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Preface

Developments over the last decades in very large-scale integration technologies
allowed meeting the increasing demand for faster, cheaper, and reliable electronic
devices. One of the key factors to support those developments is the implementation
of most high-level functions of the chip in digital circuitry, whose design is highly
automated due to the adoption of mature electronic design automation (EDA) tools.
While digital integrated circuits (ICs) design is mostly automated, its analog coun-
terpart is supported by a set of independent tools, dedicated to each step of the design
flow, and highly dependent on human intervention. The increasing demand in circuit
performances and complexity of device models due to the aggressive IC technology
down-scaling have led to the acceptance of new simulation-based optimization tools
for analog IC sizing, thus increasing analog IC design flow efficiency. Most of those
tools consider only nominal circuit parameters values during the optimization
process. As devices shrink down into nanometer scale, the effects of process
variation have become very important and not considering those effects during the
optimization and sizing process may result in circuit solutions push to limits of
performances and dangerously close to the boundary of feasibility. Therefore,
including a prediction of the percentage of circuits that comply with circuit specifi-
cations after fabrication, i.e., the circuit parametric yield, in the sizing and optimi-
zation process is an important step to avoid expensive redesign iterations. Monte
Carlo (MC) analysis is the most general and reliable technique for yield estimation,
yet the considerable amount of time it requires has discouraged its adoption in
population-based analog IC circuit sizing and optimization tools.

The new yield estimation methodology developed and presented in this book is
able to reduce the time impact caused by MC simulations in the context of analog
ICs yield estimation, enabling its adoption in optimization processes with
population-based algorithms, such as genetic algorithm (GA), considering the
yield as one of the optimization problem objectives. The proposed methodology
reduces the total number of MC simulations required to evaluate the optimization
algorithm population. The reduction in the total number of simulations is achieved
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because at each GA generation the population is clustered and only the representa-
tive individual from each cluster is subject to MC simulations. Initial tests using a
modified version of the k-means clustering algorithm, to identify similar individuals
in the GA population, and a new technique to select the cluster representative
individuals were able to achieve a reduction rate up to 91% in the total number of
MC simulations, when compared to the number of MC simulations required to
evaluate the complete GA population.

The need to balance the trade-off between yield estimation accuracy and the
reduction rate of MC simulations made the k-means methodology to evolve and
search for different clustering techniques. A new version of the developed yield
estimation methodology with reduced time impact from MC simulations was finally
developed and implemented in a state-of-the-art analog IC sizing tool using the
fuzzy c-means clustering algorithm. The new methodology based on fuzzy c-means
and named FUZYE is able to achieve good yield estimation accuracy and high
reduction rates in MC simulations. The FUZYE methodology shows that the yield
for the rest of the nonsimulated individuals in the population can be accurately
estimated based on the membership degree of fuzzy c-means and the cluster repre-
sentative individuals yield values alone. This new method was applied on several
circuit sizing and optimization problems, and the obtained results were compared to
the exhaustive approach, where all individuals of the population are subject to MC
analysis. The FUZYE methodology presents on average a reduction of 89% in the
total number of MC simulations, when compared to the exhaustive MC analysis over
the full population. Moreover, other important clustering algorithms were also tested
and compared with the proposed FUZYE, with the latest showing an improvement
up to 13% in yield estimation accuracy.

This work would not have been possible without the contributions of Ricardo
P6voa, Nuno Lourenco, and Ricardo Martins for their support and valuable discus-
sions on circuits and optimization.

Finally, the authors would like to express their gratitude for the financial support
that made this work possible. The work developed in this book was supported in part
by the Fundagfo para a Ciéncia e a Tecnologia (Grant FCT-SFRH/BD/103337/
2014) and by the Instituto de Telecomunica¢des (Research project RAPID
UID/EEA/50008/2013 and UID/EEA/50008/2019).

Lisbon, Portugal Anténio M. L. Canelas
Jorge M. C. Guilherme
Nuno C. G. Horta
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Chapter 1 ®)
Introduction Check or

1.1 Variability Effects in Analog I1C

The increased complexity in today’s integrated circuits (ICs), where very large scale
integration (VLSI) technologies progressed towards mixed-signal ICs, having digital
and analog circuits coexisting on the same die as a complete system-on-a-chip (SoC)
[1], allied to the adoption of smaller nanometer-scale integration technologies,
creates new challenges to robust ICs design. Although the analog section occupies
a small area in the entire chip, the analog design effort is considerably higher than the
design of the digital blocks [2]. In traditional analog design, the designer achieves a
valid circuit design configuration based on its knowledge and assisted by proper
tools, like electrical simulators to validate the required specifications. This is usually
a very time-consuming and error-prone iterative process, where a large number of
specification constraints must be satisfied, like minimum DC gain, phase margin,
and area. In today’s competitive electronic market it is not enough to perform a basic
circuit sizing process where only a feasible solution is found, i.e., a circuit sizing
solution that fulfills all the required specification. Nowadays several of the specifi-
cations must be optimized, like power consumption and/or DC gain, which increases
the complexity of manual design. Performing space exploration to achieve optimal
circuit sized solutions has become a very hard task to IC designers. The increased
number of variables and the highly nonlinear relation between circuit design vari-
ables and performance specifications brought by new smaller technology nodes
made the use of an automatic circuit-level sizing and optimization tool, a require-
ment for satisfying the time-to-market pressure to release new and high-
performance ICs.

Having automatic tools that can quickly provide a sized circuit solution or a set of
solutions, when more than one objective is being optimized, is not enough. The
economic pressure to produce affordable electronic devices revealed the need to
fabricate more reliable circuit solutions. The inherently stochastic nature of semi-
conductor manufacturing processes led to the appearance of yield losses. The yield
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losses in silicon wafers that survive to production can be classified as catastrophic or
parametric [3]. The catastrophic yield losses refer to functional failures, where the
circuits do not work at all. These failures may be caused by short or open circuits.
The parametric yield losses are caused by random and undesirable variations in
circuit parameters due to nonideal fabrication processes, which lead to working and
functional circuits that fail to comply with the required specifications. To improve
productivity and avoid expensive redesign cycles it is important to predict the circuit
parametric yield value during early stages of the circuit sizing processes. The
parametric yield value refers to the percentage of circuits that are expected to comply
with the required circuit specifications after fabrication. Technology scaling, the
appearance of new materials and devices, combined with more demanding operating
conditions, e.g., extreme temperatures and high radiation levels, poses new chal-
lenges to parametric yield estimation.

For several years, analog integrated circuit (IC) designers considered only global
variations, or inter-die variations, and simulated the effects of these variations on the
circuit performance by using corner analysis, which works well in digital project, but
it is not enough to ensure that analog circuit performances are met after chip
fabrication [4]. Analog ICs are also particularly sensitive to local variations, like
devices mismatch effects, especially in the nanometer-scale integration technologies.
Traditionally, the effects of local variations were prevented and corrected by the
experience and know-how of the designer, which may lead to very conservative
designs. In Table 1.1 it is possible to observe how the scaling effects impact the
variability of the transistor threshold voltage standard deviation o(Vyy,) normalized
by the threshold voltage for several nanometer technology nodes.

As a result of the increased impact of the variability effects, several techniques
have been proposed to estimate the parametric yield. These techniques can be
classified into two main categories: Monte Carlo (MC) based and performance
model based.

MC analysis is considered the gold standard for parametric yield prediction, since
it is the most reliable and accurate method to estimate the circuit parametric yield
[6]. MC analysis performed in electrical simulators is based on statistical device
models developed and tested by the technologies’ foundries, which typically
includes global and local variations. The main drawback of the MC approach is
related to the high number of simulations needed in order to provide an accurate
parametric yield estimation. The considerable amount of time needed to perform
those simulations represents a huge obstacle to the adoption and integration of this
type of approach in an electronic design automation (EDA) tool, since it would
represent a severe bottleneck in the overall circuit synthesis process. In spite of all
the drawbacks, the MC simulation-based yield estimation high accuracy keeps
driving research in order to reduce its computational burden, which allows its
adoption inside a yield-aware circuit sizing and optimization loop.
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4 1 Introduction

1.2 Work Motivation

The International Roadmap for Devices and Systems 2017 (IRDS:2017) [7] iden-
tifies scaling as the first reason for the increasing reliability issues in new ICs
technology integration nodes. Another identified cause for poor circuit reliability is
premature aging, due to the long operation working cycles that electronics devices
are subject in today’s applications. To address this problem IRDS:2017 defends the
need to investigate and develop new models, both statistical models of lifetime
distributions and physical models of how lifetime depends on stress, geometries,
and materials. The IRDS:2017 also points out the need for developing new reliability
software tools with capabilities to predict and quantify the effects of variability
during the design process. In addition to the IRDS:2017 concerns, Mladen Nizic,
product marketing director at Cadence©, noted that “Advanced process nodes
typically introduce more parametric variation, ..., and other manufacturing effects
affecting device performance, making it much harder for designers to predict circuit
performance in silicon. To cope with these challenges, designers need automated
flow to understand impact of manufacturing effects early, ...” [8].

Analog ICs are expected to have the strongest relative growth of the IC market for
the next five years. Power management, signal conversion, and automotive-specific
analog devices will drive a compound annual growth rate (CAGR) of 6.6%, from
$54.5 billion in 2017 to $74.8 billion in 2022, according to IC Insights [9]. In
Fig. 1.1, the forecast CAGR of different product categories is compared with the
expected CAGR of the total IC market growth of 5.1%. In order to keep driving this
amazing growth, a considerable amount of time and work must be dedicated to
improving the analog design flow and analog EDA tools.

The expected growth of the analog IC market and the challenging demand for
new analog EDA tools, including early variability effects prediction in the design

IC Market Forecast Compound Annual Growth Rate (2017 - 2022)

® Analog ™ Logic = Memory  mTotalIC's ® Microcomponents

Fig. 1.1 Major IC categories market forecast compound annual growth rate for 2017-2022
(according to [9])
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flow, are some of the major motivations for this work. Most of today’s circuit sizing
EDA optimization tools only performs some type of variability analysis at the end of
the optimization process to validate solutions for yield requirements. This type of
circuit sizing and optimization flow reduces the time impact of performing variabil-
ity analysis at each optimization iteration but increases the probability of adding
redesign iterations into the sizing processes. The development of a methodology
using MC analysis for accurate yield estimation with reduced time impact in the
sizing and optimization flow, although challenging, is a requirement to improve ICs
reliability and cost efficiency in the manufacturing processes, especially at the new
nanometer-scales technology integration nodes.

1.3 Work Purpose

The main goal of the work presented in this book is to develop an accurate yield
estimation methodology in order to improve the robustness of circuit solutions sized
in a state-of-the-art EDA tool. By improving solutions robustness, the analog IC
production processes become more efficient, since expensive redesign iterations are
avoided. The EDA tool considered for this work is a circuit sizing design automation
solution known as AIDA-C [10-12]. The AIDA-C circuit sizing tool is a simulation-
based, multi-constraint, and multi-objective optimization tool, whose optimization
kernel is based on evolutionary techniques. Since MC-based approaches are consid-
ered the most accurate methods for yield estimation, this work develops its new
methodology based on MC analysis. To further improve the yield estimation accu-
racy, MC analysis will be based on electrical simulations using the trustworthy
industry process design kits (PDKs) statistical models.

Combining MC analysis for yield estimation with a population-based evolution-
ary optimization algorithm, where each population individual is evaluated through
electrical simulation, may represent a huge bottleneck in the overall optimization
process. Reducing the time impact caused by MC simulations is possible by
performing less simulations or iterations, as many electrical simulators call them,
to each individual in the population. Another approach is selecting some relevant
individuals from the population and performing MC analysis only to those individ-
uals. Since the approach of performing less simulations would reduce the yield
estimation accuracy, this type of approach was discarded.

According to the requirements presented so far, the new yield estimation meth-
odology must satisfy the following conditions:

1. Adopt MC analysis to estimate the yield.

2. Perform MC simulations in a commercial electrical simulator with standard PDKs
statistical models, for more accurate results.

3. Completely integrate a yield estimation methodology in the optimization loop of
a population-based optimization analog IC sizing tool.



