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Preface

In Unsupervised Learning in Space and Time we address one of the most important
and still unsolved problems in artificial intelligence, which is that of learning in an
unsupervised manner from very large quantities of spatiotemporal visual data that is
often freely available. The book covers our main scientific discoveries and results
while focusing on the latest advancements in the field from an original and
insightful perspective. The text has a coherent structure and it logically connects, in
depth, original mathematical formulations and efficient computational solutions for
many different unsupervised learning tasks, such as graph and hypergraph matching
and clustering, feature selection, classifier learning, object discovery, recognition,
and segmentation in video. The tasks are presented with a unified picture in mind,
which puts together and relates at many levels different tasks that converge into the
more general unsupervised learning problem. We start from a set of intuitive
principles of unsupervised learning, and then gradually build the mathematical
models and algorithmic tools that are necessary. We eventually reach a general
computational model for unsupervised learning, which brings together graphs and
deep neural networks. Overall, the book is deeply grounded in the scientific work
we have developed together with our professors, colleagues, and doctoral students
at the Robotics Institute of Carnegie Mellon University, Intel and Google Research,
the Institute of Mathematics “Simion Stoilow” of the Romanian Academy and the
University Politehnica of Bucharest. For our work on unsupervised learning, in
2014 we were awarded the “Gigore Moisil Prize”, the highest in mathematics given
by the Romanian Academy.

Organization and Features

The book is organized into eight chapters, which take the reader from a set of initial
intuitions and common sense principles for unsupervised learning, to different tasks,
computational models, and solutions which are introduced and integrated together,
chapter by chapter, as follows:
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Chapter 1: In the first chapter, we introduce seven principles of unsupervised
learning, and then make a brief pass through the subjects covered in the next
chapters in strong relation to these basic principles and concepts. Chapter 1 grad-
ually builds a big picture of the book, without covering the very last concepts and
models, which are presented in the final chapter.

Chapter 2: In the second chapter, we introduce the problems of graph and
hypergraph matching, going from initial motivation and intuition to efficient
algorithms for optimization and unsupervised learning. In this chapter, we present
the Spectral Graph Matching algorithm, which is later related to the method pre-
sented in Chap. 6 for unsupervised object segmentation in video. We also present
the Integer Projected Fixed Point (IPFP) method, whose clustering extension
(Chap. 3) is later used on hypergraph clustering (Chap. 3), unsupervised feature
selection and classifier learning (Chap. 4), and descriptor learning and object dis-
covery in video (Chap. 5). We extensively compare our methods to many other
approaches for graph and hypergraph matching and demonstrate a significant boost.
We also show how unsupervised learning for graph matching can significantly
improve performance.

Chapter 3: In the third chapter, we extend the formulations and algorithms from
the second chapter to the task of graph and hypergraph clustering. The two prob-
lems are strongly related, and similar models and algorithms can address both. We
present an efficient clustering algorithm based on the integer projected fixed-point
method from the second chapter. The IPFP-clustering method is then applied to the
tasks defined in Chaps. 4 and 5.

Chapter 4: In the fourth chapter, we present an efficient approach to linear
classifier learning formulated as a clustering problem. The formulation leads to both
feature selection and classification, for which we also provide an unsupervised
solution. We introduce the idea of a feature sign and show that by knowing this sign
we could learn without knowing the samples’ labels. The algorithm used for
learning is the same as the clustering-IPFP method from Chap. 3. We compare to
many linear classification approaches, including Support Vector Machines
(SVM) on the task of video classification and show significantly more powerful
generalization power from limited training data.

Chapter 5: In this chapter, we put together all the building blocks presented so
far. By following the initial unsupervised learning principles from Chap. 1, we
create a fully unsupervised system for object segmentation in video, which learns
over several generations of classifiers, using features that start from simple pixels to
deep features extracted from the whole image. We show in extensive experiments
that our approach is more efficient and accurate than previously published methods
on several challenging datasets.

Chapter 6: In the sixth chapter, we continue our exploration of unsupervised
object discovery in video and present an original formulation of object discovery as
segmentation in a space-time graph in which every pixel video is a node. We
introduce a novel Feature-Motion matrix, which couples elegantly motion and
appearance and demonstrates that the main object of interest can be discovered as a
strong cluster in the space-time graph by efficiently computing the eigenvector
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of the Feature-Motion matrix. The mathematical formulation and solution is thus
directly related to the spectral graph matching approach from Chap. 1. Our spectral
clustering approach to object discovery in space and time is fast and completely
unsupervised, while also capable to accommodate any type of pretrained features, if
needed. We test on three challenging datasets and outperform other unsupervised
approaches. We also boost the performance of other supervised methods, when
including their outputs into the Feature-Motion formulation.

Chapter 7: In the seventh chapter, we move to the next level of unsupervised
learning over multiple generations. We introduce a teacher-student system, which
learns in a self-supervised manner, such that the population of student ConvNets
trained at one iteration form the teacher at the next generation. The ideas build upon
the material presented so far, but the system is original and shows how it can learn
from video, without any human supervision, to segment objects into single images.
While the previous chapters are more focused on classical graph models than on
deep neural networks, in Chap. 7 we change the focus to deep learning.

Chapter 8: In the last chapter, we merge the graph and neural networks models
into a new recurrent space-time graph neural network (RSTG) model, which
leverages the benefits and features of both, including the ability to learn over deep
layers of features and multiple scale, as well as the capacity to send messages
iteratively across both space and time. The RSTG model takes full advantage of the
space-time domain and proves its effectiveness on high-level tasks, such as learning
to recognize complex patterns of motion and human activities. In the last part, we
introduce the Visual Story Network concept—a universal unsupervised learning
machine, which learns through multiple prediction pathways, between different
world interpretations, by optimizing its own, self-consensus.

Target Audiences

The book is written especially for people with exploratory, naturally curious, and
passionate minds, who are daring to ask the most challenging questions and accept
unconventional solutions. They could be young students or experienced research-
ers, engineers, and professors, who are studying or already working in the fields of
computer vision and machine learning. We hope the book will satisfy their curiosity
and convey them a unified big picture of unsupervised learning, starting from some
basic, common sense principles, and developing towards the creation of a fully
universal unsupervised learning machine. However, in order to grasp in sufficient
detail the complex material covered by the book, readers are expected to have a
solid background in mathematics and computer science, and already be familiar
with most computer vision and machine learning concepts. To fully understand the
more technical parts, which bring together many graph algorithms and deep neural
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network models, spread across several computer vision problems, readers are
encouraged to master fundamental elements of linear algebra, probability and
statistics, optimization, and deep learning. Unsupervised Learning in Space and
Time is ultimately for people who are determined to find the time and space to learn
and discover by themselves.

Bucharest, Romania Marius Leordeanu
May 2020
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Endorsements

The book is a pleasure to read. It is timely, in the all-important quest for effective
strategies for unsupervised learning. The author describes his work on the past
decade, with many new additions, and an interesting philosophical outlook in the
last chapter through his Visual Story Graph Neural Network. A key mechanism in
the book is the use of his “Integer Projected Fixed Point” (IPFP) method with
first-order Taylor series expansion, so the problem can be solved in a cascade of
linear programs. Another returning key mechanism is the spectral clustering by
“learning” the fit to the principal eigenvector of the adjacency matrix or
feature-motion matrix. Many books on deep learning and the quest for unsupervised
strategies lack a focus on video analysis, and this book fully compensates this. The
author has for many years been a pioneer in this spatiotemporal AI domain. His
work has significantly influenced many other works and patents. The chapters are
built up in a logical order, increasing in complexity from graph/hypergraph
matching and clustering to appearance and motion, and to exploiting large numbers
of networks forming “students” creating “teacher” over a number of generations.
A realistic approach is offered by allowing a little bit of supervised information at
the start of the process, like assigning a small number of “Highly Probable Positive
Features” (HPP) and “feature signs”. It’s impressive to learn how excellent the
implementations of the described theories almost always outperform the current
state of the art, often by a significant margin, and very often explicitly in the speed
domain. The author takes great care in comparing the proposed methods with many
current models and implementations. Also, each chapter gives a deep and complete
overview of the current literature. The theory is described well, with both a solid
mathematical theory, an intuitive story, and with critical discussions, many
parameter variations, discussion of pitfalls, and extensive quantitative results. As
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the author remarks, there is a lot of work to do. But this book is a significant step
forward, with proven effectivity of the many ideas. All in all, an important new
book on stage.

Bart M. ter Haar Romeny
Emeritus Professor in Computer Vision and Biomedical Image Analysis

Department of Biomedical Engineering, Eindhoven University
of Technology

Eindhoven, The Netherlands

I very much enjoyed the systematization and the logical sequencing of the questions
posed and addressed, in analyzing the unsupervised learning process. Marius
Leordeanu is a wonderful critical thinker, who takes us on an exciting journey,
sharing original insights and drawing us into the story of a beautiful adventure from
imaging to seeing things in images and videos. I found his approach appealing and
inviting, his enthusiasm contagious, and his arguments solid and well presented and
I am sure this book will become a standard reference for researchers in the field of
Computer Vision.

Alfred M. Bruckstein
Technion Ollendorff Chair in Science

Technion Israel Institute of Technology
Haifa, Israel

I thoroughly enjoyed reading Unsupervised Learning in Space and Time! This is a
complex topic of very active research and is challenging to capture in a single
volume. Rather than presenting a dry review of recent work, Marius Leordeanu
guides the reader along a fascinating journey using a handful of well-formulated but
intuitive principles that motivate this perspective on the research space. The
authors’ infectious love for the subject is evident throughout the book—it will
inspire the next generation of researchers to dream bigger dreams!

Rahul Sukthankar
Distinguished Scientist, Google Research

Mountain View, California, USA

Unsupervised Learning in Space and Time outlines a pathway to solving one of the
most complex open issues in today’s Computer Vision. Just as the completion of
big puzzle game should start by sorting the pieces by color, form, size, and ori-
entation before actually trying to fit the pieces together, Marius puts into per-
spective all the complementary tasks and processing steps involved in unsupervised
learning before letting us enjoy the fully assembled picture. We are then left to
dream with our minds’ eye of the possibilities just opened by the acquired insights.

Emil Slusanschi
Professor of Computer Science

University Politehnica of Bucharest
Bucharest, Romania
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In a captivating storytelling fashion, Marius captures the reader’s attention by
displaying the pieces of a puzzle whose completion leads to a result that seems to be
the answer to a key question in the field of Computer Vision: how can we learn in
an unsupervised manner.

Bogdan Alexe
Pro-Dean and Associate Professor of Computer Vision

University of Bucharest
Bucharest, Romania

Unsupervised learning is such an important topic in machine learning and computer
vision, which has not been fully explored yet. The book takes us in an in-depth
exploration of recent techniques and methods proposed for unsupervised learning
for several tasks in computer vision. And it is a wonderful learning experience, not
only for more experienced researchers, but also for beginners in machine learning.
The various proposed models and theories converge at the end, when Marius
introduces a new model for unsupervised learning in computer vision, the Visual
Story Graph Neural Network, which makes use of classifiers based on weak signals,
trained in a teacher-student fashion, and reinforcing each other on several layers of
interpretation for an image in time. This model also opens new research opportu-
nities for visual-language tasks, but this will probably be the topic of a different
book!

Traian Rebedea
Associate Professor of Computer Science

University Politehnica of Bucharest
Bucharest, Romania

Marius Leordeanu, one of the most prolific and creative researchers of his gener-
ation, describes in this book fundamental elements of unsupervised learning for
vision, spanning topics from graph matching, clustering, feature selection, and
applications, to neural networks. These topics are a necessary read for all who want
to acquire a deep understanding of the field. The book follows Leordeanu’s research
path, making it not only current, but also essential for researchers. Marius’ passion,
enthusiasm, along with his intuition and insights are all reflected here. This is an
important book for computer vision.

Ioannis Stamos
Professor of Computer Science

Hunter College
City University of New York

New York City, USA
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Chapter 1
Unsupervised Visual Learning: From
Pixels to Seeing

1.1 What Does It Mean to See?

I am trying to imagine how the world looked like the first time I opened my eyes.
What did I see? I am pretty sure that I saw every pixel of color very clearly. However,
did I see objects or people? When I looked at my mother, what did I see? Of course,
there was that warm, bright presence keeping me close and making me feel good
and safe, but what did I know about her? Could I see her beautiful, deep eyes or her
long dark hair and her most wonderful smile? I am afraid I might have missed all
that, since I did not really know back then what “eyes”, “nose”, “mouth”, and “hair”
were. How could I see her as a person, a human being just like myself when I did
not even know what I am or what a human being is.

As I could not relate anything to past experiences, there was nothing that I could
“recognize” or see as something. There were no “things to see” yet because there
was no relationship yet built between the different parts of the image. Pixels were
just pixels, and I was probably blind to everything else. By just observing that some
groups of pixels have similar colors did not mean that I could see them as being
something. There was no past behind anything, to connect things to other things and
give them meaning and their “reality” as things.

Nowwhen I look at mymother I can see who she is: there are somany experiences
which bind us together. There are many images of her at different stages of my life
as well as many images of myself at those times. All those memories are strongly
connected together and interact within a story that is coherent in both space and time.
All those images of mother, linked through her unique trajectory in my life, make
her who she is in my universe. They make her what I see when I look at her.

Now, when I see a single pixel on her face, in fact I see so many things at the
same time. I see a skin pixel, a face, and a human pixel. I also see a pixel of my own
mother—that special and uniquely important person in my life. Then, at a higher
level in space and time, that pixel is also part of us, myself and her, mother and son,
which connects all the way back to that very first moment. I also see a pixel belonging
to the human race and to life and Earth, as it travels around the Sun. It is only now
that I can see all those layers of reality, which required years to form.

My vision is now deeper than it was then, at the very first moment, when it barely
existed. All these visual layers containing objects and parts of objects, interactions,
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M. Leordeanu, Unsupervised Learning in Space and Time,
Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-42128-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42128-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-42128-1_1
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and activities exist now and are real at the same time. Back when I opened my eyes
for the very first time, the world just started to move. I must have felt a deep, strong
urge pulling me towards the unexpected lights, with their surprising and seductive
dance of patterns. But what did I know then about what would follow? Everything
I see now is our story. It is the visual story of myself as part of the world, as I am
growing to see it even better and hopefully become able to imagine how might have
been then and what followed next.

1.2 What Is Unsupervised Visual Learning?

While my mother has always been next to me when it mattered most and thought me
some of the most important lessons that I needed to know, during the first years of
my life, she was definitely not the one who taught me how to see. She did not take
every pixel in my visual field to give it meaning at so many levels. That would have
been simply impossible. It was my brain who taught me how to see, after learning,
mostly in a natural and unsupervised way from many experiences I had in the world.
It is my brain that takes every pixel that I perceive and gives it meaning and value. It
is my brain that makes it all real for me, copying all these pixels and arranging them
on different higher or lower, simultaneous space and time layers of seeing. All those
layers, present and past, find consensus into a coherent story. It is in that story that I
give a meaning to here and now, it is in that space and time world that I see.

From this fundamental point of view, understanding unsupervised visual learning
will help us understand that there is so much more to learn about the world and
so much more to see in order to better take care of our world and improve our
lives. Unsupervised visual learning in the natural world is, for the same reasons, also
fundamental for understanding intelligence, how the mind works, and how we can
build truly intelligent systems that will learn to see as humans do and then learn to
be in harmony with what we are.

Unsupervised learning is one of the most intriguing problems that a researcher
in artificial intelligence might ever address. How is it possible to learn about the
world, with all its properties and so many different types of objects interacting in
simple or very complex ways? And, on top of that, how is it possible to learn all
this without access to the truth? Is that even possible? We do not have an answer
to that yet, but what we do know is that children can learn about the world with
minimal interventions from their parents. And when parents or teachers do intervene
in our educations, they do not explicitly tell us everything. They definitely do not start
marking every pixel in our visual field with a semantic label. From the first months of
our lives, our brain starts learning, by itself, to arrange and group pixels into regions,
towhichwe also begin to givemeanings aswe continuously gain experience. At least,
at the very beginning, our experiences do not involve complex physical interactions
with the world and our visual learning is mostly based on observation.

While interacting with the world is crucial for learning, in this book we are mainly
interested in what we can learn by watching the world over space and time, as it
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reveals itself in front of our eyes. While we briefly touch the topic of interaction in
final chapter and discuss howwe could take actions and then learn from the outcome,
we believe that we should first focus on themore limiting case of learning from space-
time data on which we do not have influence over to better understand what are the
fundamental limits of unsupervised learning. What assumptions should we make?
What type of data do we need to have access to and how much of it is required?
What type of classes and concepts can we learn about? What types of computational
models could solve unsupervised learning?

As we show throughout the book, these essential questions can reveal universal
answers, which could become practical tools for making possible many real-world
applications in computer vision and robotics. In the final part of the book, we will
adventure ourselves more into the world of imagination and dare to envision a uni-
versal computer vision system that could learn in space and time by itself. From the
beginning, we will establish a set of general principles for unsupervised learning,
which we will demonstrate chapter by chapter with specific tasks, algorithms, and
extensive experimental evaluations. At the end, we will show how one could use
these basic principles to build a general system that learns by itself multiple layers of
interpretation of the space-time world within a single, unified Visual Story Network.

By the end of the book, we will better understand that unsupervised learning is
ultimately about learning in the natural world and it cannot happen by itself without
input from the vast ocean of data, which obeys physical and empirical statistical
laws. Unsupervised learning is not just about fast and efficient algorithms or the
architecture of a certain computational model, it is also very much about the world
in which that model operates. At the end, we have to reach the level of learning
in which we interact with the outside world, of which the learning system itself is
part of. From this perspective, unsupervised learning in computer vision becomes a
wonderful chance to learn about learning and about ourselves and how we came to
discover and “see” the world around us.

1.3 Visual Learning in Space and Time

Vision is so rich that a picture can tell a thousand words. Vision is also our first
window into the world and our most important sense. Vision happens in space and
time, creating everything we see, from an object at rest or in motion to an activity
that takes place in the scene and the whole story that puts all actors and their intricate
interactions together. Vision almost has it all, from the simplest pixels of color and
common physical objects to thewildest andmost profound imagination, in an attempt
to create and reflect the world in whichwe live in. As a consequence, visionmust take
into consideration the physical and empirical statistical laws, which give the natural
world coherence and consistency in space and time. Therefore, it has to build upon
certain grouping properties and statistical principles, which reflect such consistency.
Wemust understand these principles and use them in building computational models
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of learning if we want to have a real chance to learn, in an unsupervised way, in the
wild.

There is a certain advantage in thinking in space and time. Everything that exists
and happens around us is in both space and time. There is nothing truly static.
Today, however, computer vision research is largely dominated by methods that
focus on single image processing and recognition. There are very few approaches
that start directly with videos in mind. That is due more to historical reasons: it
is less expensive to process single images and humans show that recognition in a
single image is possible. So, if humans do it and it is less expensive, why not make
programs do the same thing? We argue that single-image tasks make more sense
in the supervised setting. If we want to learn unsupervised, then we should better
consider how things are in the real world: objects and higher level entities, actions
and interactions, complex activities and full stories, all exist in both space and time,
and the two are deeply linked. Every object changes a little bit, in appearance or
position, from one moment to the next. In every single place, there is an element
of change, a vibration in both time and space, which we should learn from. Objects
usually move differently than their surroundings. They also look different than their
background. Thus, changes co-exist in both temporal and spatial dimensions from
the start. At the same time, objects are consistent and coherent in both space and
time. Their movements usually vary smoothly and their interactions follow certain
patterns. Their appearance also varies smoothly and follows certain geometric and
color patterns of symmetry. Therefore, considering videos as input at the beginning
of our journey seems to be a must.

All these properties of the physical world could be taken advantage of only if we
consider the space-time reality.We should definitely take advantage of every piece of
information and property that universally applies in the natural world if we want to
solve in a fundamental and general way the hard problem of unsupervised learning.

There is a second, practical advantage in considering videos at input and approach-
ing space and time, together, from the beginning. There is a tremendous amount of
unlabeled video data freely available and being able to label it automatically would
give any solution a huge advantage over the strictly supervised setting that requires
very expensive manual annotation.

Thus, the ability to perform unsupervised learning is extremely valuable for both
research and industry. Moreover, the increased amount of available video data, as
compared to single images, has the potential to greatly improve generalization and
would allow learning of objects and their interactions together, from the beginning.
Object classes are often defined by their actions and roles they play in the larger
story. There should definitely be an agreement between the properties of an object at
its local level and its role played in the global spatiotemporal context and we could
only take advantage of such agreements if we consider the spatiotemporal domain
from the start.
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1.3.1 Current Trends in Unsupervised Learning

The interest in unsupervised learning is steadily increasing in the machine learning,
computer vision, and robotics research. Classical works are based on the observa-
tion that real-world data naturally groups into certain classes based on certain core,
innate properties, related to color, texture, form, or shape. Thus, elements that are
similar based on such properties should belong to the same group or cluster, while
those that are dissimilar should be put in different clusters. Consequently, the very
vast research field of clustering in machine learning was born, with a plethora of
algorithms being proposed during the last fifty years Gan et al. [1], which could be
grouped into several main classes: (1) methods related to K-means algorithm Lloyd
[2] and Expectation-Maximization (EM) Dempster et al. [3], which have an explicit
probabilistic formulation and attempt to maximize the data likelihood conditioned
on the class assignments; (2) methods that directly optimize the density of clusters,
such as the Mean Shift algorithm Comaniciu and Meer [4], Fukunaga and Hostetler
[5] and Density-Based Spatial Clustering (DBSCAN) Ester et al. [6]; (3) hierarchical
approaches that form clusters from smaller sub-clusters in a greedy agglomerative
fashion Day and Edelsbrunner [7], Ward Jr [8], Sibson [9], Johnson [10] or divisive
clusteringmethods (DIANA)Kaufman and Rousseeuw [11], which start from a large
cluster and iteratively divide the larger clusters into smaller ones; (4) spectral cluster-
ing algorithms, which are based on the eigenvectors and eigenvalues of the adjacency
matrix or the Laplacian of the graph associated with the data points Cheeger [12],
Donath and Hoffman [13],Meila and Shi [14], Shi andMalik [15], Ng et al. [16]. The
clustering algorithms discussed in the present book and applied to different computer
vision problems are mostly related to the class of spectral clustering methods.

Until not so long ago, most unsupervised learning research was focusing on
proposing and studying various kinds of clustering algorithms Duda et al. [17] and
for a good reason. Most unsupervised learning tasks require, implicitly or explicitly,
some sort of clustering. We all researchers in machine learning would hope, even
without saying it, that the full structure of theworld, with its entitiesmoving, relating,
and acting in different ways and being grouped into specific classes, should emerge
naturally in a pure unsupervised learning setup. The discovery of such structure with
well-formed entities and relations immediately implies some sort of data clustering.
Also, the insightful reader will surely observe throughout the book, that the methods
proposed here are also based, at their core, on clustering principles.

Current research in unsupervised learning is much more versatile, diversified, and
complex than the more general clustering approaches from 20 years ago. However,
unsupervised learning is still in its infancy with many pieces missing in the still
mysterious unsolved jigsaw puzzle. There are still a lot of unanswered questions and
some other questions that have not been even asked yet. At this point, we begin to
realize that the space-time domain offers a great advantage over the single-image
case, as the temporal dimension brings an important piece of information when it
comes to clustering. Objects differ from each other not only in the way they look
but also in the way they move. Things that belong together look alike but also move
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together,whereas thosewhich do not, separate in time and space. The timedimension,
which enforces additional consistency and coherence of theworld structure, suddenly
becomes a crucial player in the unsupervised learning puzzle.

Therefore, there it comes as no surprise the fact that the initial modern tech-
niques specific to computer vision for unsupervised learning were dedicated to the
spatiotemporal, video domain. For example, in a classic pioneering paper Sivic and
Zisserman [18], authors propose an algorithm for retrieving objects in videos which
is based on discovering a given object in video based on matching keypoints that are
stable with respect to appearance and geometry between subsequent frames. Then,
such stable clusters are associated with individual physical objects. While the paper
is not specifically dedicated to unsupervised learning and clustering, it is in fact
heavily relying on it for the task of object retrieval from videos. In our earlier work
on object discovery in videos Leordeanu et al. [19], we took a similar approach and
discovered objects as clusters of keypoints, matched between video frames, that are
geometrically stable for a sufficient amount of time. We noticed an interesting fact
in our experiments: when a group of keypoints is geometrically stable for a specific
amount of time, the probability that they indeed belong to a single object increases,
suddenly from almost 0 to almost 1—this indicates, again, that time can provide very
strong cues for what should and what should not belong together in the unsupervised
learning game.

Since the first methods that discover objects in videos in an unsupervised manner,
other researchers have started to look into that research direction as well Kwak et al.
[20], Liu and Chen [21], Wang et al. [22]. The task of object discovery in video is
gaining momentum and nowadays, most approaches are formulated in the context
of deep learning. There seem to be several directions of research related to learn-
ing about objects from video in an unsupervised fashion. One direction crystallizes
around the task of discovering object masks from videos. There are already several
popular benchmarks for video object segmentation (e.g., DAVIS dataset [23]) with
methods that vary from the fully unsupervised case [24–28] to models that are still
unsupervised with respect to the given dataset but are heavily pretrained on other
datasets [29–42] or having access to the human annotation for the first video frame
[23]. While the case when a method is allowed to use powerful pretrained features
on different datasets in order to learn on a new dataset is very interesting and has
an important insight to give in the future of unsupervised learning, the case itself
is definitely not unsupervised. However, once we have powerful pretrained features
it really does not matter whether they have been trained in a supervised or unsu-
pervised manner. We should therefore consider this situation, when we are allowed
to use pretrained features as a very important one, since in practice it is always the
case that we already have a huge number of pretrained models and features available
and we should find the best and most efficient way in order to use them, within an
unsupervised learning scheme, on novel tasks and datasets, which keep growing in
number, diversity, and size.

Another direction of research on the task of learning about objects from video is
that of discovering specific keypoints and features that belong to single objects, along
with modeling the dynamics of such object keypoints or object parts
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[19, 43–45]. On a complementary side, we also have a limited number of papers
that address the problem of unsupervised learning for matching such keypoints of
object parts, while taking into consideration both the local appearance of parts and
their geometric relationships [46–51]. The core general idea is to optimize the model
parameters such that matching process will find the most consistent group of assign-
ments between keypoints or dense object regions, which yield the strongest con-
sistency (or cluster) in terms of both local appearance and topology or geometric
relationships.

So far, the approaches discussed have been limited to discovering objects as
they are seen in images or videos, without taking into consideration the consistent
spatial structure of the 3D world. We should keep in mind that it is precisely this
stable structure that yields consistent video, depth, or RGB-D sequences. Once we
discover the keypoints or regions that belong to a certain object, we could leverage
the geometric and camera constraints, even if only implicitly, in order to improve the
object discovery in the image and also infer its 3D structure in the world [52–54].
Moreover, once we make the connection between the image of the world and the 3D
world itself, we could also take into consideration the static 3D world, the moving
objects as well as the camera motion. In fact, we could consider them simultaneously
and make them constrain each other during learning, such that a system that predicts
motion could be constrained and “taught” by the one that predicts depth and vice
versa, alternatively. We then reach a new level in unsupervised learning, which is
currently receiving a growing attention, in which complex systems composed of
complementary and collaborative pathways are put together to reinforce and also to
constrain each other. Thus, we can learn in an unsupervised way, simultaneously, to
predict the depth, the camera motion, and its intrinsic parameters from simple RGB
video [55–62].

While the concept and art of combining multiple pathways into a global unsu-
pervised learning system still has to be developed, it immediately leads to our novel
concept of a universal unsupervised learning machine, the Visual Story Network
(VSN), which we propose in the last chapter. This unsupervised learning machine
would learn through self-supervision and consensus among many prediction path-
ways, such that a unified and coherent story is obtained about “everything” that it can
sense, interact with, and predict. For more details regarding our novel VSN concept,
we refer the reader to Chap. 8.

Before we discuss the Visual Story Network, we should also bring to the reader’s
attention a novel trend in unsupervised learning that is focusing on putting together
multiple modalities and senses. Once we get the idea of using multiple sources of
information as self-supervisory signal and observe that the more such sources we
have the better, we immediately want to cross the barrier of vision and include
touch, auditory, equilibrium, temperature, smell, or any other type of sense into the
unsupervised learning equation. This research direction of unsupervised learning by
cross-modal prediction,while it is not new [63] it is currently generating an increasing
interest [64–69] and it directly relates to more general principles, which we aim to
lay down and substantiate in this book. The more diverse and independent types of
input and predictions the better, because the harder it will be to find consistency
and consensus, but also the more reliable and robust the final results will be when



8 1 Unsupervised Visual Learning: From Pixels to Seeing

that will happen. We could start imagining how, in fact, the unsupervised learning
problem could begin solving by itself as we keep adding information and constraints
into the game. However, we should keep in mind that we might not be able to learn
everything from the start and begin by learning first simpler and fewer tasks, with
a limited set of data and predictive pathways. This relates to the idea of curriculum
learning [70], which has been researched in machine learning in the past decade. At
the same time, we should also expect that learning could take several generations of
students and teachers, which become stronger from one iteration to the next as they
explore a continuously growing world. However, at this point, we should not jump
too far ahead and instead return to the more basic ideas and principles, which we will
use to build a stronger case for an unsupervised learning system in the final chapters
of the book.

First, we propose to go back to some of the earliest ideas ever proposed for
unsupervised learning and grouping in humans. We should be prepared to go back
and deep in time if we want to be able to see far ahead into the future.

1.3.2 Relation to Gestalt Psychology

Many of the current approaches in unsupervised learning are strongly related and
some even inspired by the ideas laid down by the Gestalt school of psychology
which was established in Austria and Germany at the very beginning of the twentieth
century Koffka [71], Rock and Palmer [72]. The Germanword gestalt used in Gestalt
psychology refers to configurations of elements or patterns. This school of thought
introduced and studied the main idea that objects are wholes that emerge from parts
and are something else than the simple sum of their parts. That is where the saying
“the whole is greater than the sum of its parts” comes from. Therefore, the Gestalt
cognitive scientists proposed and studied several “laws of grouping,” which the brain
uses to form such “whole” entities. Such grouping laws include, for example, the law
of proximitywhich states that elements that are nearby are likely to belong together, or
the law of similarity that states that similar things should also be grouped together. In
the same way, elements that display symmetry, geometric continuity, or a common
fate (similar motions) are also likely to belong together. Besides these principles
of combining smaller things into greater ones, Gestalt psychology studied the way
we consciously see things as whole entities and interpret them in relation to past
experiences.

Belowwewill present our own key observations regarding unsupervised learning,
whichwe group into a set of principles, whichwe expect to be true only in a statistical
sense, not necessarily all the time. Our principles are strongly related to the initial
Gestalt laws and in some sense they could be seen as a modern re-interpretation of
those laws in the context of modernmachine learning and computer vision.While the
Gestalt principles talk mostly about the initial stages of grouping, we go further and
present principles from a computational point of view in order to eventually build
artificial systems that learn to see by themselves.


