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Preface to the Series

Genome sequencing has emerged as the leading discipline in the plant sci-
ences coinciding with the start of the new century. For much of the twentieth
century, plant geneticists were only successful in delineating putative chro-
mosomal location, function, and changes in genes indirectly through the use
of a number of “markers” physically linked to them. These included visible
or morphological, cytological, protein, and molecular or DNA markers.
Among them, the first DNA marker, the RFLPs, introduced a revolutionary
change in plant genetics and breeding in the mid-1980s, mainly because
of their infinite number and thus potential to cover maximum chromosomal
regions, phenotypic neutrality, absence of epistasis, and codominant nature.
An array of other hybridization-based markers, PCR-based markers, and
markers based on both facilitated construction of genetic linkage maps,
mapping of genes controlling simply inherited traits, and even gene clusters
(QTLs) controlling polygenic traits in a large number of model and crop
plants. During this period, a number of new mapping populations beyond F2
were utilized and a number of computer programs were developed for map
construction, mapping of genes, and for mapping of polygenic clusters or
QTLs. Molecular markers were also used in the studies of evolution and
phylogenetic relationship, genetic diversity, DNA fingerprinting, and
map-based cloning. Markers tightly linked to the genes were used in crop
improvement employing the so-called marker-assisted selection. These
strategies of molecular genetic mapping and molecular breeding made a
spectacular impact during the last one and a half decades of the twentieth
century. But still they remained “indirect” approaches for elucidation and
utilization of plant genomes since much of the chromosomes remained
unknown and the complete chemical depiction of them was yet to be
unraveled.

Physical mapping of genomes was the obvious consequence that facili-
tated the development of the “genomic resources” including BAC and YAC
libraries to develop physical maps in some plant genomes. Subsequently,
integrated genetic–physical maps were also developed in many plants. This
led to the concept of structural genomics. Later on, emphasis was laid on
EST and transcriptome analysis to decipher the function of the active gene
sequences leading to another concept defined as functional genomics. The
advent of techniques of bacteriophage gene and DNA sequencing in the
1970s was extended to facilitate sequencing of these genomic resources in
the last decade of the twentieth century.
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As expected, sequencing of chromosomal regions would have led to too
much data to store, characterize, and utilize with the-then available computer
software could handle. But the development of information technology made
the life of biologists easier by leading to a swift and sweet marriage of
biology and informatics, and a new subject was born—bioinformatics.

Thus, the evolution of the concepts, strategies, and tools of sequencing
and bioinformatics reinforced the subject of genomics—structural and
functional. Today, genome sequencing has traveled much beyond biology
and involves biophysics, biochemistry, and bioinformatics!

Thanks to the efforts of both public and private agencies, genome
sequencing strategies are evolving very fast, leading to cheaper, quicker, and
automated techniques right from clone-by-clone and whole-genome shotgun
approaches to a succession of second-generation sequencing methods. The
development of software of different generations facilitated this genome
sequencing. At the same time, newer concepts and strategies were emerging
to handle sequencing of the complex genomes, particularly the polyploids.

It became a reality to chemically—and so directly—define plant genomes,
popularly called whole-genome sequencing or simply genome sequencing.

The history of plant genome sequencing will always cite the sequencing
of the genome of the model plant Arabidopsis thaliana in 2000 that was
followed by sequencing the genome of the crop and model plant rice in 2002.
Since then, the number of sequenced genomes of higher plants has been
increasing exponentially, mainly due to the development of cheaper and
quicker genomic techniques and, most importantly, the development of
collaborative platforms such as national and international consortia involving
partners from public and/or private agencies.

As I write this preface for the first volume of the new series “Compendium
of Plant Genomes,” a net search tells me that complete or nearly complete
whole-genome sequencing of 45 crop plants, eight crop and model plants,
eight model plants, 15 crop progenitors and relatives, and three basal plants is
accomplished, the majority of which are in the public domain. This means
that we nowadays know many of our model and crop plants chemically, i.e.,
directly, and we may depict them and utilize them precisely better than ever.
Genome sequencing has covered all groups of crop plants. Hence, infor-
mation on the precise depiction of plant genomes and the scope of their
utilization are growing rapidly every day. However, the information is
scattered in research articles and review papers in journals and dedicated
Web pages of the consortia and databases. There is no compilation of plant
genomes and the opportunity of using the information in sequence-assisted
breeding or further genomic studies. This is the underlying rationale for
starting this book series, with each volume dedicated to a particular plant.

Plant genome science has emerged as an important subject in academia,
and the present compendium of plant genomes will be highly useful to both
students and teaching faculties. Most importantly, research scientists
involved in genomics research will have access to systematic deliberations on
the plant genomes of their interest. Elucidation of plant genomes is of interest
not only for the geneticists and breeders, but also for practitioners of an array
of plant science disciplines, such as taxonomy, evolution, cytology,
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physiology, pathology, entomology, nematology, crop production, bio-
chemistry, and obviously bioinformatics. It must be mentioned that infor-
mation regarding each plant genome is ever-growing. The contents of the
volumes of this compendium are, therefore, focusing on the basic aspects
of the genomes and their utility. They include information on the academic
and/or economic importance of the plants, description of their genomes from
a molecular genetic and cytogenetic point of view, and the genomic resources
developed. Detailed deliberations focus on the background history of the
national and international genome initiatives, public and private partners
involved, strategies and genomic resources and tools utilized, enumeration on
the sequences and their assembly, repetitive sequences, gene annotation, and
genome duplication. In addition, synteny with other sequences, comparison
of gene families, and, most importantly, the potential of the genome sequence
information for gene pool characterization through genotyping by sequencing
(GBS) and genetic improvement of crop plants have been described. As
expected, there is a lot of variation of these topics in the volumes based on
the information available on the crop, model, or reference plants.

I must confess that as the series editor, it has been a daunting task for me
to work on such a huge and broad knowledge base that spans so many
diverse plant species. However, pioneering scientists with lifetime experience
and expertise on the particular crops did excellent jobs editing the respective
volumes. I myself have been a small science worker on plant genomes since
the mid-1980s and that provided me the opportunity to personally know
several stalwarts of plant genomics from all over the globe. Most, if not all,
of the volume editors are my longtime friends and colleagues. It has been
highly comfortable and enriching for me to work with them on this book
series. To be honest, while working on this series I have been and will remain
a student first, a science worker second, and a series editor last. And I must
express my gratitude to the volume editors and the chapter authors for pro-
viding me the opportunity to work with them on this compendium.

I also wish to mention here my thanks and gratitude to the Springer staff,
particularly Dr. Christina Eckey and Dr. Jutta Lindenborn for the earlier set
of volumes and presently Ing. Zuzana Bernhart for all their timely help and
support.

I always had to set aside additional hours to edit books beside my pro-
fessional and personal commitments—hours I could and should have given
to my wife, Phullara, and our kids, Sourav and Devleena. I must mention that
they not only allowed me the freedom to take away those hours from them
but also offered their support in the editing job itself. I am really not sure
whether my dedication of this compendium to them will suffice to do justice
to their sacrifices for the interest of science and the science community.

Kalyani, India Chittaranjan Kole
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Preface

Hevea brasiliensis Müll. Arg., also known as the para rubber tree, is the sole
species that is cultivated for the commercial production of natural rubber.
Natural rubber (or cis-polyisoprene) is synthesized in the latex of this tree
and harvested by systematic tapping of the tree trunk. The productive life
of the rubber tree may extend beyond 20 years from first bark tapping in
plantations managed under optimal agronomic practices. The genus Hevea
(2n = 36) comprises 10 species, however only the brasiliensis species has
been commercialized on a wide scale, primarily in Southeast Asian countries.
The success of rubber production facilitated the growth of the automobile,
medical, aviation, electronics, and building and construction industries, not to
mention the manufacturing of a substantial range of rubber products essential
to daily human life. Southeast Asian countries generate more than 95%
of the global natural rubber production to meet increasing world demand.
Through the effort of breeding and selection, the production capacity of
modern rubber clones has reached more than four times that of the original
parental trees. Nonetheless, the plantation industry is still facing the threat of
diseases and the limitations of a narrow gene pool for breeding.

The significance of the rubber tree as a world crop warrants investment
into genome-based technologies to deepen the current understanding of tree
physiologies, particularly in latex, which affect production capacity. The
rubber tree has accumulated a wealth of fundamental biology based on
conventional scientific approaches spanning most of the twentieth century.
Genomics and biotechnology approaches complement the existing knowl-
edgebase and have great potential in discovering genes, proteins, and other
regulatory components that could be engineered to enhance tree productivity.
The period 2013–2017 was pivotal for rubber genome sequencing: the first
draft genome sequence was published in 2013, followed by the release of
three higher quality genome sequences of rubber tree clones using advanced
sequencing technologies. Concurrently, genome-based investigations flour-
ished as evidenced by the large number of publications by members of the
rubber tree research community, particularly among the molecular biologists,
physiologists, geneticists, and breeders.
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In this book, we have compiled recent genome-related research, beginning
with the experiences of the first three research groups in sequencing the
genomes of rubber clones Reyan 7-33-97, RRIM 600, and BPM 24. The
importance of harnessing benefits from genome information is reflected in
chapters discussing the development of markers, genetic linkage maps,
marker-trait association, and databases to facilitate data sharing and utiliza-
tion. Applications of transcriptome and proteome analyses of major meta-
bolic pathways involved in rubber biosynthesis and latex yield are also
included. This book has drawn on the experience of contributors with a broad
range of expertise in rubber tree research and/or background in genomic
technologies. Nonetheless, we also recognize the value of parallel develop-
ments in other plants which have similarly accumulated sequence resources,
namely, the Euphorbiaceae species such as Manihot esculenta (cassava),
Ricinus communis (castor bean) and Jatropha curcas (physic nut), and
alternative rubber-producing species such as Taraxacum kok-saghyz. We
hope that this book will serve to record genome sequencing as a milestone in
rubber tree research, and also the scientific investigations made during the
initial phase of the research community’s engagement with genome data.

Genomics is rapidly evolving and so will the directions of rubber tree
genomics as more and more cutting-edge technologies become available. In
the continuing quest for high-resolution genomes, we can expect to see
publications of chromosome-level genome assemblies, high-density genetic
maps, and tools for genome selection in the near future. Given the potential
of inter- and intra-species genetic diversity for molecular breeding, we may
also expect additional genomes of different Hevea species and cultivated
genotypes to be sequenced. Insights from comparative genomics are likely to
promote closer cooperation between genome scientists in the fields of Hevea
and non-Hevea rubber research.

The rubber tree research community is relatively small compared to many
major agricultural crops. The International Rubber Research and Develop-
ment Board (IRRDB) has played an important role in promoting links
between genomics and biotechnology researchers from different natural
rubber-related organizations. In the course of preparing this book, we have
benefited from some of the annual activities and wish to thank the IRRDB for
facilitating such useful meetings and discussions. Finally, we also thank Prof.
Chittaranjan Kole and the Springer team for their valuable advice and kind
assistance.
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Yokohama, Japan Minami Matsui, D.Sci
Subang Jaya, Malaysia Keng-See Chow, Ph.D.
January 2020

Members from three rubber genome groups and the IRRDB Molecular
Biology and Physiology Specialist Group gathered at the Sungai Buloh
Research Station, Malaysian Rubber Board, Selangor on April 9, 2019.
From left: Azlina Bahari (MRB), Yuko Makita (RIKEN), Han Cheng
(CATAS), Minami Matsui (RIKEN), Roslinda Sajari (MRB), Thitaporn
Phumichai (RAOT), Keng-See Chow (MRB), Sithichoke Tangphatsornruang
(BIOTEC).
MRB: Malaysian Rubber Board, Malaysia.
RIKEN: RIkagaku KENkyusho, Japan.
CATAS: Chinese Academy of Tropical Agricultural Sciences, China.
RAOT: Rubber Authority of Thailand, Thailand.
BIOTEC: National Center for Genetic Engineering and Biotechnology, Thailand.
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