be used for crop 
improvement to meet food security in the future.

1.2  Importance of Genetic and Genomic Resources

Genetic and genomic resources play a significant role in crop improvement particu-
larly in the development of crop varieties with desirable characters. To meet the chal-
lenge posed by demand for food, the complementary utilization of genetic resources 
with available genomic will be required. Genetic resources can efficiently be used in 
crop improvement with the help of the current advances in genomic technologies.

1.2.1  Genetic Resources

Genetic resources play a significant role in agriculture, particularly in crop variety 
development and improvement programmes. PGR diversity provides the major 
sources of important genes for diseases and insect pest resistance and yield and 
quality improvement. Genetic resources form the natural variations that have been 
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utilized to support human kind for several millennia. They include primitive forms 
of cultivated crop species and landraces, modern cultivars, obsolete cultivars, breed-
ing lines and genetic stocks and related wild species. These resources are the basis 
for food security in addition to being sources of energy, animal feed, fibre as well as 
other ecosystem services. They are important in addressing the global challenges 
such as climate change, global population growth and food scarcity. PGRs are fun-
damental to our efforts to improve agricultural productivity. These resources, fortu-
nately stored in gene banks around the world and owing to their great importance, 
effective conservation and sustainable utilization of PGR, are critically important to 
food security, as evidenced by the huge number of accessions that are conserved in 
gene banks for various species. It is clear that enormous progress has been made in 
conserving important germplasm in gene banks, but these genetic resources remain 
unexploited because of a variety of factors. Genetic approaches have a long history 
of use in conservation, but the transition to genomic technologies is only just begin-
ning. Earlier very limited biotechnological interventions and genomic resources 
were available and are the main limitations for exploitation of genetic resources 
(Supple and Shapiro 2018). With the development of various genomic techniques, 
the genetic resources can be used efficiently for crop improvement.

PGRs are the most important components of agrobiodiversity. The introgression 
of genes in wheat crop which provided the foundation for the “Green Revolution” 
demonstrated the tremendous impact of genetic resources on crop production 
(Hoisington et al. 1999). Food security mainly depends on the wise use and conser-
vation of agricultural biodiversity and genetic resources (Esquinas-Alcazar 2005). 
Since importance have been given to relatively small number of crop species for 
global food security, it is particularly important that their genetic diversity is con-
served effectively and managed wisely. So far, only a small part of the total genetic 
variability has been characterized and used for crop improvement. Owing to their 
great importance, effective conservation and sustainable utilization of PGR are 
imperative for food security.

 1. Wild relatives: The major portion in PGR in plant species is contributed by wild 
relatives. Wild species possess numerous desirable characters such as genes for 
biotic and abiotic resistance and nutritional value enhancement for crop improve-
ment. Due to some crossability barriers, wild species are difficult to cross with 
cultivated genotypes. However, crossability between cultivated varieties and 
wild species can be overcome using embryo rescue, genetic engineering and 
protoplast fusion techniques for transferring some useful traits from wild rela-
tives to cultivated genotypes. The wild relatives possess desirable nutritional 
traits such as protein content in wheat, calcium content and provitamin A in 
potatoes and tomatoes, respectively.

 2. Landraces: The indigenous varieties selected by the local people from the tradi-
tionally grown germplasm are termed as landraces. And development of varieties 
from these selected germplasm is called as landrace varieties. These varieties 
also possess numerous genes for biotic and abiotic resistance. These landraces 
are grown under species environmental conditions and areas but possess a 
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number of important traits to be used in crop improvement. Although landrace 
varieties are low yielding, these are tolerant to major stress factors such as water 
regime, drought, frost, soil salinity and heat.

1.2.2  Genomic Resources

With the advancement in high-throughput techniques and cost reduction of next-
generation sequencing (NGS), many genomic resources such as genome 
sequences, high-throughput analysis of gene expression, numbers of molecular 
markers, ESTs and high-density genetic maps have paved the way to the genetic 
engineering and molecular breeding of plants for crop improvement. The applica-
tion of these genomic resources to crop species can contribute efficiently to solve 
the problems of nutritional deficiency and biotic and abiotic stresses. In the last 
decade, the emphasis on crop improvement using novel genomic tools has shifted 
toward the identification and functional analysis of miRNAs, one of the hottest 
research fields in plant sciences (Sun 2012). For the last three decades, globally 
different genomic resources are being effectively used for identifying the impor-
tant genes and alleles from the genetic resources to be used in breeding pro-
grammes (Fig. 1.1). The following are the various genomic resources which are 
being used for crop improvement:

 1. Quantitative trait loci: A number of agronomic traits are controlled by many 
genes, and these traits are called as quantitative or complex traits. A quantitative 
trait locus (QTL) represents a region of a genome that contains genes associated 
with a particular quantitative trait such as yield, grain weight, protein content, 

Fig. 1.1 A schematic illustration of the integration of genetic and genomic resources for crop 
improvement
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etc. (Collard et al. 2005). Such regions are associated with the agronomic/pheno-
typic traits of the plant species. However, their identification in the genome is 
very difficult because of the interactions between QTL, absolute number of 
QTL, epistasis and other sources of variation (Doerge 2002). These genes/QTLs 
are identified and tagged by using molecular markers (Mohan et al. 1997). A 
tight association between the gene of interest and molecular markers led to 
marker-assisted breeding (MAB) programme in crop improvement. This will 
also help in the construction of genetic map based on molecular markers (Francia 
et al. 2005).

 2. Molecular markers: With the advances in NGS and molecular marker technol-
ogy, a number molecular markers such as restriction fragment length polymor-
phism (RFLP), random amplified polymorphic DNA (RAPD), amplified 
fragment length polymorphism (AFLP), simple sequence repeats (SSR), 
sequence tagged site (STS), expressed sequence tag (EST), sequence character-
ized amplified region (SCAR), single nucleotide polymorphism (SNPs), inser-
tion-deletion (InDel), etc. were developed. These molecular markers have been 
successfully used in the construction of genetic maps, indirect selection of 
desired traits in segregating and advanced breeding materials. Today molecular 
markers become the choice of markers for genetic diversity studies of crop 
plants. Molecular markers could be used in various crops such as wheat, apple, 
pear, plum, etc. for identification of desired traits. These markers successfully 
help in the development of biotic and abiotic stress-resistant varieties (Salgotra 
et al. 2015).

 3. Marker-assisted selection: There has been considerable progress during the last 
two and half decades in mapping and tagging many agronomical desirable traits 
with molecular markers, which form the basis for marker-assisted selection 
(MAS). In MAS, molecular markers are used to assist in the selection of target 
traits of interest such as resistance genes for diseases and insect pests and selec-
tion of quality traits of fruit trees (Dirlewanger et al. 2004). MAS has been suc-
cessfully used in introgression of a number of genes in rice crop varieties which 
are susceptible to lodging, diseases and insect pests.

 4. Genome-wide association studies (GWAS): Association mapping (AM) is an 
alternative to classical linkage mapping to explicate the genetic basis of complex 
traits particularly for abiotic stresses (Abdurakhmonov and Abdukarimov 2008; 
Zhao et al. 2011). Linkage mapping based on biparental progeny has been useful 
for identification of major genes and QTL mapping (Komatsuda et al. 2007). But 
linkage mapping based on biparental progeny suffers from several drawbacks 
(Cosart et al. 2011). The shortcomings of the biparental-based linkage mapping 
are well addressed in association genetics in several crops (Gupta et al. 2005; 
Hall et al. 2010; Maccaferri et al. 2011). Further advantages of biparental linkage 
analysis, along with association mapping in nested association mapping in single 
unified mapping population, are used for the genome-wide dissection of com-
plex traits (Yu et al. 2008).

 5. Whole-genome de novo sequencing: In several decades “Sanger sequencing” 
remained predominant for decoding the genomes. The whole-genome sequenc-
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ing in less time and low cost is the major landmark discovery in omics. Earlier a 
small-genome sequencing requires huge funds in multi-institutional efforts. 
With the advancement of NGS technologies, genome sequencing has become 
much faster, low cost and efficient by several folds. After the introduction of the 
first 454 NGS platform, several platforms were introduced such as Illumina, ABI 
SOLiD, Helicos, PacBio, Ion Torrent and Oxford Nanopore. The whole-genome 
sequencing of plants has generated huge genomic resources such as development 
of molecular markers, comparative genomics, gene expression through tran-
scriptome, etc.

 6. Genome resequencing for the discovery of genome-wide variation: A reference 
genome is generated once the genome of a plant is sequenced. The reference 
genome is for studying genetic resources of the same species or related species 
to detect genetic variations. Thus, whole-genome resequencing of several acces-
sions/genotypes enables to generate useful genomic resources and information. 
This has also removed bottlenecks of ascertainment bias (i.e. the presence of rare 
alleles) obtained through biparental mapping population in the estimation of 
linkage disequilibrium (LD) and genetic relationships between genotypes 
(Cosart et al. 2011). Genome Project 1001 is one of the largest projects started in 
2008 for resequencing of 1001 Arabidopsis thaliana to know/discover genome-
wide sequence variations. In China genome sequencing project of 3000 rice 
accessions is ongoing to discover genome-wide sequence variations among the 
genotypes.

1.3  Genetic and Genomic Resources for Crop Improvement

Conventional research inputs have contributed in solving some of the constraints 
limiting crop productivity. However, limitations, such as complex genome, nar-
row genetic base, poor fertility in distant crosses, transferring important genes 
from wild relatives, susceptibility to biotic and abiotic stresses and long duration 
to breed elite cultivars, hinder crop improvement programmes (Salgotra et  al. 
2015). However, the modern biotechnological techniques and genomic resources 
can overcome the problem of identification of important genes and alleles in the 
wild and unrelated species. The identified important genes and alleles can be eas-
ily transferred in cultivated species embryo rescue techniques, and linkage drag 
can be minimized with the use of genomic resources such as MAS, MAB, QTL 
mapping, etc. There are various biotechnological strategies to solve the problems 
faced by the breeders which can be adopted for PGR to enhance the crop produc-
tivity on sustainable basis.

Genetic resources are the basic material for selection and improvement of crop 
species through breeding to ensure food security for the rapidly increasing popula-
tion. Different aspects related to PGR such as collection, conservation, evaluation, 
management and utilization are, however, needed to be done eminently. 
Biotechnological tools have proved useful in a number of ways to improve the con-
servation and management of PGR (Hodgkin et al. 2001). Molecular markers help 
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in DNA profiling, identification and verification of accession identity and genetic 
contamination (Collard et al. 2005; Spooner et al. 2005; Weising et al. 2005) and 
also have been used to identify eco-geographic races within the domesticated or 
wild gene pools of crop species (Yu et al. 2003). Different genomic resources have 
emerged with the availability of high-throughput techniques and sequence of vari-
ous crop species genomes through NGS techniques. Presently, existing biotechno-
logical approaches also overcome challenges of embryo rescue and somatic 
hybridization for effective utilization and enhancement of PGR in crop improve-
ment (Rao et  al. 2003; Zimnoch-Guzowska et  al. 2003). Bringing together plant 
breeders and biotechnologists is an eminent need for effective utilization of genomic 
resources techniques in plant breeding programmes. The following are recent 
genomic resources techniques which can be efficiently used in plant breeding pro-
grammes to achieve food security in the future.

1.3.1  Pre-breeding and Broadening Genetic Base

A significant proportion of gene bank collections comprises wild species, which 
represent the primary, secondary and tertiary gene pool (Harlan and de Wet 1971). 
These genetic resources have immense value in terms of the useful genes and alleles 
to improve the gene pool of crop species. Earlier breeders are reluctant to use these 
valuable resources in their breeding programmes because of linkage drag. For 
example, breeders in Japan have faced challenges in developing elite varieties with 
resistance against blast and also possessing good quality traits because of the co-
introduction of desirable alleles for blast resistance and the undesirable ones con-
trolling poor grain quality (Fukuoka et al. 2009). While such associations could be 
because of pleiotropy, they have in most cases been found to be because of tightly 
linked genes (Fukuoka et al. 2009). Breaking this linkage is usually costly and time-
consuming. Most breeders therefore prefer to reuse their usually limited working 
collections, thereby leading to release of varieties with narrow genetic diversity. 
This narrow genetic base negatively affects the resilience, productivity and sustain-
ability of agricultural production systems. Pre-breeding is therefore an important 
activity that helps to improve the genetic value, attractiveness as well as suitability 
of gene bank materials to breeders. Presently, certain predictive models have been 
developed which have the capacity to predict those SNP variations that are most 
likely to lead to deleterious phenotypic effects (Xu 2010). The biotechnological 
tools can identify the materials with such SNP alleles which can be eliminated from 
breeding programmes at an early stage. Plant breeders are also reluctant to use wild 
species due to linkage drag and their unwillingness to disrupt the favourable linkage 
blocks in their breeding materials.

With the use of high-throughput sequencing and genotyping approaches, it is 
now possible to obtain cross-specific sequence markers such as SNPs that can be 
used to saturate the genetic background of both parents (Henry et al. 2010). Using 
SNP markers, it is possible to monitor the degree of introgression of specific alleles 
or genomic regions in the offspring (Sharma et al. 2013; McNally et al. 2009). 
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This monitoring ensures that the genome of the recurrent parent can be efficiently 
regained, and the tracking of both desired and undesired alien alleles ensures that 
only narrow segments of the wild species, preferably having only the desired allele, 
are introgressed (Henry et al. 2010). To minimize linkage drag, it is recommended 
that the markers to monitor the introgression should be as close as possible to the 
desired genomic region (Hospital 2001). The use of genic or functional markers 
linked to the gene of interest is preferable. Deep sequencing of the genomic region 
controlling a particular trait can help identify the loci/alleles responsible for the 
undesirable trait and thus select recombinants lacking this undesirable allele 
(Fukuoka et al. 2009; Varshney et al. 2014). Genomics therefore plays an important 
role in the identification of both beneficial and deleterious alleles as well as facilitat-
ing the transfer of the beneficial ones during crop improvement. This minimizes the 
challenges associated with wild and unadapted materials, thereby enhancing their 
utility in crop improvement.

1.3.2  Genomic-Assisted Crop Improvement

Genomic technology has been applied in gene identification laying good foundation 
for functional genomics research, and to aid us in understanding the gene expres-
sion and biological activity, genomics initiatives are focused on fundamental ele-
ments of plant biology with regard to growth, development, reproduction, 
photosynthesis and responses to environmental conditions and pathogens. Cereal 
genomics carries the strength to shape the future of agriculture and its sustainability 
(Tuberosa et al. 2002). The better prediction of the phenotype that a particular geno-
type will produce is a primary goal of genomics-based breeding. Analysis of the 
crop genome architecture and their expressed components is now possible with the 
development in crop genomics and subsequently leads to an increase in our knowl-
edge of the genes that are linked to key agronomically important complex traits 
particularly in major crop species. DNA-based molecular markers including SNPs 
have played a pivotal role in detecting the genetic variation available in germplasm 
collections and breeding lines. These DNA markers can be generated in large num-
bers and can prove to be very useful for a variety of purposes relevant to crop 
improvement. Their association with genes/QTLs controlling the traits of economic 
importance has also been utilized in some cases for indirect MAS. Other uses of 
molecular markers include gene introgression through backcrossing, germplasm 
characterization, genetic diagnostics, characterization of transformants, study of 
genome organization and phylogenetic analysis.

Various sets of diverse molecular markers have been developed for many major 
crop species and are being used extensively for the development of saturated molec-
ular, genetic and physical maps and for the identification of genes or QTL control-
ling traits of economic importance through MAS (Varshney et al. 2005; Varshney 
et al. 2006). With the use of genomic resources, various traits of crops have been 
improved (Table  1.1). Together with MAS other approaches like association 
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mapping (Ersoz 2007), functional genomics (Schena 1998), genetical genomics 
(Jansen and Nap 2001), allele mining (Varshney et al. 2005), targeting induced local 
lesions in genomes (TILLING) and ecotype TILLING (EcoTILLING) (Till 2007) 
have been available from the past decade.

Development in cereal genomics play a key role in crop improvement for better 
understanding of the biological mechanisms which can improve the decision-mak-
ing process for more efficient breeding strategies for screening and selecting supe-
rior genotypes (Varshney et al. 2005). These advances and development will provide 
opportunity for efficient transfer of information systems from model species and 
major crops to orphan crops (Naylor et al. 2004).

Table 1.1 Potential use of genetic and genomic resources for crop improvement

Crop
Breeding 
strategies Objective References

Maize AB-QTL Improved hybrid performance for yield, grain 
moisture and plant height

Ho et al. 
(2002)

MAS Conversion of normal maize lines into quality 
protein maize (QPM)

Babu et al. 
(2004)

MAS Improvement of drought adaptation Ribaut and 
Ragot (2006)

Barley Introgression, 
MAS

Enhancement of tolerance to boron toxicity in 
two-rowed barley

Emebiri et al. 
(2009)

Introgression, 
MAS

Resistance to barley yellow mosaic virus I–III 
from donor line “Y4”

Okada et al. 
(2003)

Rice Introgression, 
AB-QTL

Identification of yield-improving QTLs from O. 
rufipogon

Xiao et al. 
(1998)

Pyramiding Bacterial blight (BB) resistance (X. oryzae pv. 
oryzae) into elite rice variety PR 106

Singh et al. 
(2001)

Pyramiding Bacterial blight (BB) resistance (X. oryzae pv. 
oryzae) into elite rice variety Samba Mahsuri

Sundaram et al. 
(2010)

MAS Introgression of locus conferring submergence 
tolerance from cultivar “FR13A” into “Swarna”

Xu et al. 
(2006)

Wheat Introgression Stacking of QTL for Fusarium head blight 
(FHB) resistance from non-adapted sources in an 
elite spring wheat background

Miedaner et al. 
(2006)

MAS Leaf rust resistance (Puccinia triticina), stripe 
rust resistance (P. striiformis), leaf, stripe and 
stem rust resistance gene complex

Chicaiza et al. 
(2006)

MAS Introduction of six Fusarium head blight QTLs, 
orange blossom wheat midge resistance (Sm1) 
and leaf rust resistance (Lr21)

Somers et al. 
(2005)

MAS Introduction of three Fusarium head blight QTLs 
into an elite winter wheat breeding population

Wilde et al. 
(2008)

Introgression Leaf rust resistance gene Lr58 from A. triuncialis Kuraparthy 
et al. (2011)

Source: Journal of Plant Science & Research
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