António Manuel Lourenço Canelas Jorge Manuel Correia Guilherme Nuno Cavaco Gomes Horta

Yield-Aware Analog IC Design and Optimization in Nanometer-scale Technologies

Yield-Aware Analog IC Design and Optimization in Nanometer-scale Technologies

António Manuel Lourenço Canelas Jorge Manuel Correia Guilherme Nuno Cavaco Gomes Horta

Yield-Aware Analog IC Design and Optimization in Nanometer-scale Technologies

António Manuel Lourenço Canelas Instituto Superior Técnico Instituto de Telecomunicações Lisbon, Portugal

Nuno Cavaco Gomes Horta Instituto Superior Técnico Instituto de Telecomunicações Lisbon, Portugal Jorge Manuel Correia Guilherme Instituto Politécnico de Tomar Instituto de Telecomunicações Lisbon, Portugal

ISBN 978-3-030-41535-8 ISBN 978-3-030-41536-5 (eBook) https://doi.org/10.1007/978-3-030-41536-5

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Developments over the last decades in very large-scale integration technologies allowed meeting the increasing demand for faster, cheaper, and reliable electronic devices. One of the key factors to support those developments is the implementation of most high-level functions of the chip in digital circuitry, whose design is highly automated due to the adoption of mature electronic design automation (EDA) tools. While digital integrated circuits (ICs) design is mostly automated, its analog counterpart is supported by a set of independent tools, dedicated to each step of the design flow, and highly dependent on human intervention. The increasing demand in circuit performances and complexity of device models due to the aggressive IC technology down-scaling have led to the acceptance of new simulation-based optimization tools for analog IC sizing, thus increasing analog IC design flow efficiency. Most of those tools consider only nominal circuit parameters values during the optimization process. As devices shrink down into nanometer scale, the effects of process variation have become very important and not considering those effects during the optimization and sizing process may result in circuit solutions push to limits of performances and dangerously close to the boundary of feasibility. Therefore, including a prediction of the percentage of circuits that comply with circuit specifications after fabrication, i.e., the circuit parametric yield, in the sizing and optimization process is an important step to avoid expensive redesign iterations. Monte Carlo (MC) analysis is the most general and reliable technique for yield estimation, yet the considerable amount of time it requires has discouraged its adoption in population-based analog IC circuit sizing and optimization tools.

The new yield estimation methodology developed and presented in this book is able to reduce the time impact caused by MC simulations in the context of analog ICs yield estimation, enabling its adoption in optimization processes with population-based algorithms, such as genetic algorithm (GA), considering the yield as one of the optimization problem objectives. The proposed methodology reduces the total number of MC simulations required to evaluate the optimization algorithm population. The reduction in the total number of simulations is achieved because at each GA generation the population is clustered and only the representative individual from each cluster is subject to MC simulations. Initial tests using a modified version of the k-means clustering algorithm, to identify similar individuals in the GA population, and a new technique to select the cluster representative individuals were able to achieve a reduction rate up to 91% in the total number of MC simulations, when compared to the number of MC simulations required to evaluate the complete GA population.

The need to balance the trade-off between yield estimation accuracy and the reduction rate of MC simulations made the k-means methodology to evolve and search for different clustering techniques. A new version of the developed yield estimation methodology with reduced time impact from MC simulations was finally developed and implemented in a state-of-the-art analog IC sizing tool using the fuzzy c-means clustering algorithm. The new methodology based on fuzzy c-means and named FUZYE is able to achieve good yield estimation accuracy and high reduction rates in MC simulations. The FUZYE methodology shows that the yield for the rest of the nonsimulated individuals in the population can be accurately estimated based on the membership degree of fuzzy c-means and the cluster representative individuals yield values alone. This new method was applied on several circuit sizing and optimization problems, and the obtained results were compared to the exhaustive approach, where all individuals of the population are subject to MC analysis. The FUZYE methodology presents on average a reduction of 89% in the total number of MC simulations, when compared to the exhaustive MC analysis over the full population. Moreover, other important clustering algorithms were also tested and compared with the proposed FUZYE, with the latest showing an improvement up to 13% in yield estimation accuracy.

This work would not have been possible without the contributions of Ricardo Póvoa, Nuno Lourenço, and Ricardo Martins for their support and valuable discussions on circuits and optimization.

Finally, the authors would like to express their gratitude for the financial support that made this work possible. The work developed in this book was supported in part by the Fundação para a Ciência e a Tecnologia (Grant FCT-SFRH/BD/103337/2014) and by the Instituto de Telecomunicações (Research project RAPID UID/EEA/50008/2013 and UID/EEA/50008/2019).

Lisbon, Portugal

António M. L. Canelas Jorge M. C. Guilherme Nuno C. G. Horta

Contents

1	Intr	o duction
	1.1	Variability Effects in Analog IC 1
	1.2	Work Motivation
	1.3	Work Purpose 5
	1.4	Book Structure
	Refe	rences
2	Ana	log IC Sizing Background
	2.1	Analog IC Sizing
	2.2	Automatic Analog IC Sizing 11
		2.2.1 Knowledge Based
		2.2.2 Optimization Based 15
	2.3	Circuit Design and Performance Parameters
		2.3.1 Feasibility Regions
		2.3.2 Circuit Design and Performance Parameter
		Space Relation
		2.3.3 Parametric Yield
	2.4	Conclusion
	Refe	rences
3	Yiel	d Estimation Techniques Related Work
	3.1	Yield Estimation Techniques
		3.1.1 Parametric Yield Definition
		3.1.2 Monte Carlo Analysis for Parametric Yield Estimation 67
		3.1.3 Yield Estimation Methodologies
	3.2	Commercial EDA tools
	3.3	Conclusion
	Refe	rences

4	Mo	ite Car	lo-Based Yield Estimation: New Methodology
	4.1	New M	MC-Based Yield Estimation Methodology: General
		Descri	iption
	4.2	Cluste	ering Overview
		4.2.1	K-Means Clustering Algorithm
		4.2.2	K-Medoids Clustering Algorithm
		4.2.3	Fuzzy c-Means Clustering Algorithm
		4.2.4	Partitional Clustering Parameters
		4.2.5	Hierarchical Clustering Algorithm
	4.3	MC-B	Based Yield Estimation Using Clustering
		4.3.1	Infeasible Solution Elimination Module
		4.3.2	K-Means-Based Methodology for Yield Estimation
		4.3.3	Solving the False POF Problem
		4.3.4	Projection of Potential Solutions into the Cluster
			Representative Individual Yield Line
		4.3.5	Hierarchical Agglomerative Clustering
			for MC-Based Yield Estimation
		4.3.6	Fuzzy c-Means Application for Accurate
			and Efficient Analog IC Yield Optimization
	4.4	Concl	usion
	Refe	erences .	• • • • • • • • • • • • • • • • • • • •
5	AID	A-C Va	ariation-Aware Circuit Synthesis Tool
	5.1	AIDA	-C Analog IC Design Flow
		5.1.1	Setup and Monitoring Block Modules
		5.1.2	Multi-Objective Optimizer Block
	5.2	AIDA	-C Main Graphical User Interface
	5.3	AIDA	-C Variation-Aware Implementation
	5.4	Concl	usion
	Refe	erences .	
6	Test	s and F	Results
Ĩ.,	6.1	Analo	g IC Sizing and Optimization Tested Problems
		6.1.1	Single-Stage Amplifier with Enhanced DC Gain
		6.1.2	Grounded Active Inductor
		6.1.3	Low-Noise Amplifier for 5 GHz Applications
		6.1.4	Sub-uW Tow-Thomas-Based Biguad Filter
		01111	with Improved Gain
	6.2	Comp	arison Between KMS, FUZYE, and Hierarchical
		Agglo	omerative Clustering
	6.3	Cluste	ring Algorithms Runtime and Memory Usage.
	6.4	Yield	Optimization Using KMS-Based Clustering
		Algori	ithm Results
		ingon	

Contents

		6.4.1	Silicon Technology Single-Stage Amplifier	
			with Enhanced DC Gain	196
		6.4.2	Organic Process Design Kit Single-Stage Amplifier	
			with Enhanced DC Gain	199
	6.5	Cluste	er Representative Individual Selection and Variable	
		K-Me	ans Results	201
	6.6	FUZY	'E Methodology Results	206
		6.6.1	FUZYE Number of Clusters Reduction Validation	209
		6.6.2	FUZYE Single-Stage Amplifier Sizing and Optimization	
			Results	210
		6.6.3	FUZYE Low-Noise Amplifier for 5 GHz Applications	
			Results	217
	6.7	Many	-Objective Optimization: A Comparison Between	
		a Non	-yield Approach and the FUZYE Methodology	220
	6.8	Concl	usions	223
	Refe	rences		224
7	Con	clusion	and Future Work	225
	7.1	Concl	usions	225
	7.2	Future	e Work	228
	Refe	rences		229
In	dex.			231

Abbreviations

٨C	Alternate current
	Ant colony ontimization
ACO	Ant colony optimization
ADC	Analog-to-digital converter
ADE	Analog design environment
ADS	Advanced design system
AIDA	Analog integrated circuit design automation
AMG	Analog module generator
AWE	Asymptotic waveform evaluation
BMF	Bayesian model fusion
BV	Basic variables
CAGR	Compound annual growth rate
CMOS	Complementary metal-oxide-semiconductor
CW	Cloud width
DAC	Digital-to-analog converter
DC	Direct current
DE	Differential evolution
DOE	Design-of-experiments
EA	Evolutionary algorithms
EDA	Electronic design automation
FCM	Fuzzy C-means
FoM	Figure-of-merit
FUZYE	Fuzzy c-means based yield estimation
GA	Genetic algorithm
GBW	Gain-bandwidth product
GDC	Gain DC
GP	Geometric programming
GSA	Gravitational search algorithm
GUI	Graphical user interface
HAC	Hierarchical agglomerative clustering

HAD	Hierarchical analog design
HSMC	High-sigma Monte Carlo
IBS	Importance boundary sampling
IBY	Individual-based yield
IC	Integrated circuit
ICs	Integrated circuits
IRDS	International roadmap for devices and systems
IS	Importance sampling
ISE	Infeasible solution elimination
KMD	K-Medoids
KMS	K-Means
LAA	Linear assignment algorithm
LDS	Low discrepancy sequence
LHS	Latin hypercube sampling
LNA	Low noise amplifier
LP	Linear programming
MADS	Mesh adaptive direct search
MC	Monte Carlo
MCS	Monte Carlo pseudo-random sampling
MOEA/D	Multi-objective evolutionary algorithm based on decomposition
MOPSO	Multi-objective particle swarm optimization
MOSA	Multi-objective simulated annealing
MPI	Message passing interface
NBV	Non-basic variable
NMOS	n-Channel MOSFET
NSGA-II	Nondominated sorting genetic algorithm-II
OAD	Orthogonal array design
OCBA	Optimal computing budget allocation
00	Ordinal optimization
OpAmp	Operational amplifier
OPDK	Organic process design kit
ORDE	Optimization-based random-scale differential evolution
OTA	Operational transconductance amplifier
OTFT	Organic thin-film transistors
PAD	Procedural analog design
PC	Partition coefficient
PCA	Principal component analysis
PDF	Probability density function
PDK	Process design kit
PDKs	Process design kits
PE	Partition entropy
PLL	Phase locked loop
PMOS	p-Channel MOSFET
POF	Pareto optimal front

PRSA	Parallel recombinative simulated annealing
PSA	Pattern search algorithm
PSO	Particle swarm optimization
PVT	Process voltage and temperature
QMC	Quasi-Monte Carlo
RF	Radio frequency
RSM	Response surface methodology
s.t.	Subject to
SA	Simulated annealing
SBX	Single binary crossover
SoC	System-on-chip
SPS	Stochastic pattern search
SQP	Sequential quadratic programming
SR	Sparse regression
SSS	Scaled sigma sampling
SVM	Support vector machine
UD	Uniform design
VLSI	Very large-scale integration
WCD	Worst-case distance
WCP	Worst-case performance
WCPF	Worst-case pareto front
XML	Extensible markup language

List of Figures

Major IC categories market forecast compound annual	
growth rate for 2017–2022 (according to [9])	4
Two-stage Miller amplifier	10
(a) Hierarchical analog design (HAD) methodology.	
(b) Typical HAD implementation at circuit level	12
IC layout design	13
Knowledge-based approach	14
Optimization-based approach	16
Pareto front illustration	17
Convex function example	19
Strictly convex function example	19
Linear programming graphical method	21
Search pattern example	24
Genetic algorithm crossover process	29
Crowding distance of solution X_1	31
Differential Evolution mutation and crossover	36
Ten random samples at different dimensionality spaces.	
(a) One-dimensional space. (b) Two-dimensional space.	
(c) Three-dimensional space	41
Principal component analysis	42
Local discrepancy, $d(l)$, using a Sobol LDS with $N = 128$	43
Comparison between (a) random sampling, (b) QMC Sobol	
sequence, and (c) Latin hypercube sampling for 128 samples	44
Rectangular feasibility box region	47
Bivariate Gaussian join probability density function	49
Isocontours ellipses of bivariate Gaussian	50
Ellipsoid feasibility region	51
Polytope feasibility region	51
Nonlinear feasibility region	52
	Major IC categories market forecast compound annual growth rate for 2017–2022 (according to [9])

Fig. 2.24	A circuit maps points in the parameter space	
E: 0.05	into the performance space	52
F1g. 2.25	A performance specification constraint reflects in the feasibility	50
Eia 2.26	Variability in mammatar analy available to the	33
Fig. 2.20	variability in parameter space causes variations in the	52
Eig 2.27	Variations that affect peremetric yield	50
Fig. 2.27	Consisting a definition of the second secon	56
Fig. 2.20	Estimating yield based on specification constraint	50
Fig. 2.29	in terms of $\sigma_{\rm c}$ (a) One sided specification constraint	
	(b) Double-sided constraint example	58
Fig 2 30	Non-symmetrical double-sided constraint	59
115. 2.50	Tion symmetrical double sided constraint	57
Fig. 3.1	Circuit function maps the variable design space	
	into the performance space	66
Fig. 3.2	Number of samples required to maintain the same estimation	
	accuracy and confidence level for different yield values	69
Fig. 3.3	Folded cascade operational transconductance amplifier	
F ' 0 (tested by Guerra-Gomez et al. [5]	71
Fig. 3.4	Kullback-Leibler divergence example	73
Fig. 3.5	Two-stage operational transcondutance amplifier tested	70
E:- 26	by Afacan et al. in [7].	13
Fig. 3.0	Folded cascode amplifier tested by Afacan et al. In [7]	74
Fig. 5.7	to the point of failure	70
Fig 28	6T SP A M bit call schematics	20 20
Fig. 3.0	Two-step optimization process adopted by Wang et al. [17]	81
Fig. 3.10	Scale-sigma sampling example (a) Original distribution	01
115. 5.10	(b) Scaled distribution where the probability of generating	
	samples near the failure region boundary is higher	82
Fig. 3.11	OpAmp schematics adopted by Felt et al. to test their model	-
8	approach [21]	84
Fig. 3.12	Design centering in two-dimensional design space	89
Fig. 3.13	Two-stage OTS used to test the Possibilistic-WCD	
	approach [26]	90
$\mathbf{E}_{\mathbf{a}} = 4 \cdot 1$	Proposed MC based wield estimation methodology for	
FIg. 4.1	Proposed MC-based yield estimation methodology for	00
Fig 12	Clustering similar data points by minimizing intra cluster	90
11g. 4.2	distances and maximizing inter-cluster distances	100
Fig 43	Between-clusters distance based on global centroid point	102
Fig. 4.4	Difference between (a) K-medoid clustering algorithm	102
	and (b) K-means clustering algorithm	104
Fig. 4.5	(a) Fuzzy c-means vs. (b) K-means clustering algorithm	105
Fig. 4.6	Data point \mathbf{x}_1 distances to the 3 cluster centers	107

Fig. 4.7	Degree of membership for an increasing fuzziness parameter value	107
Fig. 4.8	Number of clusters using the Elbow method	109
Fig. 4.9	One hundred random generated data points defining two	
8	clusters	110
Fig. 4.10	(a) KMS algorithm with $k = 2$. (b) KMS algorithm	
1.8	with $k = 5$ (c) Silhouette graphic for two clusters KMS	
	with an average value of 0.66 . (d) Silhouette graphic for five	
	clusters KMS with an average value of 0.5	110
Fig 4 11	Random initial centers data points affect correct clusters	110
1.8	identification	111
Fig 4 12	Comparison between (\mathbf{a}) k-means++ and (\mathbf{b}) linear assignment	
1.92	algorithm for cluster centers initialization	114
Fig 413	Hierarchical clustering example	115
Fig. 4.14	Single-linkage hierarchical agglomerative clustering	116
Fig. 4.15	Complete-linkage hierarchical agglomerative clustering	116
Fig. 4.15	Average-linkage hierarchical agglomerative clustering	117
Fig. 4.10	Centroids distance hierarchical agglomerative clustering	117
Fig. 4.17	Hierarchical clustering tree with different stopping levels	11/
1 lg. 4.10	affects the number of clusters found (a) I ower stopping level	
	3 clusters were identified (b) Higher stopping level 2 clusters	
	were identified	118
Fig. 4.10	Evolutionary algorithms flowchart	110
Fig. 4.20	Infeasible solutions elimination module	121
Fig. 4.20	New two phase evaluation process for yield estimation	121
Fig. 4.21	False POE caused by the crisp k means degree of membership	125
Fig. 4.22	and by selecting the closest potential solutions to cluster center	
	which promotes solutions to higher values then its real yield	
	value	126
Fig 1 23	False POE effect at the end of the optimization process	120
Fig. 4.23	caused by selecting the element closest to the cluster center	
	as the cluster representative individual trade off Vield (%) vs	
	as the cluster representative marviaual, trade-off Trefd (π) vs. Figure of merit (MHz nf/mÅ)	127
$\operatorname{Fig} A 24$	Selection of the cluster representative individual based	127
11g. 4.24	on the objective(s) value(s) (a) One dimensional objective	
	problem (b) Two dimensional objective problem	128
Fig. 4.25	Cluster representative individual selection based on the best	120
Fig. 4.23	chiestive(s) values	120
Fig 1 26	K means clustering algorithm for best objective value	129
Fig. 4.20	representative potential solution example	120
Fig 4 27	Comparison between a 2 cluster yield optimization POF	150
1 1g. 4.27	and the reference POF where all the elements were submitted	
	to MC trade off Viald (%) vs. Figure of marit (MHz pf/mA)	121
Fig 1 28	Effect caused by the selection of the best objective	151
1 1g. 4.20	solution as cluster representative individual	120
	solution as cluster representative individual	132

XV111

Fig. 4.29	Comparison between a 10-cluster yield optimization POF and the reference POF where all potential solutions were	
	submitted to MC, trade-off Yield (%) vs. Figure-of-merit	
E'. 4.20	(MHz pf/mA)	133
F1g. 4.30	Solutions inside the feasibility region have higher yield values	122
\mathbf{Eig} (1.2.1)	Higher distance to feesibility region boundary method	155
гı <u>g</u> . 4.31	for cluster representative individual calection	125
Fig. 4.32	Cluster representative individual selection combining	155
11g. 4.32	distance to feasibility region boundaries and ontimization	
	problem objective(s)	136
Fig 4 33	Exponential (a) decay and (b) growth functions	150
115. 1.55	with $C_{m} = 10$ $f = 0$ $G = 300$	138
Fig. 4.34	Number of MC simulations relation between the fixed	150
	cluster number approach (full area of the graphic) and variable	
	clusters number (dark grav area of the graphic) considering	
	$C_{\rm max} = 10 \dots$	139
Fig. 4.35	Schematic of the tested single-stage amplifier	
C	with enhanced DC gain	140
Fig. 4.36	Dendrogram at different stages of the sizing and optimization	
	process. (a) Beginning of the optimization process, dissimilar	
	solutions results in 20 clusters. (b) End of the optimization	
	process, similar solutions results in 5 clusters	142
Fig. 4.37	FUZYE methodology flow	145
Fig. 4.38	FUZYE first step—infeasible solutions elimination	146
Fig. 4.39	FUZYE second step—Clustering of feasible potential	146
Eia 4 40	Solutions	140
гıg. 4.40	for 2 clusters example	147
Fig = 4/41	FUZVE third step Main cluster allocation and Cluster	147
1 lg. 4.41	representative individual selection	148
Fig 4 42	FUZYE fourth step—MC analysis and yield estimation	140
115. 1.12	for non-simulated potential solutions	150
Fig. 5.1	AIDA-C main screen	156
Fig. 5.2	AIDA-C architecture	156
Fig. 5.3	(a) Example circuit schematic and respective	1.57
D ' 5 4	(b) parameterized netlist	157
F1g. 5.4	Netrist test-bench, circuit analysis, and performance measures	150
Eig 55	AIDA C now project form	150
Fig. 5.5	AIDA-C Monitoring module information (a) Pareto	139
11g. J.0	solutions evolution (b) Ontimization convergence	161
Fig 57	AIDA-C ontimization setting narameters	163
Fig. 5.8	AIDA-C evolutionary parameters setting form	163
8. 0.0		- 00

Fig. 5.9	AIDA-AMG transistor structures examples. (a) Folded structure	
	for a 4-fingers transistor. (b) Merged structure for 3 transistors	
	with unconnected gates. (c) Interdigitized structure for 2	
	transistors with 2 fingers. (d) Common-centroid structure	
	for 2 transistors with 32 fingers	164
Fig. 5.10	AIDA-C main panels. (a) Optimizer and setup summary	
	panel. (b) Solutions browser panel	164
Fig. 5.11	AIDA-C solution detail panel	165
Fig. 5.12	Solutions browser context-menu	166
Fig. 5.13	AIDA-C settings window	167
Fig. 5.14	AIDA-C specifications settings screen	168
Fig. 5.15	AIDA-C (a) objectives and (b) constraints properties windows	169
Fig. 5.16	AIDA-C optimization processes toolbar	169
Fig. 5.17	AIDA-C electrical simulator selector and monitoring windows	160
Fig. 5.18	Detail flow of the implemented yield estimation methodology	171
Fig. 5.10	Two MC iteration data sets histogram of 500 unitless	1/1
115. 5.17	samples with identical mean $(\mu = 60)$ and different standard	
	deviations (a) $\sigma = 15$ (b) $\sigma = 25$	173
Fig. 5.20	New solution detail panel including the performance	175
1 15. 5.20	constraints C, index and statistical information	174
Fig. 5.21	New AIDA-C yield parameter sizing screen	175
Fig 5.21	New AIDA-C yield constraint properties screens	176
		170
Fig. 6.1	Schematic of the tested single-stage amplifier	
	with enhanced DC gain	181
Fig. 6.2	Active inductor schematics	183
Fig. 6.3	Low-noise amplifier for 5 GHz applications schematics	185
Fig. 6.4	Sub-µW Tow-Thomas-based biquad filter with improved	
	gain schematics	187
Fig. 6.5	Graphical representation of KMS, FUZYE, and HAC	
	methodologies reduction rate and yield estimation error	
	for the single-stage amplifier	190
Fig. 6.6	Code to compute the total memory usage	192
Fig. 6.7	KMS memory usage vs. population size	193
Fig. 6.8	FUZYE memory usage vs. population size	194
Fig. 6.9	Final Pareto front for the yield optimization process	197
Fig. 6.10	Sizing and optimization runs with different values	
	of relaxation factor in the performance specifications	198
Fig. 6.11	Impact of increasing the relaxation factor in the estimated	
	yield value	198
Fig. 6.12	Pareto surface for the yield-aware optimization process	200
Fig. 6.13	OPDK single-stage amplifier (a) AC response. (b) Step	
	response in a unitary gain configuration	201
Fig. 6.14	OPDK single-stage amplifier Monte Carlo AC response	202

Fig. 6.15	Distance between two interpolated POFs	203
Fig. 6.16	Two runs for the <i>Large distance</i> method, showing false POF problem. (a) First run. False POF problem with only 3 solutions	
	in the Pareto front. (b) Second run. Presents false POF problem	
	with 6 solutions in the Pareto front	205
Fig. 6.17	Two runs of the Exponential decay method, showing	
	that the problem of the false POF was solved	207
Fig. 6.18	Final Pareto front for the variable cluster yield optimization	
	process	208
Fig. 6.19	Yield vs. confidence level for a 2.5% confidence interval	
	and 1000 MC iterations	209
Fig. 6.20	Final POF achieved by the different approaches: Full MC,	
	KMS-based, and FUZYE	212
Fig. 6.21	Clustering potential solutions in the performance space	
	vs. design variable space	213
Fig. 6.22	Single-stage amplifier POF surface for three-objectives	
	MC-FUZYE sizing and optimization run (FoM, GDC, Yield)	213
Fig. 6.23	Comparison between non-yield optimization process	
	results and the FUZYE methodology	214
Fig. 6.24	Single-stage amplifier POF surface for three-objectives	
	QMC-FUZYE sizing and optimization run with environment	
	variability conditions	216
Fig. 6.25	LNA circuit POF surface for three-objectives QMC sampling	
	sizing and optimization run after 2250 generations	219
Fig. 6.26	LNA sizing and optimization POF solutions comparison	
	between non-yield optimization and the QMC-FUZYE	
	methodology	219
Fig. 6.27	POF surface projections into the objective planes for both	
	optimization processes. (a) Gain DC vs GBW projection.	
	(b) Gain DC vs I _{DD} projection. (c) Gain DC vs Offset	
	projection. (d) Gain DC vs PM projection. (e) Gain DC	
	vs Sdnoise projection. (f) Gain DC vs Yield projection	221

List of Tables

Table 1.1	Intra-die variability increase for the transistor threshold voltage parameter with CMOS technology node [5]	3
Table 2.1	Two-stage Miller amplifier desired performances	10
Table 2.2	Two-stage Miller amplifier design parameters	10
Table 2.3	Two-stage Miller amplifier functional specifications	11
Table 2.4	Conversions among sigma values for one-sided and double- sided constraint based on the yield	57
Table 2.5	Approaches applied in the analog sizing problem	59
Table 3.1	Standard deviation of the yield estimator and $3\sigma_Y$ intervals for a yield of 85% and for a different number of samples	68
Table 3.2	Number of samples required according to the desired confidence level and confidence interval for 90% and 95%	
	estimated yield values	68
Table 3.3	Experimental data for the selection of QMC sample size, from Pak et al. [11]	76
Table 3.4	Yield estimation techniques in commercial EDA tools	93
Table 3.5	Yield estimation approaches	93
Table 4.1	Squared Euclidian distances between \mathbf{x}_1 and the cluster	107
	centers	107
Table 4.2	Degree of membership of \mathbf{x}_1 to each cluster for different	105
	fuzziness parameter values	107
Table 4.3	Two sized solutions for the single-stage amplifier with enhanced DC gain circuit, Fig. 4.35	141
Table 5.1	Relation between process capability index and yield for two-sided constraints	172

Table 6.1	Single-stage amplifier performance and functional specification constraints for the silicon-based technology	
	node	181
Table 6.2	Single-stage amplifier optimization problem design	
	variables and ranges for the silicon-based technology node.	182
Table 6.3	BSIM3V3 MOSFET model parameters affected	
	by variability in the adopted 130 nm technology node	183
Table 6.4	Performance and functional specification constraints	
	for the active inductor circuit	184
Table 6.5	Optimization problem design variables and ranges	
	for the active inductor circuit	184
Table 6.6	LNA performance and functional specification constraints	185
Table 6.7	LNA optimization problem design variables and ranges	186
Table 6.8	Tow-Thomas-based biquad filter performance	
	and functional specification constraints	188
Table 6.9	Tow-Thomas-based biquad filter optimization problem	
	design variables and ranges	188
Table 6.10	Comparison for the KMS, FUZYE, and HAC	
	methodologies in terms of potential solutions subject to MC	
	simulations and accuracy for the single-stage amplifier	189
Table 6.11	Comparison for the KMS, FUZYE, and HAC methodologies	
	in terms of potential solutions subject to MC simulations	
	and accuracy for the grounded active inductor	190
Table 6.12	Average memory usage for both KMS-based and FUZYE	
	methodologies	192
Table 6.13	Average memory usage for both KMS-based and FUZYE	
	methodologies with different optimization algorithm	
	population sizes	193
Table 6.14	Average runtime for both KMS-based and FUZYE	
	methodologies	195
Table 6.15	Performance and functional specification constraints	199
Table 6.16	Optimization problem variables and ranges	199
Table 6.17	OPDK yield-aware best solutions	201
Table 6.18	Average results for the tested methodologies	206
Table 6.19	Validation for cluster number reduction technique	210
Table 6.20	FUZYE single-stage amplifier yield estimation	
	error test results	211
Table 6.21	Average results for different <i>m</i> fuzziness parameter	
	values in the FUZYE methodology	212
Table 6.22	Single-stage amplifier results for the MC simulations	
	reduction rate	212

xxii

Table 6.23	FUZYE single-stage amplifier average results	
	for the 10 runs of 50,000 MC iterations on each	
	of the best yield solutions found	215
Table 6.24	FUZYE LNA yield estimation error test results	217
Table 6.25	Average results for different <i>m</i> fuzziness parameter	
	values in the FUZYE LNA circuit	217
Table 6.26	MC simulation reduction rate for the LNA circuit	218
Table 6.27	Ideal data points for the non-yield and FUZYE	
	methodologies	223
Table 6.28	Best trade-off solutions for the non-yield, FUZYE	
	and the best yield FUZYE solution	223
Table 7.1	Comparison between FUZYE methodology	
	and other yield estimation approaches	227
Algorithm 2.1	Steepest Descent	18
Algorithm 2.2	Simulated Annealing	24
Algorithm 2.3	Particle Swarm Optimization Algorithm	26
Algorithm 2.4	Genetic Algorithm	30
Algorithm 2.5	NSGA-II Pseudo Code	32
Algorithm 4.1	K-Means Algorithm	103
Algorithm 4.2	K-Medoid Algorithm	104
Algorithm 4.3	Fuzzy c-Means Algorithm	108
Algorithm 4.4	K-Means++ Algorithm	113
Algorithm 4.5	Hierarchical Agglomerative Clustering Algorithm	117
Algorithm 4.6	Number of Clusters Definition	147

Chapter 1 Introduction

1.1 Variability Effects in Analog IC

The increased complexity in today's integrated circuits (ICs), where very large scale integration (VLSI) technologies progressed towards mixed-signal ICs, having digital and analog circuits coexisting on the same die as a complete system-on-a-chip (SoC) [1], allied to the adoption of smaller nanometer-scale integration technologies, creates new challenges to robust ICs design. Although the analog section occupies a small area in the entire chip, the analog design effort is considerably higher than the design of the digital blocks [2]. In traditional analog design, the designer achieves a valid circuit design configuration based on its knowledge and assisted by proper tools, like electrical simulators to validate the required specifications. This is usually a very time-consuming and error-prone iterative process, where a large number of specification constraints must be satisfied, like minimum DC gain, phase margin, and area. In today's competitive electronic market it is not enough to perform a basic circuit sizing process where only a feasible solution is found, i.e., a circuit sizing solution that fulfills all the required specification. Nowadays several of the specifications must be optimized, like power consumption and/or DC gain, which increases the complexity of manual design. Performing space exploration to achieve optimal circuit sized solutions has become a very hard task to IC designers. The increased number of variables and the highly nonlinear relation between circuit design variables and performance specifications brought by new smaller technology nodes made the use of an automatic circuit-level sizing and optimization tool, a requirement for satisfying the time-to-market pressure to release new and highperformance ICs.

Having automatic tools that can quickly provide a sized circuit solution or a set of solutions, when more than one objective is being optimized, is not enough. The economic pressure to produce affordable electronic devices revealed the need to fabricate more reliable circuit solutions. The inherently stochastic nature of semiconductor manufacturing processes led to the appearance of yield losses. The yield

A. M. L. Canelas et al., *Yield-Aware Analog IC Design and Optimization in Nanometer-scale Technologies*, https://doi.org/10.1007/978-3-030-41536-5_1

losses in silicon wafers that survive to production can be classified as *catastrophic* or *parametric* [3]. The catastrophic yield losses refer to functional failures, where the circuits do not work at all. These failures may be caused by short or open circuits. The parametric yield losses are caused by random and undesirable variations in circuit parameters due to nonideal fabrication processes, which lead to working and functional circuits that fail to comply with the required specifications. To improve productivity and avoid expensive redesign cycles it is important to predict the circuit parametric yield value during early stages of the circuit sizing processes. The parametric yield value refers to the percentage of circuits that are expected to comply with the required circuit specifications after fabrication. Technology scaling, the appearance of new materials and devices, combined with more demanding operating conditions, e.g., extreme temperatures and high radiation levels, poses new challenges to parametric yield estimation.

For several years, analog integrated circuit (IC) designers considered only global variations, or inter-die variations, and simulated the effects of these variations on the circuit performance by using corner analysis, which works well in digital project, but it is not enough to ensure that analog circuit performances are met after chip fabrication [4]. Analog ICs are also particularly sensitive to local variations, like devices mismatch effects, especially in the nanometer-scale integration technologies. Traditionally, the effects of local variations were prevented and corrected by the experience and know-how of the designer, which may lead to very conservative designs. In Table 1.1 it is possible to observe how the scaling effects impact the variability of the transistor threshold voltage standard deviation $\sigma(V_{\rm Th})$ normalized by the threshold voltage for several nanometer technology nodes.

As a result of the increased impact of the variability effects, several techniques have been proposed to estimate the parametric yield. These techniques can be classified into two main categories: Monte Carlo (MC) based and performance model based.

MC analysis is considered the gold standard for parametric yield prediction, since it is the most reliable and accurate method to estimate the circuit parametric yield [6]. MC analysis performed in electrical simulators is based on statistical device models developed and tested by the technologies' foundries, which typically includes global and local variations. The main drawback of the MC approach is related to the high number of simulations needed in order to provide an accurate parametric yield estimation. The considerable amount of time needed to perform those simulations represents a huge obstacle to the adoption and integration of this type of approach in an electronic design automation (EDA) tool, since it would represent a severe bottleneck in the overall circuit synthesis process. In spite of all the drawbacks, the MC simulation-based yield estimation high accuracy keeps driving research in order to reduce its computational burden, which allows its adoption inside a yield-aware circuit sizing and optimization loop.

.1 Intra-die variabili	ty increase for the tra	nsistor threshold voltag	ge parameter with CM	OS technology node [5]	
ode	250 nm	180 nm	130 nm	90 nm	65 nm	45 nm
V _{Th} (mV)	21/450 = 4.7%	23/400 = 5.8%	27/330 = 8.2%	28/300 = 9.3%	30/280 = 10.7%	32/200 = 16%

1.1 Variability Effects in Analog IC

1.2 Work Motivation

Analog ICs are expected to have the strongest relative growth of the IC market for the next five years. Power management, signal conversion, and automotive-specific analog devices will drive a compound annual growth rate (CAGR) of 6.6%, from \$54.5 billion in 2017 to \$74.8 billion in 2022, according to IC Insights [9]. In Fig. 1.1, the forecast CAGR of different product categories is compared with the expected CAGR of the total IC market growth of 5.1%. In order to keep driving this amazing growth, a considerable amount of time and work must be dedicated to improving the analog design flow and analog EDA tools.

The expected growth of the analog IC market and the challenging demand for new analog EDA tools, including early variability effects prediction in the design

IC Market Forecast Compound Annual Growth Rate (2017 - 2022)

Fig. 1.1 Major IC categories market forecast compound annual growth rate for 2017–2022 (according to [9])

flow, are some of the major motivations for this work. Most of today's circuit sizing EDA optimization tools only performs some type of variability analysis at the end of the optimization process to validate solutions for yield requirements. This type of circuit sizing and optimization flow reduces the time impact of performing variability analysis at each optimization iteration but increases the probability of adding redesign iterations into the sizing processes. The development of a methodology using MC analysis for accurate yield estimation with reduced time impact in the sizing and optimization flow, although challenging, is a requirement to improve ICs reliability and cost efficiency in the manufacturing processes, especially at the new nanometer-scales technology integration nodes.

1.3 Work Purpose

The main goal of the work presented in this book is to develop an accurate yield estimation methodology in order to improve the robustness of circuit solutions sized in a state-of-the-art EDA tool. By improving solutions robustness, the analog IC production processes become more efficient, since expensive redesign iterations are avoided. The EDA tool considered for this work is a circuit sizing design automation solution known as AIDA-C [10–12]. The AIDA-C circuit sizing tool is a simulation-based, multi-constraint, and multi-objective optimization tool, whose optimization kernel is based on evolutionary techniques. Since MC-based approaches are considered the most accurate methods for yield estimation, this work develops its new methodology based on MC analysis. To further improve the yield estimation accuracy, MC analysis will be based on electrical simulations using the trustworthy industry process design kits (PDKs) statistical models.

Combining MC analysis for yield estimation with a population-based evolutionary optimization algorithm, where each population individual is evaluated through electrical simulation, may represent a huge bottleneck in the overall optimization process. Reducing the time impact caused by MC simulations is possible by performing less simulations or iterations, as many electrical simulators call them, to each individual in the population. Another approach is selecting some relevant individuals from the population and performing MC analysis only to those individuals. Since the approach of performing less simulations would reduce the yield estimation accuracy, this type of approach was discarded.

According to the requirements presented so far, the new yield estimation methodology must satisfy the following conditions:

- 1. Adopt MC analysis to estimate the yield.
- 2. Perform MC simulations in a commercial electrical simulator with standard PDKs statistical models, for more accurate results.
- 3. Completely integrate a yield estimation methodology in the optimization loop of a population-based optimization analog IC sizing tool.