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Preface 

Over the last 30 years, our understanding of a receptors has undergone a 
colossal evolution. They began as theoretical entities, then progressed to 
enigmatic receptors, and finally to identified proteins with important 
biological functions. 

Since the first book on a receptors was published in 1994, there have 
been many significant advances in the field. We now know that o receptors 
subserve many critical functions in the body and recent studies indicate that 
they are promising drug development targets for a host of neurological, 
psychiatric, cardiovascular, ophthalmological, immunological, and 
gastrointestinal disorders. This book provides a timely update on the 
medicinal chemistry, cell biology, and clinical implications of a receptors. 
It puts the information in a historical perspective to help new comers to the 
field successfully navigate the confusing early history surrounding these 
proteins, and it provides a launching point from which future studies and 
research directions can easily be developed. 

The full impact of a receptors on biological function has yet to be 
determined. The existing gaps in our knowledge base offer untold 
opportunities for future research. It is our hope that the information 
contained in this book will stimulate new, exciting research on a receptors 
and ultimately lead to innovative insights into basic biological mechanisms 
and novel therapeutic advances. 

Rae R. Matsumoto 
Wayne D. Bowen 

Tsung-Ping Su 



Chapter 1 

a RECEPTORS: HISTORICAL PERSPECTIVE 
AND BACKGROUND 

Rae R. Matsumoto 
Department of Pharmacology, University of Mississippi, Oxford, MS 38677, USA 

1. HISTORICAL PERSPECTIVE 

a Receptors were first proposed in 1976 by Martin and coworlcers based 
on the actions of SKF-10,047 (N-allylnormetazocine) and related 
benzomorphans (1). The name a was in fact derived from the first letter "S" 
from SKF-10,047 which was thought to be the prototypic ligand for these 
receptors. Over the next 10 years, a series of studies determined that 
SKF-10,047 interacts with a number of distinct binding sites (Figure 1-1), 
leading to much confusion about the true identity and nature of a receptors 
during its early history. 

o Receptors were originally thought to be a type of opioid receptor. This 
belief stemmed from a historic study by Martin and colleagues who 
evaluated SKF-10,047 and other benzomorphans in morphine-dependent and 
non-dependent chronic spinal dogs (1). In this groundbreaking study, Martin 
and colleagues discovered that the physiological actions of the tested 
compounds fell into three distinct groups. They hypothesized that the 
differences between the groups stemmed from interactions with different 
subtypes of opioid receptors (1). Martin and his colleagues proposed a \x 
subtype which mediated the actions of morphine and related compounds, a K 
subtype based on the actions of ketocyclazocine and its grouping, and a a 
subtype which was characterized by SKF-10,047 and related compounds. 
Martin's study employed the use of racemic benzomorphans, a mixture of 
the (+)- and (-)-isomers of the compounds. Therefore, in later studies, when 
the isomers of benzomorphans were evaluated separately, it was determined 
that the (-)-isomers accounted for the vast majority of opioid-mediated 
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effects. In the case of SKF-10,047, the (+)-isomer was determined in 
subsequent studies to produce actions that were insensitive to opioid 
antagonists (2-4), while the (-)-isomer was responsive to opioid antagonists 
(5,6). It is now accepted that the opioid-mediated actions of (-)-SKF-10,047 
are relayed primarily through \x and K opioid receptors. 

During the 1980s, renewed interest in the (+)-isomer of SKF-10,047 
occurred when it was determined that it possessed phencyclidine (PCP)-like 
properties. During this period, the term a/PCP made its appearance in the 
literature and many investigators believed that the a and PCP sites were 
identical. There was conclusive evidence that (+)-SKF-10,047 interacted 
with the PCP binding site, which was ultimately determined to be within the 
ionophore of the N-methyl-D-aspartate (NMDA) receptor (7-11). However, 
as selective ligands for the NMDA receptor were identified, it became 
apparent that [^H](+)-SKF-10,047 binding could only be partially displaced 
using selective NMDA receptor ligands (11). Therefore, it appeared that 
(+)-SKF-10,047 bound to another site in addition to the ionophore of the 
NMDA receptor. This other binding site was ultimately identified as the 
entity that today retains the designation of the a receptor. 

CH2CH CH2 

. .. , , , NMDA receptor 
opioid (K, H) receptor a receptor 

Figure 1-1. Association between different forms of SKF-10,047 and multiple binding sites 
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During the early 1980s, pioneering studies by Tsung-Ping Su had already 
begun shedding light on this additional component of [^H]SKF-10,047 
binding. These studies ultimately led to the identification of a unique drug 
selectivity pattern that characterized a receptors from other known receptors 
(Table 1-1). Using guinea pig brain homogenates, Su characterized 
[^H](±)-SKF-10,047 binding sites that were inaccessible to the opioid 
etorphine (12,13). Radioligand binding to these sites, which are today 
recognized as a receptors, could be inhibited by a number of factors 
including phospholipase C and divalent cations, and exhibited a drug binding 
profile that was unlike anything characterized at that time (13). In these 
classic studies, Su demonstrated that a receptors displayed high affinity for 
several (+)-benzomorphans including (+)-pentazocine, dextrallorphan, and 
(+)-cyclazocine (13). These binding sites were distinct from classical opioid 
receptors because in addition to having reverse stereoselectivity for 
benzomorphans (i.e. opioid receptors preferentially bind the (-)-isomer), a 
number of established opiates and opioid peptides failed to display 
significant affinities for these sites (13). In addition, these etorphine-
inaccessible sites also bound neuroleptics such as haloperidol, the 
antidepressant imipramine, the P-adrenergic blocker propranolol, and the 
dissociative anesthetic PCP (13). Together, the data collected by Su clearly 
indicated the existence of a new and previously uncharacterized receptor, 
which is today recognized as the CT receptor. 

Table 1-1. Drug selectivity profile of select compounds for a receptors 

Opioid-Related: 

(+)-SKF-10,047 

(-)-SKF-10,047 

(+)-Pentazocine 

(-)-Pentazocine 

Dextrallorphan 

(+)-Cyclazocine 

(+)-EKC 

Morphine 

Naloxone 

P-endorphin 

Leu-enkephalin 

Dynorphin (1-13) 

+++ 

+ 

++++ 

++ 

+++ 

++ 

+++ 

.. . 

. . . 

. . . 

. . . 

. . . 

DA-Related: 

Haloperidol 

Fluphenazine 

Perphenazine 

Chlorpromazine 

Pimozide 

Molindone 

(+)-3PPP 

(-)-Butaclamol 

Clozapine 

Dopamine 

Apomorphine 

Amphetamine 

++++ 

+++ 

+++ 

++ 

++ 

++ 

++++ 

+++ 

.. . 

. . . 

. . . 

. . . 

Other: 

PCP 

MK-801 

Propranolol 

Atropine 

Clonidine 

Imipramine 

Pyrilamine 

Chlorpheniramine 

Promethazine 

Cimetidine 

Histamine 

DTG 

++ 

.. . 

++ 

. . . 

. . . 

++ 

+++ 

++ 

++ 

.. . 

. . . 

+++ 

Relative affinities based 
nM;+ 1001-10,000 nM; 

on competition binding studies. ++++ <10 nM; +++ 11-100 nM; ++ 101-1000 
— >10,000, EKC = ethylketocyclazocine. Adapted from refs. (13,14,15,18,19). 
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The unique pattern of binding that was initially reported by Su was 
subsequently corroborated and extended in William Tarn's laboratory, first 
using [^H](±)-ethylketocyclazocine and [^H]SKF-10,047 to bind naloxone-
inaccessible sites in the rat central nervous system, and then using 
[^H](+)-SKF-10,047 and [^H]haloperidol in the guinea pig brain (14,15). 
Tarn confirmed that a receptors bound a number psychotomimetic opioids 
(e.g. SKF-10,047, ethylketocylazocine, pentazocine, cyclazocine, 
bremazocine), the P-blocker propranolol, and the dissociative anesthetic PCP 
(14,15). In addition, Tam greatly expanded the list of neuroleptics that 
were shown to bind a receptors with nanomolar affinity (e.g. haloperidol, 
perphenazine, fluphenazine, molindone, pimozide, thioridazine, 
chlorpromazine), and revealed that HI antihistamines also interacted with 
these sites (e.g. pyrilamine, promethazine, chlorpheniramine) (14,15). 
Moreover, Tam demonstrated that the binding profile of drugs at a receptors 
differed from the pattern of binding when using [^H]PCP and [''H]spiperone 
to label NMDA and dopamine receptors (14,15). Together, the studies of Su 
and Tam identified a unique drug selectivity pattern which characterized the 
binding sites that are now recognized as a receptors. 

Soon thereafter, more selective radioligands were identified for a 
receptors. ['H](+)-3-(3-hydroxyphenyl)-N-(l-propyl)piperidine (3PPP) was 
successfully used by a number of groups to discriminate a receptors in 
binding studies from interactions with opioid, NMDA or dopamine 
receptors, which were problematic for historic radioligands such as 
[ 'H]SKF-10,047 and [^H]haloperidol (16). However, (+)-3PPP was also a 
presynaptic dopamine autoreceptor agonist (17), necessitating the search for 
even more selective compounds which could be used as radiolabeled probes 
to study a receptors. A crucial breakthrough occurred with the introduction 
of [^H]di-o-tolylguanidine (DTG) by Eckard Weber's group, the first truly 
selective radioligand for a receptors (18). Subsequently, 
[^H](+)-pentazocine was identified as another selective radioligand for a 
receptors; this probe selectively binds to the CTJ subtype (see below for 
additional information about a receptor subtypes) (19,20). The availability 
of selective radioligands for a receptors represented a major milestone for 
the field, and firmly established a receptors as a viable topic for research. 

In contrast to the early history of CT receptor research which was defined 
by pharmacological studies, the revolution in molecular and cell biology has 
greatly altered the way in which science is approached. Although its impact 
on the a receptor field has been relatively slower than in some other areas, 
significant advances have been made. Foremost among these achievements 
was the cloning of the first a receptor (a\ subtype), which is described in 
more detail in subsequent chapters of this book. This information led to 
insights about the structure and function of the receptor, and its relationship 
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to other known proteins. In addition, the development of cell and molecular 
biological-based probes allowed investigators to further elucidate a receptor 
function; other chapters in this volume detail our current knowledge in these 
areas. 

Table 1-2. Characteristics of Oi and (J2 receptors 

Feature 

Physical Characteristics: 

Size 

Sequence" 

Tissue Expression: 

Brain 

Heart 

Liver 

Spleen 

GI tract 

Putative Agonists (Ki in r. 

DTG 

CB-184 

Igmesine 

(+)-Pentazocine 
PRE-084 
Pregnenolone 
SA4503 

(+)-SKF-10,047 

ai Receptor 

25-29 kDa 
AF030199 (mouse) 

AF004218(rat) 

U75283 (iiuman) 

High 

High 

High 

High 

High 

iM): 

74 ±15 

7,436 ± 308 

n.d. 

7 ± 1 

n.d. 
n.d. 
17±2 ' ' 

29 ± 3 

Putative Antagonists (Ki in nM): 

BD1047 

BD1063 

BMY 14802 

Lu 28-179 

NE-100 

Panamesine 

Progesterone 

(±)-SM 21 

SR31742A 

0.9 ±0.1 

9 ± 1 

60'' 
jyb 

2±0.3"' 

n.d. 

n.d. 

>1000 

n.d. 

aj Receptor 

18-22 liDa 

n.d. 

High 

Low 

High 

Low 

High 

61 ±13 

13±2 

n.d. 

1361 ±134 

n.d. 
n.d. 
1784 ±314' ' 

33,654 ± 9,409 

47 ±0.6 

449 ± 11 

230'' 

0.12'' 

85 ±33 ' ' 

n.d. 

n.d. 

67 ± 8 

n.d. 

Reference 

20 

49 

20 

121 

20 

33 

33 

50 

50 

32 

122 

See Appendix A for chemical names of compounds. " Accession numbers for representative sequences. 
IC50 in nM. n.d. = affinities for specific subtypes not determined; existing affinity information based on 
binding to both subtypes. 
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2. a RECEPTOR SUBTYPES AND SPLICE 
VARIANTS 

There are two well established subtypes of a receptors, which have been 
designated C\ and a2. These receptor subtypes can be distinguished from 
one another based on their molecular weights, tissue distribution, and drug 
selectivity patterns. Select features of these two subtypes and compounds 
that are commonly used as agonists and antagonists at a receptors are 
summarized in Table 1-2. 

The CT] subtype has been cloned from a number of species including 
mouse, rat, guinea pig, and human (21-25; see Chapter 5). This subtype is 
predicted to be a 223 amino acid protein with at least one transmembrane-
spanning region (26,27). It is widely expressed in a number of tissues, 
including heart and spleen where the expression of the ai subtype appears to 
predominate over the QJ subtype (28,29). ai Receptors appear to translocate 
during signaling and are linked to the modulation or production of 
intracellular second messengers (see Chapter 8). In addition, a\ receptors 
can associate with other proteins, including ankyrin B, heat shock protein 70 
(hsp70), heat shock conjugate protein (hsc 70), glucose-related protein 
(GRP78/BiP), and potassium channels (26,30,31). To study their function, 
(+)-pentazocine is commonly used as a selective agonist at Oi receptors, and 
selective antagonists such as l-[2-(3,4-dichlorophenyl)ethyl]-4-methyl 
piperazine (BD1063) and N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy) 
phenyljethylamine (NE-100) are also available (32,33). In addition, 
sequence-specific antibodies, antisense oligodeoxynucleotides, and a a] 
knockout mouse have been developed to further delineate the functions of 
this receptor subtype (34-46). Many of these functions are described further 
in the chapters that follow. 

The Oi subtype appears to be a distinct physical entity from the o\ 
receptor. Comparisons of their sizes based on affinity labeling studies 
indicated that the 02 subtype is slightly smaller than the a\ receptor (47,48). 
The sequence of the ^2 receptor has not yet been determined, although 
considerable progress has been made in this area in recent years. In contrast 
to C5\ receptors that readily translocate, 02 receptors appear to be lipid raft 
proteins that affect calcium signaling via sphingolipid products (see Chapter 
11). Unfortunately, there are no truly selective a2 receptor agonists and 
antagonists. (+)-lR,5R-(E)-8-(3,4-dichlorobenzylidene)-5-(3-hydroxy-

phenyl)-2-methylmorphan-7-one (CB-184), one of the more selective 02 
agonists, also interacts with \x opioid receptors (49). r-[4-[l-(4-
fluorophenyl)-lH-indol-3-yl]-l-butyl]spiro[isobenzofuran-l(3H),4'-piperidine 
(Lu 29-179), one of the more selective 02 antagonists, interacts with 
dopamine D2 and a-adrenergic receptors (50), while (±)-tropanyl 2-(4-
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chlorophenoxy)butanoate [(±)-SM-21] interacts with dopamine transporters 
(unpublished data). Therefore, to study 02 receptor function, 
nondiscriminating a ligands such DTG have been used in systems that are 
enriched in the 02 subtype; ahematively, nonselective CT2 compounds have 
been used in systems that are enriched in a receptors. The development of 
truly selective experimental tools with which to manipulate CT2 receptors will 
greatly enhance understanding of their function. 

In addition to o\ and CT2 receptors, numerous papers have cited evidence 
in support of additional subtypes (e.g. 29,51-53). However, these putative 
subtypes have not yet been well characterized and will therefore not be 
described here in detail. 

In addition to subtypes of a receptors, there is evidence for splice 
variants. Thus far, only the CTI subtype has been sequenced. Therefore, 
information about splice variants is currently limited to this subtype. There 
are at least two truncated versions of the a\ receptor (54,55), and the extent 
to which these splice variants affect physiological functions are as yet 
unknown. However, studies examining a\ receptor polymorphisms in 
disease states have begun (56-61). The results have been mixed, but 
available nascent data support the possibility that these polymorphisms have 
functional consequences (58). 

3. ENDOGENOUS LIGAND(S) 

The conclusive identification of an endogenous ligand for a receptors has 
yet to be achieved. The following sections summarize data supporting the 
existence of an endogenous ligand for these receptors, and raise the 
possibility of multiple such compounds. This would be consistent with the 
structural diversity of synthetic ligands that are known to interact with a 
receptors. 

3.1 Evidence from binding studies 

Receptor binding studies to identify known endogenous ligands with 
significant affinity for a receptors have been employed by a number of 
investigators. Although the vast majority of known endogenous compounds 
exhibit low to negligible affinities for a receptors (see Appendix B), some 
activity has been reported. These possible candidates are described below in 
further detail. 
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Su and coworkers were the first to suggest that some neurosteroids serve 
as endogenous ligands for a receptors. In particular, progesterone was 
shown to exhibit nanomolar affinity for a receptors in guinea pig brain and 
spleen (62). The interaction of progesterone with brain a receptors was 
competitive in nature (increase in Kj, but not Bmax of [^H](+)-SKF-10,047 
binding), suggesting that progesterone binds to the same portion of the 
receptor as classical CT ligands (62). To further confirm that progesterone 
interacts with a receptors, competition binding studies using 
[^HJprogesterone revealed a drug selectivity pattern that was consistent with 
a receptors (63,64). The ability of progesterone to bind to a receptors was 
subsequently confirmed in a number of laboratories (21,54,65-67). Other 
neurosteroids with micromolar affinities for CT receptors have also been 
reported (21,62,64,67), but it is unclear whether all of these steroids produce 
physiological actions through a receptors. The limited functional studies 
that are available nevertheless indicate that some of them act as agonists at o 
receptors (e.g. pregnenolone), while others act as antagonists (e.g. 
progesterone) (68). 

Neuropeptide Y has been reported to have significant affinity for a 
receptors (69). However, subsequent efforts to confirm this interaction have 
been unsuccessful (see Appendix B). It therefore does not appear that 
neuropeptide Y is an endogenous ligand for a receptors. 

A number of investigators have shown that divalent cations significantly 
inhibit radioligand binding to a receptors. These divalent cations include 
magnesium, calcium, manganese, zinc, cadmium, copper (13,70,71). Some 
of these cations appear to preferentially target the a\ subtype while others 
target the oj subtype. The effects of zinc on a2 receptors is particularly 
noteworthy because binding studies were also performed under 
physiological conditions in which zinc was released from hippocampal slices 
by depolarization and shown to displace [^H]DTG, but not 
[^H](+)-pentazocine binding in the slice, suggesting that it may be an 
endogenous ligand for Oi receptors (71). Further studies are needed to fully 
evaluate the conditions under which these candidates may serve as 
endogenous ligands for a receptors. 

3.2 Evidence from fractionation studies 

A classical strategy for identifying an endogenous ligand is to extract it 
from the tissues in which it acts. Su and colleagues were among the first to 
report putative endogenous ligands for a receptors, which they collectively 
named sigmaphins (72). These sigmaphins were isolated from guinea pig 
brain extracts and the partially purified fractions were shown to displace 
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binding to a receptors in a competitive manner (72). Since there was a loss 
of binding after trypsin digestion, the compounds were thought to be 
peptides (72). However, to date, the active compounds have not been fully 
purified and identified. 

Soon afterward, O'Donoghue and his colleagues also reported a putative 
endogenous ligand for a receptors, which they isolated from extracts of 
porcine brain (73). The active material was also believed to be a peptide 
because pronase, a general proteolytic enzyme, could abolish its binding 
(73). In addition, its absorbance spectrum suggested that it contained 
phenylalanine residues (73). Additional studies to further purify and 
characterize the material have not been reported. 

The high densities of a receptors in the liver provided the impetus to 
search for an endogenous a ligand in this tissue. A substance was extracted 
from porcine liver that binds to a receptors (74). In contrast to the brain-
derived compounds, this substance did not appear to be a peptide since it 
was resistant to pronase digestion (74). In addition, the liver-derived 
substance was thermostable, soluble in both water and organic solvents, and 
had a molecular weight of less than 1000 Da (74). However, full 
purification was not achieved. 

In summary, fractionation studies demonstrated the existence of multiple 
endogenous extracts that bind to a receptors, although none of them have 
been fully purified. Since these earlier efforts, there have been significant 
advances in the development of selective tools to label a receptors and 
improved nuclear magnetic resonance and mass spectroscopy technologies 
to facilitate renewed efforts to discover endogenous a ligands. 

3.3 Evidence from physiological studies 

In an elegant series of studies, Chavkin and coworkers demonstrated the 
release of endogenous ligands with a-binding properties from hippocampal 
slices under physiologically relevant conditions. In these studies, fresh 
hippocampal slices were preloaded with a radioligand to occupy a receptors. 
When the brain sections were depolarized using potassium chloride or 
veratridine, the radioligand that was bound to a receptors was displaced in a 
time- and calcium-dependent manner, suggesting that depolarization caused 
the release of endogenous a ligands (75). Electrical stimulation of the 
perforant path and/or mossy fibers, but not other tested regions, of the 
hippocampus produced similar effects (76), indicating that endogenous a 
ligands could be released from specific circuits. Together, the data indicate 
the existence of a-binding substances in the brain that can be liberated under 
conditions that cause neurotransmitter release. 



10 Chapter 1 

Table 1-3. Representative imaging studies of CT receptors in the nervous system 

Species 
Guinea pig 

Rat 

Mouse 

Cat 

Primate 

Human 

Tissue 
Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Spinal cord 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Brain 

Pineal gland 
Spinal cord 

Brain 

Brain 

Brain 

Brain 

Brain 

Substantia nigra 

Brain 

Brain 

Brain 

Brain 

Brain 

Cerebellum 

Hippocampus 

Probe 
[ 'H] (+) -3PPP 

[^H]DTG 

[^HJDextromethorphan 

[•'H](+)-Pentazocine (a,) 

[ 'H]DUP 734 

[^H]NE-100(CTI) 

In situ (CTJ) 

[^H](+)-3PPP 

[^H](+)-3PPP 

[^H](+)-SKF-l 0,047 

[ ' H ] D T G 

['H]DTG (CT2) 

pH]Lu 28-179(02) 
[^H](+)-Pentazocine (oi) 

[^H]Nemonapride 

Antibody (143-162) (o,) 

Antibody (138-157) (CT|) 

["C]SA6298 

["C]SA4503 

['*F]fluoroethyl SA4503 

[ ' H ] D T G 

[^H](+)-3PPP 

pH](+)-SKF-10,047 

["'H](+)-Pentazocine (aO 

["C]SA6298 

['^F]fluoroethyl SA4503 

In situ (cTi) 

[^H]DTG 

["C]SA6298 

[^H](+)-3PPP 

['*F]fluoroethyl SA4503 

[^H]DTG 

pH]Lu 28-179 (02) 
[ ' H ] D T G 

[ ' H ] D T G 

Reference 
16, 78, 105 

18,79, 139 

123 

136, 131 

126 

132 

37 

78 

78 

133 

18 

77 

134 

77 

135 

34 

43 

130 

94 

124 

127 
78,90 

133 

131 

130 

124 

37 

125 

130 

87 

124 

128 

134 

88 

129 
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4. ANATOMICAL DISTRIBUTION 

a Receptors are present throughout the body and knowledge about their 
localization can provide clues about their physiological functions. This 
section summarizes the distribution of CT receptors and their possible 
implications. 

4.1 Nervous system 

Following the first reports of a receptors in the brain, numerous research 
groups have mapped their distribution in the central nervous system (Table 
1-3). o Receptors are found in the brain and spinal cord, where they 
subserve a variety of physiological functions. 

The highest concentrations of a receptors in the brain are found in 
brainstem motor nuclei. Cranial nerves such as the facial, hypoglossal, and 
trigeminal contain particularly high levels of a receptors (77-79). Other 
constituents of brainstem motor circuits including the cerebellum, red 
nucleus, and inferior olive are also enriched in a receptors (77-79). This 
pattern of distribution provided compelling evidence for a role for a 
receptors in motor function, which was confirmed in early functional studies 
(80,81). The basal ganglia also contain moderate levels of CT receptors (77-
79). Lesion studies showed that o receptors are localized on substantia nigra 
pars compact neurons (78), and this distribution is consistent with the ability 
of a receptor agonists to stimulate motor behavior via nigrostriatal 
dopaminergic pathways (82-85). Consistent with the enrichment of aj 
receptors in the substantia nigra (77), these receptors were the first subtype 
to be implicated in motor function (85). Over time, accumulated data from 
anatomical and functional studies have supported the involvement of both o\ 
and 02 subtypes in motor function (77,84-86). 

Significant levels of CT receptors are also found in limbic regions of the 
brain. The localization of CT receptors in the dentate gyrus and pyramidal 
cell layer of the hippocampus (77-79) are supportive of their role in learning 
and memory which are described in additional detail in Chapters 9 and 12. 
Moreover, the hippocampus, and particularly the dentate gyrus, is enriched 
in the CTI subtype (77), which has been implicated in the modulation of 
cognitive behaviors (Chapter 12). The presence of CT receptors in the 
olfactory bulb and other limbic and paralimbic areas such as the frontal 
cortex, cingulate, hippocampus, and amygdala further suggests that they may 
modulate affective states (79,87). This is consistent with their apparent role 
in depression and other mood disorders, which are described in further detail 
in Chapter 14. 
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Neuroendocrine areas are also enriched in a receptors. The supraoptic 
and paraventricular areas of the hypothalamus, which send projections to the 
pituitary, contain significant densities of a receptors, as does the 
adenohypophysis (78,79,88). Other hypothalamic areas also contain 
significant concentrations of a receptors (79), and this region of the brain is 
particularly enriched in the o\ subtype (77). Although the anatomical 
distribution of a receptors is highly suggestive of a role for CT receptors in the 
release of hormones from the pituitary, systematic functional studies to 
address this question have not been conducted. However, the ability of 
SKF-10,047 to raise plasma corticosterone levels in a naloxone-independent 
manner (89) supports this possibility. The additional presence of a receptors 
in endocrine organs (see below), further indicates that this may be a fertile 
area for future research. 

In contrast to the negligible levels of a receptors in most sensory regions 
of the brain, several regions of the visual system contain significant densities 
of a receptors (79). These regions include the lateral geniculate and superior 
colliculus (79). Together with recent reports of a receptors in the eye (see 
below), additional studies to further examine the role of a receptors in visual 
function are also needed. 

The gray matter of the spinal cord contains extremely high densities of a 
receptors (78). The motor subserving ventral horn of the spinal cord is 
especially enriched in these receptors (78,90), which is consistent with a role 
for these receptors in motor control. In addition, a sensory role for these 
receptors is suggested by their expression in dorsal root ganglion (78,90). 
Since the central gray in the midbrain also contains high densities of CJ 
receptors (78,79), it is conceivable that a receptors modulate sensory pain 
transmission. The role of a receptors in pain is described in further detail in 
Chapter 16. 

4.2 Peripheral organs 

In addition to their presence in the nervous system, a receptors are found 
in a variety of peripheral organs. The early evidence for the existence of a 
receptors in the periphery came from binding studies in tissue homogenates, 
which were sometimes followed by autoradiographic studies to determine 
discrete localization in tissue slices. More recently, evidence for the 
existence of CT receptors in peripheral organs has also come from imaging 
studies in live organisms and Northern blot analysis against transcripts for 
the 01 subtype. The widespread distribution of a receptors in the body 
suggests that they perform an essential physiological function. 
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The heart contains significant levels of a receptors. Homogenate binding 
studies indicate that over 80% of the a receptors in the heart are of the a\ 
subtype (28). These receptors are present on both the parasympathetic 
neurons that innervate the heart and the cardiac myocytes themselves (28,91-
93). In myocytes, a receptors influence contractility, calcium influx, and 
beating rate (28,93). In intracardiac neurons, the o\ and 02 subtypes affect 
neuronal excitability by modulating calcium and potassium channels, 
respectively (91,92). The overall effects of these influences on physiological 
parameters of cardiovascular function are still unclear. 

There are several reports of ai receptors in the lung (94-97). It is unclear 
whether 02 receptors are also present. The role of a receptors in the lung has 
thus far been unexplored. 

The highest levels of a receptors in the body have been reported in the 
liver. Both the <5\ and 02 subtypes are present (24,48,97). However, the 
function of a receptors in the liver is currently unknown. Early studies 
hypothesized that they might have a cytochrome P450-like role, but this was 
not supported by experimental data (98-100). 

The kidney contains both a\ and 02 receptors (24,48,94,97). The 
function of a receptors in the kidney has yet to be determined. 

Reproductive organs such as the testis, ovaries, vas deferens, and 
placenta contain a receptors (67,101-103). The specific subtypes that are 
present within these tissues are unclear because the studies were performed 
under conditions where both ai and CT2 receptors were labeled (103). 
Autoradiographic studies to localize receptor distribution were performed in 
some of these tissues. In the testis, a binding was highest in the ductuli 
efferentes and ductus epididymis, with lower levels of binding in the 
seminiferous tubules (103). In the ovaries, the highest densities of a 
receptors were present in maturing follicles (103). 

The adrenal gland contains a receptors. The presence of the 0\ subtype 
has been confirmed (103); the extent to which 02 receptors are expressed is 
unclear. Although the function of a receptors in the adrenal gland has not 
been studied systematically, they may have a role in the modulation of 
neurosecretory processes (104). 

Similar to the heart, the spleen is enriched in ai receptors (29,94,105). 
Autoradiographic studies revealed that ai receptors are most densely 
concentration in T cell zones (29). Together with the presence of a 
receptors on immune cells (see below) and the ability of steroids to bind to 
these receptors (62), the data are supportive of a role for these receptors in 
immune function (see Chapter 17 for additional details). 

The gastrointestinal tract contains significant levels of a receptors, of 
both (5\ and 02 subtypes (106). Within the gastrointestinal tract, 
autoradiographic studies revealed high concentrations of a receptors in the 
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mucosa and submucosal plexus (107,108). Labeling was especially dense at 
the level of the fundus and duodenum (108). The functional relevance of o 
receptors in the gastrointestinal tract is described in detail in Chapter 18. 

ai Receptors have recently been reported in the eye (109,110). They are 
found in the iris-ciliary body and retina, including the projecting terminals of 
the retina to the superior colliculus (110). Specific cell types that contain 0\ 
receptor mRNA and protein include: retinal ganglion cells, photoreceptors, 
and retinal pigment epithelial cells (109). In addition, they are associated 
with cells in the inner nuclear layer (109). Investigations into the 
physiological and therapeutic significance of a receptors on visual function 
have only just begun. Data thus far indicate that a receptor agonists can 
reduce ocular pressure and protect against retinal cell death (111-113). 

4.3 Cell types 

a Receptors are found in a variety of cell types that are not components 
of organs. Naturally-occurring cells such as blood cells and tumor cells 
contain significant levels of a receptors. Blood cells that express a receptors 
include: peripheral blood leukocytes, granulocytes, lymphocytes, natural 
killer cells (52,114,115). The functional role of a receptors on these cells 
and their implications for treating a variety of immune disorders are 
described in detail in Chapter 17. Tumor cells also contain high densities of 
a receptors, and recent studies report that they are expressed in especially 
high densities in proliferating tumors (116-120). The implications of a 
receptors in tumors are discussed further in Chapters 11 and 17. 

In addition to their expression in cells in situ, a receptors have been 
reported in many different cell lines. These cell types and the subtype(s) of 
a receptor that they express are summarized in Appendix C. Many of these 
cell types have been valuable experimental tools for delineating a receptor 
function, and were used in the studies described in subsequent chapters of 
this book. 

5. SUMMARY 

The early history of a receptors is characterized by classical 
pharmacological approaches which succeeded in defining a unique drug 
selectivity pattern and anatomical distribution for these proteins. a 
Receptors are widely distributed in the body, where they mediate a variety of 
physiological functions. The chemical diversity of compounds that interact 
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with a receptors is vast and includes therapeutically relevant entities 
including psychotomimetic opiates, neuroleptics, antihistamines, and 
antidepressants. The recent revolution in molecular biology has provided 
additional information about a receptors, including the sequence of one of 
its major subtypes and a host of experimental tools to aid in selectively 
deciphering its functions. We now know that a receptors have important 
implications for a number of disease states and mounting evidence indicates 
that they are viable therapeutic targets for medication development. The 
remaining chapters in this book summarize our current knowledge regarding 
the medicinal chemistry, cell biological and clinical implications of o 
receptors. It is hoped that this information will lay the groundwork for 
innovative future studies to stimulate new insights into the physiological and 
therapeutic relevance of a receptors. 
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