Hongwei Fang · Lei Huang · Huiming Zhao · Wei Cheng · Yishan Chen · Mehdi Fazeli · Qianqian Shang

Mechanics of Bio-Sediment Transport

Mechanics of Bio-Sediment Transport

Hongwei Fang · Lei Huang · Huiming Zhao · Wei Cheng · Yishan Chen · Mehdi Fazeli · Qianqian Shang

Mechanics of Bio-Sediment Transport

Hongwei Fang Department of Hydraulic Engineering Tsinghua University Beijing, China

Huiming Zhao China Institute of Water Resources and Hydropower Research Beijing, China

Yishan Chen College of Water Resources and Environmental Engineering Zhejiang University of Water Resources and Electric Power Zhejiang, China

Qianqian Shang River and Harbor Engineering Department Nanjing Hydraulic Research Institute Nanjing, China Lei Huang Department of Hydraulic Engineering Tsinghua University Beijing, China

Wei Cheng Beijing Engineering Corporation Ltd. PowerChina Beijing, China

Mehdi Fazeli Department of Civil Engineering Yasouj University Yasuj, Iran

ISBN 978-3-662-61156-2 ISBN 978-3-662-61158-6 (eBook) https://doi.org/10.1007/978-3-662-61158-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2020

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of Springer Nature.

The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

The mechanics of sediment transport involves the study of sediment transport under the action of flow. It is an important part of the hydraulic science and is mainly related to the problems of engineering safety such as sediment deposition in reservoirs and the erosion of downstream river channels. The operation of a reservoir changes the flood process of natural rivers and the extremely low discharge in dry seasons, which mitigates potential water disasters into beneficial uses. In recent years, due to the large-scale development and application of water conservancy projects and the rapid economic development, the nutrients and pollutants in the water bodies have increased substantially, and the flow condition also deviates more and more from the natural state. The basic law of the coupled transport of these substances and sediment is the theory and method of environmental sediment. The research on environmental sediment mainly concerns the influence of sediment particles on chemical constituents to ensure the safety of water quality (see the monographs of D. M. DiToro and Hongwei Fang). Moreover, microorganisms such as bacteria, algae, and fungi adhere to the sediment particle surfaces to form biofilms. Generally, epilithic biofilm will form at bed surfaces where they are irradiated by the sun, and bacterial biofilms will form at bed surfaces at large water depths. On the one hand, biofilm growth changes the physical laws of sediment transport; on the other hand, it also affects the environmental and ecological processes in the water and at the bed surface. These changes should be the main components of eco-fluvial dynamics, and this book mainly discusses the effects of biofilm growth on sediment transport.

There are several key issues in the study of biofilm-coated sediment (hereafter referred to as bio-sediment) transport. First, bio-sediment not only experiences chemical flocculation but also biological flocculation. The resultant particle size is much larger than that of individual original sediment particles, and the density and morphology also will greatly change. Second, the bed surface of bio-sediment is different from that of the original sediment, in the aspects of bedform and resistance

characteristics. Correspondingly, the transport characteristics of suspended sediment and bed sediment will be changed. Therefore, this book considers the flocculation characteristics of bio-sediment, and the suspended load and bedload are classified following traditional fluvial dynamics to determine the sediment transport properties after biofilm growth.

In this book, Chap. 1 describes the surface morphology, the heterogeneous surface charge distribution, and the adsorption/desorption characteristics of natural sediment particles (focusing on the research mainly completed by Dr. Lei Huang, Dr. Minghong Chen, and Dr. Zhihe Chen). Chapter 2 describes the change of surface morphology and density of sediment particles due to biofilm growth and also analyzes the microbial community in the bio-sediment (Dr. Huiming Zhao and Dr. Yishan Chen). Chapter 3 proposes a biomass dynamic model and discusses the bedform on the bio-sediment bed and the resistance to flow as well as the turbulence characteristics (Dr. Yishan Chen and Dr. Wei Cheng). Chapter 4 describes the bedload transport of bio-sediment, including the rheological properties, the incipient velocity, and the bedload transport rate (Dr. Huiming Zhao, Dr. Qianqian Shang, and Dr. Mehdi Fazeli). Chapter 5 describes the suspended load transport of bio-sediment, including the biological flocculation, the settling velocity, and the suspended load transport rate (Dr. Haojie Lai, Dr. Qiangian Shang, and Dr. Mehdi Fazeli). The sixth chapter discusses laboratory experiments of bio-sediment transport using a recirculating flume and also proposes mathematical models of bio-sediment transport based on the foregoing basic theories (Dr. Mehdi Fazeli, Dr. Huiming Zhao, Dr. Haojie Lai, and Dr. Wei Cheng). The whole book is written by Hongwei Fang and Lei Huang.

About ten years of our study of bio-sediment transport is summarized. Every Ph.D. student, the aforementioned persons, under my guidance, gradually added their research into a theoretical framework, thus forming a systematic research work. I thank these students for their hard work and good cooperation with me. The study of bio-sediment transport is an interdisciplinary subject involving many basic theories and extensive applications. Now the relevant research is still in its infancy, and it is difficult to present a systematic and comprehensive introduction of the theoretical framework. Thus, there have been certain defects and shortcomings in the process of compiling this book, and your comments and suggestions are highly appreciated.

Review comments by Steve Melching and suggestions by Danny Reible have led to an improved manuscript, although I bear the responsibility for any errors or shortcomings that remain.

Beijing, China November 2019 Hongwei Fang

References

DiToro DM (2001) Sediment Flux Modeling. New York: Wiley-Interscience.

Fang HW, Chen MH, Chen ZH (2009) Surface Characteristics and Model of Environmental Sediment. Beijing: Science Press. (In Chinese)

Contents

1	Surface Micro-morphology and Adsorption Properties of Sediment Particles		1	
	1.1	Surfac	e Micro-morphology of Sediment Particles	1
		1.1.1	Description of Surface Micro-morphology	1
		1.1.2	Measurement of Surface Micro-morphology	5
		1.1.3	Mathematical Expression of Surface Micro-morphology	15
	1.2	Hetero	ogeneous Surface Charge Distribution	36
		1.2.1	A Review of Surface Charge Properties	36
		1.2.2	Measurement of the Surface Charge Distribution	39
		1.2.3	Statistical Analysis of Surface Charge Distribution	
			and Morphology	44
	1.3	Adsor	ption on Sediment Particles	46
		1.3.1	Adsorption Isotherms	46
		1.3.2	Mechanistic Surface Complexation Model	48
		1.3.3	Interactions Between Sediment and Bacteria	58
	Refe	erences		70
2	Basi	c Char	acteristics of Bio-sediment	81
	2.1	Morph	nology Characteristics of Bio-sediment	81
		2.1.1	A General Introduction to Biofilm Growth	82
		2.1.2	Biofilm Growth on Sediment Substratum	86
		2.1.3	Morphology Characteristics of Bio-sediment	92
	2.2	Basic	Characteristics of Bio-sediment	109
		2.2.1	Group Characteristics of Bio-sediment	110
		2.2.2	Dry Bulk Density of Bio-sediment	119
		2.2.3	Bulk Density of Bio-sediment	123
	2.3	Analy	sis of Biofilm Bacterial Communities	124
		2.3.1	Experimental Design and Measurement	125
		2.3.2	Diversity Indices	129

		2.3.3	Taxonomic Distribution	131
		2.3.4	Bacterial Groups with Significant Differences	144
	Refe	erences		146
3	Biof	ilm Gr	owth and the Impacts on Hydrodynamics	153
	3.1	Mathe	matical Modeling of Biofilm Growth	153
		3.1.1	Common Models of Biofilm Growth	154
		3.1.2	Biomass Dynamics Model	157
		3.1.3	Validation of Biomass Dynamics Model	159
	3.2	Bedfor	rm and Resistance of Bio-sediment Bed	170
		3.2.1	Introduction of Bedforms	170
		3.2.2	Bedforms of Bio-sediment Bed	173
		3.2.3	Resistance of Bio-sediment Beds	183
	3.3	Effects	s of Biofilm on Turbulence Characteristics	191
		3.3.1	Experimental Setup and Procedure	192
		3.3.2	Biofilm Effects on Turbulence Characteristics	194
		3.3.3	Implications	204
	Refe	erences		204
4	Bed	load Tr	ansport of Bio-sediment	209
	4.1	Rheol	ogical Properties of Bio-sediment	209
		4.1.1	Introduction of Rheology	210
		4.1.2	Rheological Experiments	211
		4.1.3	Rheological Properties of Bio-sediment	214
	4.2	Incipie	ent Motion of Bio-sediment	221
		4.2.1	Incipient Motion of Noncohesive and Cohesive	
			Sediment	222
		4.2.2	Incipient Motion of Bio-sediment	227
		4.2.3	Derivation of Incipient Velocity Equations	234
	4.3	Bedlo	ad Transport of Bio-sediment	248
		4.3.1	Theoretical Equation of Bedload Transport	251
		4.3.2	Experiment on Bedload Transport	255
		4.3.3	Simulation of Bedload Transport	260
	Refe	erences	• • • • • • • • • • • • • • • • • • • •	266
5	Sus	pended	Load Transport of Bio-sediment	271
	5.1	Bioflo	cculation of Suspended Sediment	271
		5.1.1	Bioflocculation Dynamics	272
		5.1.2	Influencing Factors for Bioflocculation	279
		5.1.3	Bioflocculation Modeling	285
	5.2	Settlin	g Velocity of Bio-sediment	297
		5.2.1	Experimental Design for Bio-sediment Settling	299
		5.2.2	Settling Properties of Bio-sediment	305
		5.2.3	Mechanism Analysis of Settling Motion	310

Contents

	5.3	Susper	nded Load Transport of Bio-sediment	317
		5.3.1	Theoretical Equation of Suspended Load Transport	318
		5.3.2	Experiment on Suspended Load Transport	318
		5.3.3	Suspended Load Transport	320
	Refe	erences		322
6	Nun	nerical	Simulation of Bio-sediment Transport	333
	6.1	Experi	iment on Bio-sediment Transport	333
		6.1.1	Biofilm Formation and Analysis	334
		6.1.2	Erosion of Bio-sediment.	336
		6.1.3	Bio-sediment Transport	338
	6.2	1D M	athematical Model of Bio-sediment Transport	342
		6.2.1	Model Equations and Principles	342
		6.2.2	Results of 1D Bio-sediment Transport Model	345
	6.3	3D M	athematical Model of Bio-sediment Transport	349
		6.3.1	Model Equations and Principles	349
		6.3.2	Validation of 3D Bio-sediment Transport Model	356
	6.4	Model	ing Biofilm Development with Sediment Transport	369
		6.4.1	Biofilm Development Model	371
		6.4.2	Biofilm Development in the Three Gorges Reservoir	376
		6.4.3	Biofilm Development in the Middle Reach	
			of the Yangtze River	381
	Refe	rences	-	385

Notation¹

Α	Cross-sectional area (of particle)
AB	A coefficient representing the comprehensive effects of
	both aggregation and breakage on compaction
A _{bwm}	Effective Hamaker constant for the system of bacteria,
	water, and mineral
A_i	Interface area between two particles
A_p	Surface area of particles
Ar	Archimedes number, i.e. $gD_f^3 (ho_f - ho) ho / \mu^2$
>Al-OH ₂ ⁺	Surface functional group of corundum
>Al-OH ₂ -RCOOH ⁺	Attached bacteria on the surface of corundum
$A_0, \{a_n\}, \{b_n\}$	Fourier coefficients
$A_{s0}, \{a_{sn}\}, \{b_{sn}\}$	Normalized Fourier coefficients by the mean radius,
	$R_{\rm mean}$, of sediment
a_h and b_v	Distances of the vertical and horizontal forces to the
	rotation point for the rolling of particles
a - i	Gray values for the neighboring grid cells in Fig. 1.10
$a_x' - i_x'$	First-order derivatives related to <i>x</i> for the neighboring
	grid cells in Fig. 1.10
$a_y' - i_y'$	First-order derivatives related to y for the neighboring
	grid cells in Fig. 1.10
a' and b'	$a' = -\ln a$ and $b' = -b$ in Eq. 2.20
a_0 and m_0	Parameters in the equation of bio-sediment size
$a_1 - a_5$	Coefficients in Eqs. 4.24 and 4.25
a_p	Constant related to particle shape in Eq. 1.29
a_r	Reference level $z = a_r$
a_s	Calibration parameter in the formula of shear breakage
	frequency, $s_{i,s}$ (Eq. 5.23)
В	Biomass

¹The following symbols are used in this book.

B_0	Minimal biomass
B_a	Active part of biomass
B _{acc}	Biomass accumulation in the sediment layer
B_b	Active bacterial density
B_i	Inactive part of biomass
B _{mean}	Mean value of biomass along the vertical direction
B_t	Total biomass in the Capdeville biofilm growth model
-	(Eq. 3.4)
$B_{\rm W}$	River (flume) width
$-\infty$ B(z)	Biomass at the vertical location z
$B_{k}(z)$	Active bacterial density at the vertical location z
h_{i}	Concentration of <i>i</i> th biomass in the multi-species
	composite biofilm model (Eq. 3.5)
С	Chézy coefficient
C'	Chézy coefficient related to bio-sediment roughness
C_{α} C_{α} C_{α}	Capacitances of the corresponding layers for the
e_0, e_1, e_2	electrical double layer (EDL)
C	Adhesion coefficient
C_A	$C_{1}' = a_{1}C_{2}$ where a_{2} is a coefficient
C_A	Cohesive coefficient $(-0.06 \times 10^{-5})/((a_1 - a_2))$
C_C	Drag coefficient
C_D	Drag coefficient of original sediment
C_{D0}	Drag coefficient of bio sediment
C_{Df}	Lift coefficient $(-n, C_{-})$
C_L	Lift coefficient $(=\eta C_D)$
C_{\max}	amount in Eq. 1.36
$C_{\rm s}$	Adsorption amount per gram of sediment
	Aqueous concentration of adsorbate at equilibrium
с. С	The total mass concentration
c(s, t)	Correlation function between the small image $w(x,$
	y) and the large image $g(x, y)$ at the given position (s, t)
Cauto	Auto-detachment coefficient of biomass
C _{cat}	Catastrophic detachment coefficient of biomass
Cdet	Chronic detachment coefficient of biomass
C'det	Bacterial detachment coefficient
cellsize	Grid spacing in Eqs. 1.13 and 1.14
D	Sediment particle diameter
D_*	Dimensionless D, i.e. particle parameter
D_0	Original sediment size
D_1 and D_2	Diameters of the interacting bacterial cell and particle (or
	the interacting particles)
D_{50}	Median sediment size
D_b	Deposition rate
D_f	Floc/bio-sediment size
J	

xiv

Mean diameter of the sediment particles of size class
<i>i</i> for the calculation of S_{Vm} in Eq. 2.12
Diameter for which x percent of the particles are finer,
e.g. D_{25} , D_{75} , D_{80} , D_{84} , and D_{90}
Pore size of sediment particles
Fractal dimension
Fractal dimension of class <i>i</i>
Maximum fractal dimension
Basic quantities of the first kind as the coefficients of the
first basic form of the surface in Eq. 1.6
Entrainment rate
Non-dimensional TKE dissipation rate (ε) as scaled by
h/U_*^3
Diffusion coefficient
Electron charge
Conservative force representing the non-bonding poten-
tial and bonding forces that irreversibly connect particles
Average information of Lagrangian particles
Force exerted on each of the aggregated particles $(i = 1, $
$, N_a$)
Force exerted on the single particle
Faraday's constant (=96485.34 C/mol)
Flocculation intensity
Adhesive force
Buoyancy force
Cohesive force
Drag force
Frictional force
Gravity force
Gravity force per unit volume
Forces acting on the cantilever of EFM
Lift force
Resistance force
Floc strength
Froude number $(=U/\sqrt{gh})$
Non-dimensional TKE flux in the longitudinal direction
$(=f_{ku}/U_*^3)$
Non-dimensional TKE flux in the vertical direction
$(=f_{kw}/U_*^3)$
Inter-particle contact force
Fluid–particle interaction force
Friction coefficient
Particle distribution function

f(S), f(N), f(I), and f(T)	Functions representing the effects of substrata, nutrients, illumination, and temperature on biofilm growth
f(x, y)	A continuous function
$f_{\text{flood}}(O)$	Catastrophic detachment function for biofilm growth
$f_{k\mu}$	Turbulence kinetic energy flux (TKE flux) in the
	longitudinal direction $\left(=0.5\left(\overline{u'u'u'}+\overline{u'w'w'}\right)\right)$
f_{kw}	Turbulence kinetic energy flux (TKE flux) in the vertical
	direction $\left(=0.5\left(\overline{u'w'w'}+\overline{w'w'w'}\right)\right)$
G	Turbulent shear rate
G_p	Production of turbulent kinetic energy
G_x	First-order derivative of the continuous function
	f(x, y) relative to x
G_y	First-order derivative of the continuous function
- AR	f(x, y) relative to y
GAB	Lewis acid–base interaction energy
G^{LL}	Electrical double layer interaction energy
G ^L "	Lifshitz–van der Waals attractive energy
G^{10}	Total interaction energy
8	Gravitational acceleration
g_i	A function describing the gain or loss of biomass
g(x, y)	A large image of $M \times N$ for the PTV measurement (image matching)
$\bar{g}(x,y)$	Mean value of $g(x, y)$ in the overlying region with $w(x, y)$
$g_e(w_{zb})$	A function of erosion representing the influence of
	sediment erosion rate on the biofilm development
H_M	Mean curvature of the surface
H	Hole size (or threshold) that draws a clear distinction
	between the strong events outside the hole and the weak ones inside it
$H_{\rm hm}$	Separation distance between the bacterial cell and
UII	sediment particle
H_{\min}	Minimum separation distance between two surfaces
	(=1.57 Å)
H_{ts}	Separation distance between the EFM tip and sample
h	Water depth
h_a	Atmospheric pressure measured by height of water
1 ()	column
$n_b(z)$	A function of the vertical location representing the linear
T	usurbution of biofilm development
I I	Moment of inertia of the particle
I _m	Informent of mertia of the particle
1 _s	ionic strength

i_t	Threshold of the pixel values for the black-white
,	binarization
\mathbf{J}_{i}^{b}	Flux of <i>i</i> th biomass in the multi-species composite
	biofilm model (Eqs. 3.5 and 3.6)
\mathbf{J}_{j}^{SN}	Flux of <i>j</i> th nutrient in the multi-species composite
	biofilm model (Eqs. 3.5 and 3.6)
J	Bed slope
J_N	Diffusion flux of nutrients at the biofilm-liquid interface
Κ	Floc carrying capacity for hosting the biomass
	$(=\beta_K(L^3-V))$
K_B	Boltzmann constant (= 1.38×10^{-23} J/K)
K _d	Partition coefficient representing the partitioning of
	adsorbates between the particulate and dissolved phases
K _F	Freundlich adsorption constant
K_G	Gaussian curvature of the surface
KL	Langmuir adsorption constant related to the affinity of
	adsorbent to the adsorbate
K_M	Mass transfer coefficient
$K_n(x)$	Kirkwood function defined as Eq. 1.47
K_R	Mean value of the curvatures at each point of the cross
	section
K_S	Half-saturation coefficient for mass transfer
K ^{app}	Apparent surface complexation constant
K ^{int}	Intrinsic surface complexation constant
K_{a1}^{int} and K_{a2}^{int}	Intrinsic acidity constants
KHnx and KHpx	Half-saturation constants for the absorption of nitrogen
	and phosphorus during microbial growth
k	Turbulent kinetic energy (TKE), i.e. $0.5\left(\overline{u'^2} + \overline{v'^2} + \overline{w'^2}\right)$
k_0, k_i , and k_j	Fitting coefficients in Eq. 4.4
k _a	Aggregation rate
k_a'	Dimensionless aggregation parameter
k _B	Half-saturation coefficient of biomass for active bacteria
	growth
k_b	Breakage rate
k_b'	Dimensionless breakage parameter
k _D	Inverse half-saturation coefficient for sediment size
k _e	Electrostatic constant (= $8.9880 \times 10^9 \text{ Nm}^2/\text{C}^2$)
k _{eff}	Effective force constant for the EFM cantilever
k _I	Half-saturation coefficient for illumination
k _{inv,B}	Inverse half-saturation coefficient for biomass
kinv,Bb	Inverse half-saturation coefficient for active bacterial
	density
k_m	Coefficient in the expression of $u_{\text{bottom}} = k_m U_*$
k_N	Half-saturation coefficient for nutrients

k_{p1} and k_{p2}	Principal curvatures (i.e. the maximum and minimum
	normal curvatures, respectively)
k _s	Equivalent roughness height $(=k_s' + k_s'')$
k_{s}^{\prime}	Roughness due to particles (i.e. skin friction)
<i>k</i> _s "	Roughness due to bedforms (i.e. form-drag friction)
$k_{\rm s}^+$	Dimensionless roughness height $(=U_*k_s/v)$
ksp	Spring constant for the EFM cantilever representing the
ъъ	ability to resist elastic deformations
<i>k</i> *	Empirical coefficient in the expression of sediment
	carrying capacity. S _*
L	(Characteristic) floc size
L and L	Sizes of interacting particles
L_{i} and L_{j}	Primary particle size
L_p I	Non-equilibrium adaptation length for bedload transport
L_s I M N	Basic quantities of the second kind as the coefficients
<i>L</i> , <i>1</i> , <i>1</i> , <i>1</i> ,	of the second basic form of the surface in Eq. 1.8
<i>l(i, i</i>)	Element in the <i>link</i> matrix that reflects the relations of
<i>l</i> (<i>i</i> , <i>j</i>)	particles in adjacent images
M and N	Number of rows and columns of the image pixels in
	Fa 11
111	Mass of particles
m and a	Coefficients in Tang's (1963) equation of incinient
m_i and u_i	velocity
$m_{\cdot} - m_{\cdot}$	Constants in the expression of interface area between
$m_1 m_4$	two particles (Eq. (4.22))
m	Empirical exponent in the expression of sediment
1114	carrying capacity S ₂
$mag(\nabla f)$	Magnitude of the first order derivative of the continuous
$\operatorname{mag}(\mathbf{v}_{f})$	function $f(x, y)$ at the point (x, y)
N	Nutrient concentration
N-	Positive pressure between particles
N.	Types of biomass in the multi-species composite biofilm
IVB	model (Eqs. 3.5 and 3.6)
N	Dimensionless parameter that characterizes the
IVDLVO	interaction energy for unfavorable deposition
	$(-\kappa \Lambda_{\rm ex} / c_{\rm ex} \Psi, \Psi)$
$N_{}$	$(-\Lambda A_{bwm}/c_0c_r I_b I_m)$ Number of pixels with a pixel value of <i>i</i>
N GRAY(I)	Number concentration of flocs of class <i>i</i>
N	Number of particles positioned within a certain distance
14	I from the original stationary particle
N	Number of measurements
N m	Number of discrete point charges on the particle surface
N N	Types of putrients in the multi-species composite hief
INSN	rypes of nutrents in the multi-species composite biolinim
	model (Eqs. 3.3 and 3.0)

NH ₄ , NO ₃ , and PO ₄ d	Concentrations of ammonium nitrogen, nitrate nitrogen,
	and dissolved phosphate
n	Number of the Fourier series (or number of terms of k_i
	and k_j in Eq. 4.4)
$n_{\rm F}$	Adsorption constant
n_i	Number of the present ions per unit volume
n_{M}	Manning coefficient
n _R	Exponent in the rheological model
$n_{\tau y}, n_{\mu}, \text{ and } n_{\tau e}$	Fitting term of τ_y , μ , and τ_e in Eqs. 4.5 and 4.6
Р	Nitrogen pressure
P_0	Saturated vapor pressure at liquid nitrogen temperature
P_D	Pressure energy diffusion rate
\hat{P}_D	Non-dimensional P_D as scaled by h/U_*^3
P_M	Pressure in the momentum equation (Eq. 6.9)
$P_n^m(\cos\theta)$	Associated Legendre function
p and q	First-order derivatives of $Z = Z(x, y)$ (i.e. $p = \partial Z/\partial x$ and $q = \partial Z/\partial y$)
p_0 and p_1	Probability of class occurrence with pixel values of $0 - i_t$ and $i_t + 1 - 255$, respectively
<i>p</i> ′	Pressure fluctuation
p(i)	Percentage of pixels with a pixel value of i
$\frac{1}{0}$	Flow discharge
\tilde{O}_{c}	Critical discharge for catastrophic detachment
\tilde{O}_{cl}	Ouality factor of the cantilever
O_r	Reaction quotient of surface adsorption
a_1 and a_2	Surface charges of the interacting bacterial cell and
11 12	particle, respectively, in Eq. 1.53
<i>a</i> _a	Bedload transport rate at reference level $z = a_r$
a _h	Bedload transport rate
	Bedload in the x-direction
a hu	Bedload in the v-direction
1 <i>by</i> <i>а</i> ь*	Equilibrium bedload transport rate
<i>a</i> :	Discrete charge value at $(r_{ci}, \theta_i, \omega_i)$
<i>a</i> ₁	Discharge per unit width of the tributary or lateral inflow
	Suspended load transport rate
43 Acurt	Surface charges of the sample for EFM measurement
	Suspended load in the <i>x</i> -direction
45A Q	Suspended load in the v-direction
15y Quin	Surface charges of the tip for EFM measurement
â	Maximum mass transfer rate
R	Particle radius
R^2	Coefficient of determination
R	Universal gas constant (=8.31 I/(mol K))
ru -	

R_{Ba}	Growth rate of active biomass B_a in the Capdeville
	biofilm growth model
R_{Bi}	Growth rate of inactive biomass B_i in the Capdeville
	biofilm growth model
R_{Bt}	Growth rate of total biomass B_t in the Capdeville biofilm
	growth model
R_{b}	Hydraulic radius
R_{b}^{\prime}	Hydraulic radius related to the particle size
Re	Reynolds number
Re*	Particle Reynolds number for bed sediment $(=U_*D/v)$ or
	for settling bio-sediment $(=\omega_f D_f/v)$
Re _* '	Roughness Revnolds number $(=U_*k_v/v)$
Rmaan	Mean radius of a sediment particle
$R(\theta)$	Periodic function of radius representing the closed curve
	of particle edge profile
$R(\theta)$	Normalized periodic function of radius by the mean
1(3(0)	radius R of sediment in the polar coordinates
$R(\theta, \omega)$	Corresponding polar radius $R(\theta)$ at the latitude of ω
$R_{s}(\theta, \varphi)$ $R_{s}(\theta, \varphi)$ and $R_{s}(\theta, \varphi)$	Calculated $R(\theta, \omega)$ along the longitudinal and latitudinal
$\mathbf{n}_{s1}(0, \varphi)$ and $\mathbf{n}_{s2}(0, \varphi)$	directions respectively
$R-COOH^0$	Surface carboxyl group of bacteria
r	Lattice site
rst	Second-order derivatives of $Z = Z(x, y)$ (i.e. $r = \frac{\partial^2 Z}{\partial x^2}$.
, , , , ,	$s = \partial^2 Z/\partial x \partial y; t = \partial^2 Z/\partial y^2)$
r_j	A function describing the gain or loss of nutrients
(r_p, θ)	Polar coordinate
(r_s, θ, φ)	Spherical coordinate
S	Sediment concentration
S_*	Sediment carrying capacity
S_2	Sediment concentration at the first grid point above the
	bed of $z' = z_2'$
S_a	Reference concentration at the reference level $z = a_r$
S_b	Volumetric concentration of sediment in the bed layer
S_{bm}	Maximum volumetric concentration of sediment in the
	bed layer
S_{b^*}	Equilibrium sediment concentration of the bed layer
S_B	Concentration of the biomass fraction (= ΩS)
S_f	Friction slope
S _{inlet}	Sediment concentration at the beginning of the flume
S _{max}	Maximum sediment concentration along the flume
S_N	Concentration of nutrients in the reaction-diffusion
	kinetic model (Eq. 3.1)
S_{Nb}	Concentration of nutrients in the biofilm phase of the
	boundary layer
	· ·

S _{Nj}	Concentration of <i>j</i> th nutrient in the multi-species com-
	posite biofilm model (Eqs. 3.5 and 3.6)
S_{Nl}	Concentration of nutrients in the liquid phase of the
	boundary layer
Soutlet	Sediment concentration at the end of the flume
S_S	Concentration of the sediment fraction $(=(1-\Omega)\cdot S)$
S_{Vm}	Limiting concentration of non-uniform particles (=0.92
	$-0.2 \lg \Delta p_i / D_i$
S(z)	Vertical distribution of volumetric concentration of
	sediment
$S_{i,H}(\hat{z})$	Fractional contribution from the event E_i ($i = 1, 2, 3$, or
	4) toward RSS production
>S	Surface atom of sediment
>SL ⁻	Adsorbed anions on sediment surface
>SOH	Surface hydroxyl group of sediment
>SOM ⁺	Adsorbed metal cations on sediment surface
S	Relative density of sediment $(=\rho_s/\rho)$ or bio-sediment
	$(=\rho_{f}/\rho)$
s _i	Breakage rate of particle class <i>i</i>
$S_{i,s}$	Breakage rate of particle class <i>i</i> induced by fluid shear
	rate
\mathbf{T}_i	Total torque acting on the particle
T _{col}	Torques resulting from the inter-particle contact force
\mathbf{T}_{fp}	Torques resulting from the fluid-particle interaction
	force
Т	Temperature or absolute temperature
T_*	Transport stage parameter $\left(=\left(U_{*}^{\prime 2}-U_{*c}^{2} ight)/U_{*c}^{2} ight)$
T_{0B}	Reference temperature with the maximum specific
	growth rate of biomass (or optimal temperature for
	biofilm growth)
T_{0Bb}	Reference temperature with the maximum specific
	growth rate of active bacteria (or optimal temperature for
	active bacterial growth)
T_D	Turbulent kinetic energy (TKE) diffusion rate
\hat{T}_D	Non-dimensional T_D as scaled by h/U_*^3
T_F	Period of a periodic function in the polar coordinate for
	Fourier analysis
T_N	Non-spherical curvature of the surface
T_p	Turbulent kinetic energy (TKE) production rate
\hat{T}_p	Non-dimensional T_p as scaled by h/U_*^3
T_s	Sampling duration for the analysis of conditional RSS
	distributions
t	Time
t_{zb}	Time corresponding to the bed surface of z_b

\mathbf{U}_{a}	Unidirectional velocity of all the aggregated particles	
\mathbf{U}_{f}	Fluid velocity	
\mathbf{U}_{pi}	Particle velocity (<i>i</i> represents the <i>i</i> th particle)	
\mathbf{U}_{s}	Translational velocity of the single particle	
U	Average flow velocity of cross section	
U_c	Incipient velocity	
U _{ct}	Incipient velocity of sediment with biofilm cultivation	
0,0	period of t	
$U_{c,t=0}$	Incipient velocity of sediment with biofilm cultivation	
- 0,,,-0	period of $t = 0$ (i.e. no biofilm cultivation)	
U_*	Friction velocity (shear velocity)	
U*'	Shear velocity related to particles (bio-sediment	
C *	roughness)	
<i>II</i>	Critical shear velocity	
U_{*c}	Friction velocity derived from the energy slope	
U_{*s}	Friction velocity derived from the distribution of	
Ο*τ	Prevential shoes stores $\left(\sqrt{-1} \right)$	
	Reynolds shear stress $(=\sqrt{\tau_0/\rho})$	
u	Time-averaged now velocity in the streamwise direction	
u_a	Effective velocity at reference level $z = a_r$	
u_b	Bio-sediment velocity in the streamwise direction	
u _{bottom}	Bottom velocity (i.e. velocity at a distance of D from the	
	bed)	
$u_i \ (i = 1, 2, 3)$	Reynolds-averaged velocity components in directions x_i	
	(i = 1, 2, 3)	
$u_{\rm max}$	Maximum velocity (i.e. velocity at the water surface)	
u_{pi}	A simplified set of particle velocities at a lattice node	
	(<i>i</i> represents the direction of velocity vector)	
u_r	Bio-sediment velocity relative to the flow	
	$(=\sqrt{(u-\dot{x})^2+\dot{z}^2})$	
u' v' w'	Turbulent velocity fluctuations in the longitudinal	
<i>u</i> , <i>v</i> , <i>w</i>	lateral and vertical directions	
V	Volume of floc or bio-sediment	
Vp	Volume of the biomass fraction in the floc/bio-sediment	
V V	Pore volume of sediment particles	
V_g V and V a	Unavailable ontimal and available nore volume of	
$v_{g1}, v_{g2}, and v_{g3}$	sediment particles	
V	Volume of particles	
V p V c	Volume of the sediment fraction in the floc/bio-sediment	
v s	Kinematic viscosity coefficient	
V V = -	Example 1 A second control $(-V, W)$	
VBS	Kallo of the volumes of biofilm and sediment $(=V_B/V_S)$ Viscous diffusion rate	
vD V	Fddy viscosity	
v _t W	Eury VISCOSILY Einstein's white noise term	
VV i WZ	Emistern S while noise term Weight of the highly part of a big and most particle	
WB	weight of the biofilm part of a bio-sediment particle	

Notation

W_S	Weight of the sediment part of a bio-sediment particle		
w _b	Bio-sediment velocity in the vertical direction		
W _{bio}	Vertical penetration rate of biofilm		
W _{zb}	Sediment erosion rate		
\overline{w}	Mean value of $w(x, y)$		
w(x, y)	A small image of $J \times K$ for the PTV measurement		
	(image matching)		
X	Population of a variable		
X_f	Biofilm cell density		
X_i	Measured values		
\bar{X}	Average value of all measured data		
$(X_1, X_2, X_3, \dots X_n)$	A sample space of a variable		
<i>x</i> , <i>y</i>	Location of pixels (or coordinate of points) of the 2D		
	gray matrix $\mathbf{Z}(x, y)$		
<i>x</i>	Streamwise velocity of bio-sediment/biofloc		
<i>x</i>	Acceleration of bio-sediment/biofloc in the streamwise		
	direction		
x_c, y_c	<i>x</i> -, <i>y</i> -coordinates of the center of mass of the sediment		
	particle projection		
Y_i	Simulated values		
Y_j	Difference between the calculated surface potential and		
	the initial guessed value i.e. $Y_i = \Psi_0^* - \overline{\Psi_0(R, \theta, \omega)}$		
Z(x, y)	2D matrix describing the grav image of sediment		
Z	Water level		
Zii	Pixel value of the 2D grav matrix, $\mathbf{Z}(x, y)$		
Z_{P}	Rouse number $(=\omega_d(\beta\kappa_uU_*))$		
Z_{R}^{\prime}	Modified Rouse number $(=Z_R + 2.5(\omega_d/U_*)^{0.8}(S_d/S_{hm})^{0.4})$		
Z	Vertical distance		
ZO	Zero-velocity level or the roughness length		
Z_b	Elevation of the bed surface		
z_i	Charge of the adsorbed positive/negative ions or valency		
	of the present ions in the solution		
Ζ'	Distance from the bed surface, i.e. $z - z_b$		
z_2'	Distance of the first grid point from the bed surface		
ż	Vertical velocity of bio-sediment/biofloc		
ż	Acceleration of bio-sediment/biofloc in the vertical		
	direction		
ź	Scaled vertical distance $(=z/h, \text{ or } (z + \Delta z_{vb})/h)$		
Δ	Bedform height		
Δ/λ	Bedform steepness		
$\Delta G_{ m ad}$	Gibbs free energy of surface adsorption reaction		
	$(\Delta G_{\rm ad} = \Delta G_{\rm int} + \Delta G_{\rm el} + RT \ln Q_{\rm r})$		
$\Delta G_{ m el}$	Electrostatic component of Gibbs free energy of surface		
	adsorption reaction		

$\Delta G_{ m int}$	Chemical (intrinsic) component of Gibbs free energy of	
AD	surface adsorption reaction	
ΔG_{adh}^{AB}	Acid–base (AB) component of the change in free energy	
$\Delta G_{\rm adh}^{\rm LW}$	Lifshitz-van der Waals (LW) component of the change	
	in free energy (Lifshitz free energy of adhesion)	
Δp_i	Weight percentage of the sediment particles of size class	
	<i>i</i> for the calculation of S_{Vm} in Eq. 2.12	
ΔS_{De}	Change of suspended sediment concentration in the	
	deposition region $(=S_{outlet} - S_{max})$	
ΔS_{Er}	Change of suspended sediment concentration in the	
	erosion region $(=S_{max} - S_{inlet})$	
Δt	Computational time step	
Δu	Relative velocity of flow with respect to the moving	
	particle in the streamwise direction	
Δz	Net change of surface charge due to species exchange	
	that define the adsorption reaction	
Δz_b	Bed deformation	
Δz_{vb}	Depth of virtual bed from the bed surface	
$\Delta \phi_0$	Phase shift of the cantilever vibration for the surface	
	charge measurement	
∇f	First-order derivative of the continuous function $f(x, y)$	
$\nabla^2 f$	Second-order derivative of the continuous function	
	f(x, y)	
∇p	Pressure gradient	
α_s	Significance level	
α	Restoring saturation coefficient	
α'	Breakage probability due to collision	
α_1	Coefficient of the roughness due to particle (=3 as	
	suggested by van Rijn (1982))	
α_2	Velocity coefficient $(=u_a/u_b)$	
α ₃	Volumetric shape factor (= $\pi/6$ for spheres)	
α_{bx} and α_{by}	Directional cosines	
α_D	$=\pi C_{Df} \rho D_f^2/8$	
$\alpha_{i, j}$	Sticking efficiency between the particle classes i and j	
α_L	Lift coefficient in Eq. 4.50	
α_L'	$=\alpha_L \rho v^{0.5} D_f^2 (\partial u / \partial z)^{0.5}$	
α_m	Added mass coefficient to the bio-sediment mass	
	(assumed to be 0.5 by van Rijn (1984a))	
$\alpha_{m,n}, \beta_{m,n}$	Moments of surface charge distribution defined as	
	Eqs. 1.48 and 1.49, respectively	
β	A factor for diffusion of suspended sediment	
	$(=1 + 2(\omega_{f}U_{*})^{2})$	
$\beta_1 - \beta_3$	Coefficients in the expression of adhesive force, $C_A'(t)$	

β_{Bb}	Temperature dependence coefficient for active bacterial	
β	glowin Illumination dependence coefficient for biofilm growth	
ρ_I	Collision frequency between the particle classes i and i	
$ \rho_{i,j} ho_{\text{BM}} $	Collision frequency determines matter i and Collision frequency due to Drownian matter	
$p_{i,j}$	Collision frequency due to Brownian motion	
$\beta_{i,j}^{\text{DO}}$	Collision frequency due to differential settling	
$\beta_{i,j}^{i}$	Collision frequency due to fluid shear	
β_K	Proportionality coefficient	
β_T	Temperature dependence coefficient for biofilm growth	
Γ	Total surface charge of sediment	
γ	Bulk density (specific weight) of water	
γ_B	Bulk density of biofilm	
$\gamma_{i,j}$	Breakage distribution function	
γm	Constant in Eq. 1.48 ($\gamma_m = 1$ when $m = 0$; otherwise, γ_m	
	= 1/2)	
γ_s	Bulk density (specific weight) of sediment	
γ_s'	Dry bulk density of sediment	
$\gamma_{s-\mathbf{M}}'$	Maximum dry bulk density of sediment	
γ_{SB}	Bulk density of bio-sediment	
γ_{SB}'	Dry bulk density of bio-sediment	
γ <i>ѕв-</i> м′	Maximum dry bulk density of bio-sediment	
γ^{LW}	Lifshitz-van der Waals energy component of the surface	
	tension, and γ_b^{LW} , γ_m^{LW} , and γ_w^{LW} represent the value for	
	bacteria, mineral, and water, respectively (or γ_s^{LW} and	
	γ_1^{LW} represent the value for the solid and liquid,	
	respectively)	
γ^+	Electron acceptor parameter, and γ_{b}^{+} , γ_{m}^{+} , and γ_{w}^{+} represent	
	the value for bacteria, mineral, and water, respectively	
γ^{-}	Electron donor parameter, and $\gamma_{\rm b}^-$, $\gamma_{\rm m}^-$, and $\gamma_{\rm w}^-$ represent	
	the value for bacteria, mineral, and water, respectively	
ý	Steady (critical) strain rate in the rheological model	
δ	Thickness of water molecules (= 3×10^{-8} cm)	
δ_B	Thickness of biofilm	
δ_b	Thickness of bedload layer	
δ_{ii} and δ_{i3}	Kronecker delta	
δ_L	Thickness of viscous sub-layer $(=11.6v/U_*)$	
δ_{\max}	Maximum possible depth for biofilm growth	
8	Turbulent kinetic energy (TKE) dissipation rate	
60	Permittivity of a vacuum	
бр Д	Volume ratio of biofilm to the total deposit	
ε _B '	$= \ln[(\epsilon_{BM} - \epsilon_{B})/\epsilon_{B}] \text{ in Eq. } 2.20$	
ER M	Maximum value of ε_{B}	
Eh	Porosity of the bottom sediment	
-v E.	Permittivity of the electrolyte (aqueous medium)	
Se Ec	Fluid volume fraction	
5f	Future volume fraction	

\mathcal{E}_m	Scale for the measurement of surface area and volume of	
	particles	
\mathcal{E}_p	Permittivity of the particle	
\mathcal{E}_r	Relative permittivity of water	
ζ	Biomass fraction of the floc volume $(=V_B/V)$	
η	Flow parameter $(=\Theta/\Theta_c)$	
η_d	Value of η corresponding to the maximum bedform steepness, $(\Delta/\lambda)_{max}$	
Θ	Shields number	
Θ_c	Critical/threshold Shields number	
Θ_{c0}	Noncohesive term of the critical Shields number for	
	bio-sediment	
Θ_{cC}	Cohesive term of the critical Shields number for	
i i i i i i i i i i i i i i i i i i i	bio-sediment	
Θ_{cA}	Adhesive term of the critical Shields number for	
	bio-sediment	
θ	Inclination of riverbed	
θ_1	Contact angle of the measuring liquid with mineral or	
- 1	bacteria	
к	Inverse Debye length, and κ^{-1} is the thickness of the	
	electrical double layer (EDL)	
$\mathcal{K}_{\mathcal{M}}$	Von Kármán constant	
K _{RS}	Ratio of the bulk densities of biofilm and sediment	
100	$(=\gamma_B/\gamma_S)$	
λ	Bedform length	
λ_{BS}	Biofilm thickness ratio $(=\delta_B/D)$	
λ_{h}	Saltation length of sediment	
$\lambda_i H(t)$	Detecting function in Eq. 3.32, i.e. $\lambda_i H(t) = 1$ if the	
,,	(u', w') pair is in quadrant <i>i</i> with $ u'w' > H\sigma_u \sigma_w$,	
	otherwise, $\lambda_i = 0$	
λ_{w}	Correlation length of water molecules in the liquid	
w	(i.e. gyration radius)	
μ	Dynamic viscosity coefficient	
μ_{app}	Apparent viscosity of non-Newtonian fluids	
μ_R	Biomass growth rate	
μ _{Rb}	Maximum specific growth rate for active bacteria	
μ _{max}	Maximum specific growth rate for biomass	
μ_n	Mean value of the population, X	
μ _s	Mean value of the sample space, $(X_1, X_2, X_3, \dots, X_n)$	
Ĕ	Resisting moment per unit area due to the cohesion	
0	Density of water/fluid	
ρ_h	Density of biofilm	
ρ_{h}'	Dry density of biofilm	
ρ _f	Density of bio-sediment/biofloc	
rj Os	Density of sediment/primary particle (= 2650 kg/m^3)	
1.0		

σ_0 and σ_1	Standard deviation of the class with pixel values of $0 - i_t$ and $i_t + 1 - 255$, respectively		
$\sigma_0, \sigma_\beta, \sigma_d$	Surface charge of each plane for the electrical double layer (EDL)		
σ_c	Turbulent Schmidt number		
σ_F	Sum of the force derivatives for all the forces, F_i , acting on the EFM cantilever		
σ_{KR}	Standard deviation of the curvatures at each point of the cross section		
σ_p	Standard deviation of the population, X		
σ_R	Standard deviation of the radius of the cross section		
σ_s	Standard deviation of the sample space, $(X_1, X_2, X_3,, X_n)$		
σ_u	Turbulence intensity in the longitudinal direction $(-\sqrt{\mu^2})$		
$<\sigma_u>$	Relative turbulence intensity in the longitudinal direction		
σ_w	Turbulence intensity in the vertical direction $(=\sqrt{w'^2})$		
$\langle \sigma_w \rangle$	Relative turbulence intensity in the vertical direction		
σ_L^2	Within-class variance		
$\sigma_I^{\overline{2}}$	Between-class variance		
τ_f	Stress tensor		
τ	Reynolds shear stress $(=-\rho \overline{u'w'})$		
$\hat{\tau}$	Scaled Reynolds shear stress $(=\tau/\tau_0)$		
$ au_0$	Bed shear stress $(=\rho U_*^2 = \gamma R_b S_f)$		
τ_c	Incipient/critical shear stress		
τ_{De}	Bed shear stresses in the deposition region		
τ_{Er}	Bed shear stresses in the erosion region		
τ_e	Stable shear stress in the rheological model		
$ au_{ij}$	Turbulent shear stress calculated with the k - ε turbulence model		
$ au_R$	Shear stress in the rheological model		
τ_{v}	Yield stress in the rheological model		
$\check{\Phi}$	A function of particle size in Sha's (1965) equation of settling velocity		
$\phi(t)$	Function represents the parameters $\tau_v(t)$, $\mu(t)$, or $\tau_e(t)$ in		
/	Eq. 4.4		
$\phi(x, y)$	Direction of the first-order derivative of the continuous		
φ	function $f(x, y)$ at the point (x, y) , i.e. $\arctan(G_y/G_x)$ sorting coefficient $(=(D_{75}/D_{25})^{0.5})$		
γ	Einstein correction factor as a function of $k_J \delta_T$		
$\tilde{\Psi}_0$	Electrostatic potential of the surface relative to the bulk solution		
Ψ_0^*	Initial guessed value of surface potential relative to the bulk solution		

$\Psi_0(R, heta,\phi)$	Distribution of the (calculated) surface potential	
$\overline{\Psi_0(R, heta,\phi)}$	Average value of the (calculated) surface $M(D, Q, Q)$	
זע אין או	potential, $\Psi_0(R,\theta,\phi)$	
$\Psi_0, \Psi_\beta, \Psi_d$	surface potential of each plane for the electrical double layer (EDL)	
$\Psi_{\rm b}$ and $\Psi_{\rm m}$	Surface potentials of the bacterial cell and mineral, respectively	
ψ_i	Constraint forces that remain the distances within the	
	aggregate unchanged	
$\mathbf{\Omega}_s$	Rotational velocity of the single particle	
Ω	Biomass fraction of the sediment concentration	
Ω_a	A function of settling velocity in Sha's (1965) equation of settling velocity	
$\Omega_i(f)$	Particle collision operator	
ω_{pi}	Angular velocity of the particles (<i>i</i> represents the <i>i</i> th particle)	
ω	Settling velocity	
ω_0	Settling velocity of original sediment	
$\omega_{\rm F}$	Frequency of the Fourier series	
ω_f	Settling velocity of bio-sediment/biofloc	
ω_i and ω_j	Settling velocities of interacting particles	

Chapter 1 Surface Micro-morphology and Adsorption Properties of Sediment Particles

Biofilm growth on sediment is affected by the surface properties of sediment particles. Generally, sediment particles possess complex surface morphology, pores of various scales, and heterogenous surface charge distribution, which impact the adsorption of nutrients (pollutants) and attachment of bacteria on sediment, and further influence biofilm growth (Fang et al. 2009). Thus, this chapter first introduces the surface micro-morphology and charge distribution of sediment particles and their adsorption properties. That is, Sect. 1.1 describes the measurement and mathematical expression of surface micro-morphology; Sect. 1.2 presents the measurement and statistical analysis of the surface charge distribution; the adsorption properties and interactions between sediment and bacteria are discussed in Sect. 1.3. These concepts are the basis of the following chapters that explore biofilm growth and bio-sediment transport.

1.1 Surface Micro-morphology of Sediment Particles

1.1.1 Description of Surface Micro-morphology

The detailed characterization of sediment morphology is dependent on what one wants to learn, as different variables and indexes are required for different research objectives, and this characterization also is limited by the available instruments and methods. The diversification and refinement of characterization methods promote thorough studies of sediment morphology and increase understanding of smaller-scale problems. This sub-section gives a description of the characterization of surface morphology.

1.1.1.1 Traditional Description Method

The study of sediment transport is based on the theory of Newtonian mechanics, which mainly considers the physical and macroscopic effects such as gravity, currents, waves, and wind. When describing the motion of an individual sediment particle, the sediment particle is generalized into a mass point or a geometry of a specific shape to characterize the behavior of actual particles. Therefore, the geometric properties of individual sediment particles mostly are described by one or two parameters. For example, the sediment particle size usually is characterized by its diameter. Because of the large range of sediment size, there are special definitions of particle diameter and the corresponding measurement methods, as listed in Table 1.1, and the definitions and calculation of nominal diameter, sieving diameter, and settling diameter commonly are used.

Moreover, the geometric features of sediment particles are generally described by roundness, sphericity, overall shape, and shape factor. Wentworth (1919) first proposed the concept of roundness to describe the sharpness of the edges and angles of particles, but roundness is difficult to apply to the projection of three-dimensional objects. Wadell (1932) improved the calculation of roundness and first defined sphericity as the ratio of the nominal diameter and the diameter of a circumsphere. The sphericity of this definition does not reflect the dynamics of particles in a fluid; Folk and Ward (1957) further proposed the concept of maximum projection sphericity, i.e. the ratio of the diameter of a sphere with the projected area the same as the minimum projected area of the particle and the nominal diameter. Similar to

Physical quantities	Measuring method	Definition of particle size
Size of pebbles or gravel	Visualization, caliper, or gauge	Length, width, and thickness; and their arithmetic, geometric, or logarithmic mean values
Size of particle projection	Ruler or micrometer	Nominal projection diameter (the diameter of a circle with the same area as the projection)
Size of the transverse section of fine particles	Measuring in enlarged slice images with the foregoing methods	Slice diameter (the diameter of a circle with the same area as the slice)
Minimum area of transverse section	Sieving analysis	Sieving diameter (the minimum screen aperture that the particle can pass)
Mass	Balance	Diameter of a sphere with the same density and mass as the particle
Volume	Volume meter	Nominal diameter (the diameter of a sphere with the same volume as the particle)
Settling velocity	Settling cylinder, centrifuge, or sedimentation balance	Settling diameter (the diameter of a sphere with the same density and settling velocity as the particle)

 Table 1.1
 Concept and definition of particle size (Wang et al. 2002)

the maximum projection sphericity, shape factor also is used to characterize the relation among the three axes of particles, representing the deviation of particles from standard shapes (Wettimuny and Penumadu 2004).

These methods of describing sediment particles are simply defined and have been widely used in traditional studies of sediment dynamics. However, they are subjected to greater limitations in the studies of sediment surface processes.

1.1.1.2 Fractal Dimension

Since the fractal theory was first put forward by Mandelbrot (1982), it has been widely applied to the study of complex geometry in nature, such as coastlines, river systems, terrain landforms, rock fractures, and even molecular structures. Pfeifer and Avnir (1983) found that many surfaces have self-similarity and self-affinity, i.e. fractal surfaces. Thus, fractal theory also is used to describe particles, such as rock, soil, protein, floc, and catalyst particles. The fractal method can describe not only the shape, but also the surface roughness and pore characteristics of particles, and there are different definitions of important particle features, such as the Hausdorff dimension, correlation dimension, information dimension, and capacity dimension (Xie 1991; Zhang 1995). There also are many methods to determine the fractal dimension, mainly the methods of yardstick (Mandelbrot 1982), gas adsorption (Avnir et al. 1984; Neimark 1990a; Yin 1991), thermodynamics (Neimark 1990b; Neimark and Unger 1993), mercury intrusion (Fu et al. 2001), small-angle X-ray diffraction (Tang et al. 2003), nuclear magnetic resonance (Kalumbu et al. 1996), and scanning electron microscopy (image method) (Chakraborti et al. 2000).

Fractal theory provides a powerful tool for describing the anisotropy of particles. In the past, it was mainly used to describe soil (Perfect and Kay 1995; Rice et al. 1999; Sokolowska and Sokolowski 1999; Dathe et al. 2001), activated carbon (Huang et al. 2000; Wang et al. 2006a), silica gel (Zhao 2003; Sheng et al. 2005), and mineral rock (Liu et al. 2005). Relatively few studies have been conducted on the application of fractal theory to sediment morphology. Chao et al. (1997) studied the surface fractal characteristics of sediment particles through the adsorption of emulsified oil and concluded a surface fractal dimension of 2.33. Li et al. (2003) studied the fractal surface of sediment by adsorption of adsorbate with different cross sections and modified the application of the Langmuir and Freundlich adsorption isotherms to fractal surfaces. Wang et al. (2005a) investigated the influence of temperature on fractal dimension using the nitrogen adsorption method. Wang et al. (2006b) found that the surfaces of sediment particles usually have multi-fractal properties under scales from nanometers to microns through image analysis, and there are some differences in the fractal dimension at different scales. It is believed that the fractal dimension obtained by image analysis is a description in a purely geometric sense for the surface roughness. In addition, there are also studies that applied fractal theory to the shape of sediment flocs (de Boer 1997; de Boer and Stone 1999; de Boer et al. 2000; Stone and Krishnappen 2005; Hong and Yang 2006).

The fractal method provides a method for describing sediment particles, which is more elaborate than traditional methods and can reflect more information on particle shape and surface structure, but there are still some limitations. For the same fractal dimension, the shape or surface structure of sediment particles can be significantly different, and the corresponding mechanical and chemical properties may also greatly differ. Thus, the fractal dimension cannot be used alone to describe the relation between particle morphology and other surface processes. Moreover, the surface fractal dimension based on image analysis is a description of surface roughness in a geometric sense which might be affected by the gray field. In contrast, the fractal dimension calculated by the methods of gas adsorption and yardstick is a measurement of a particle's surface-filling capacity, i.e. a higher accuracy.

1.1.1.3 Image Method

Fine sediment particles generally are of micron or millimeter size, and it is difficult to observe the surface morphology by eye. The rapid development of microscopic observation, image processing, and intelligence provides a convenient approach for morphologic study of fine particles. The commonly used microscopic equipment includes: scanning electron microscope (SEM) (Berkel and Beckett 1996), transmission electron microscope (TEM) (Hochella et al. 1999), atomic force microscope (AFM) (Buzio et al. 2003), environmental scanning electron microscope (ESEM) (Donald 2003; Zhao et al. 2011), energy-dispersive X-ray spectrometer (EDS) (Palumbo et al. 2001), and X-ray diffraction (XRD) (House and Denison 2002). The sample requirements are different for these different microscopic equipments, and the corresponding purposes of measurements also are very different.

Many scholars have made substantial effort on how to study the morphology and material properties of particles after acquiring images. For example, Chandan et al. (2004) described the texture, angularity, and shape of aggregates used in express-way construction through wavelet analysis, gradient operation, and shape factor and sphericity, respectively, and studied the relation between particle shape and aggregate properties. Wettimuny and Penumadu (2004) and Al-Rousan et al. (2007) described the shape of aggregates using the Fourier series method and defined the shape and roughness parameters to reflect different physical characteristics. Wang et al. (1982) analyzed SEM images of quartz using a statistical method and classified the shape, angularity, and texture into several groups through empirical parameters. Durian et al. (2006, 2007) studied the relation between the shape of broken rock and its transport process under experimental and natural conditions using the distribution of profile curvatures. In these studies, the grayscale gradient and Fourier series are effective methods for the study of sediment particle morphology.

Three-dimensional (3D) surface reconstruction based on the image method is an extension of particle morphology study. To reconstruct a 3D surface, images obtained from different light directions (ordinary optical imaging) or different