ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Florian Scheffler

Zerspankräfte beim kontinuierlichen Wälzschleifen von Stirnradverzahnungen

Zerspankräfte beim kontinuierlichen Wälzschleifen von Stirnradverzahnungen

Cutting Forces for Generating Gear Grinding of Cylindrical Gears

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Hans Florian Scheffler geb. Hübner

Berichter:

Univ.-Prof. Dr.-Ing. Christian Brecher Univ.-Prof. Dr.-Ing. Dr.-Ing. E. h. Dr. h. c. Dr. h. c. Fritz Klocke

Tag der mündlichen Prüfung: 27. September 2019

ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Florian Scheffler

Zerspankräfte beim kontinuierlichen Wälzschleifen von Stirnradverzahnungen

Herausgeber: Prof. Dr.-Ing. T. Bergs Prof. Dr.-Ing. Dipl.-Wirt. Ing. G. Schuh Prof. Dr.-Ing. C. Brecher Prof. Dr.-Ing. R. H. Schmitt

Band 47/2019

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über https://portal.dnb.de abrufbar.

Florian Scheffler:

Zerspankräfte beim kontinuierlichen Wälzschleifen von Stirnradverzahnungen

1. Auflage, 2019

Gedruckt auf holz- und säurefreiem Papier, 100% chlorfrei gebleicht.

Apprimus Verlag, Aachen, 2019 Wissenschaftsverlag des Instituts für Industriekommunikation und Fachmedien an der RWTH Aachen Steinbachstr. 25, 52074 Aachen Internet: www.apprimus-verlag.de, E-Mail: info@apprimus-verlag.de

ISBN 978-3-86359-818-1

D 82 (Diss. RWTH Aachen University, 2019)

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für Werkzeugmaschinen des Werkzeugmaschinenlabors (WZL) der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen.

An erster Stelle gilt mein Dank meinem Doktorvater Herrn Prof. Dr.-Ing. C. Brecher, dem Inhaber des Lehrstuhls für Werkzeugmaschinen und Herrn Prof. Dr.-Ing. Dr.-Ing. E. h. Dr. h. c. Dr. h. c. Fritz Klocke, dem Inhaber des Lehrstuhls für Technologie der Fertigungsverfahren, für ihre umfangreiche Unterstützung, Förderung und konstruktiven Anmerkungen, welche wesentlich zum Gelingen dieser Arbeit beigetragen haben. Für den Prüfungsbeisitz bedanke ich mich bei Herrn Prof. Dr.-Ing. M. Hüsing, dem Inhaber des Lehrstuhls für Getriebetechnik, Maschinendynamik und Robotik. Bei Herrn Prof. Dr.-Ing. D. Abel, dem Inhaber des Lehrstuhls für Regelungstechnik, möchte ich mich für die Übernahme des Prüfungsvorsitzes bedanken.

Die in der vorliegenden Dissertation vorgestellten Arbeiten basieren auf Untersuchungen aus den Forschungsvorhaben KL500/94-1 und KL500/133-1, die von der Deutschen Forschungsgemeinschaft (DFG) gefördert wurden. Für die finanzielle Unterstützung möchte ich meinen Dank aussprechen. Auch für den stetigen Austausch mit den Mitgliedsfirmen des WZL-Getriebekreises möchte ich mich herzlich bedanken. Ein besonderer Dank gilt Dipl.-Ing. Wolfgang Winter und Dr.-Ing. Alois Mundt für ein stets offenes Ohr hinsichtlich Simulationsmodellen und Fertigungstechnologie.

Ein besonderer Dank gilt den Mitarbeitern der "Abteilung Getriebetechnik", insbesondere den Kolleginnen und Kollegen der Gruppe "Getriebeberechnung und Fertigungssimulation" für die außergewöhnliche Arbeitsatmosphäre. Den Oberingenieuren Dr.-Ing. Markus Brumm sowie Dr.-Ing. Christoph Löpenhaus danke ich für ihre stets konstruktiven und kritischen Diskussionen des Themas, ohne die diese Arbeit nicht entstanden wäre. Ebenfalls bedanke ich mich sehr herzlich beim ehemaligen Fertigungssimulation Julia Sc. Büro bestehend aus Mazak. M. sowie Dr.-Ing. Markus Krömer für die Unterstützung im Aufbau einer leistungsfähigen Simulationsumgebung. Ebenfalls danke ich Ingrid Gerlofsma, Dipl.-Ing. Rainer Stephan, Jens Hofschröer für die Unterstützung bei der Programmierung. Dr.-Ing. Matthias Ophev danke ich für den intensiven Austausch hinsichtlich Schleiftechnologie. Eine besondere Freude war die Zusammenarbeit mit meinen studentischen Hilfskräften, Studien-, Diplom-, Bachelor- und Masterarbeitern. Stellvertretend für alle seien hier die Herren Felix Kühn, M. Sc. für die Durchführung der Schleifversuche sowie Matthias Wenzel für die langjährige Programmierung gedankt.

Abschließend danke ich meiner Familie insbesondere meinen Eltern und Großeltern, dass sie während meiner Studien- und Promotionszeit für mich da waren und stets unterstützt haben. Der größte Dank gilt meiner Frau Johanna. Der Verzicht auf gemeinsame Zeit, Unterstützung, Nachsicht und Geduld haben diese Arbeit ermöglicht.

Karlsruhe, im Oktober 2019

Inhaltsverzeichnis

Со	ntent			
1	Einl	eitung		1
2	Stan	and der Technik in Forschung und Industrie5		
2.1 Evolventische Stirnradverzahnungen			ntische Stirnradverzahnungen	5
		2.1.1	Geometrische Grundlagen	5
		2.1.2	Prozessketten zur Herstellung von Stirnradverzahnungen	8
	2.2	Kontinu	ierliches Wälzschleifen von Stirnradverzahnungen	9
		2.2.1	Prozessbeschreibung	9
		2.2.2	Kinematik und Kontaktbedingungen	11
		2.2.3	Werkzeuge	14
		2.2.4	Technologische Merkmale	15
	2.3	Simulat	ionsmethoden zur Beschreibung der Fertigung von Stirnrädern .	20
		2.3.1	Prozesssimulation des Wälzfräsens	21
		2.3.2	Simulation von Zahnlückengeometrien	21
		2.3.3	Weitere Modelle zur Berechnung von Verzahnungen	23
	2.4	Forschu	ungsarbeiten zur Hartfeinbearbeitung von Bauteilen	24
		2.4.1	Beschreibung der Spanbildung für Schleifprozesse	24
		2.4.2	Zerspankraftmodelle für Schleifprozesse	27
		2.4.3	Charakterisierung von Schleifwerkzeugen	29
	2.5	Fazit		30
3	Ziels	setzung,	Aufgabenstellung und Vorgehensweise	33
4	Untersuchung der Zerspankräfte beim kontinuierlichen Wälzschleifen		35	
	4.1	Vorstell	ung des Bearbeitungsbeispiels	35
		4.1.1	Geometrie der Beispielbauteile	35
		4.1.2	Charakterisierung des Schleifwerkzeuges	37
		4.1.3	Schleifmaschine KX 500 Flex und Versuchsaufbau	39
	4.2	Analyse	e der Zerspankräfte	40
		4.2.1	Aufbereitung der Messdaten	41
		4.2.2	Ergebnisse der Schleifkraftmessungen	45
		4.2.3	Einfluss der untersuchten Parameter auf die Zerspankräfte	48
	4.3	Fazit		49
5	Entv	vicklung	eines empirisch-analytischen Berechnungsmodells zur	
	Best	timmung	g der Zerspankräfte beim kontinuierlichen Wälzschleifen	51
	5.1	Aufbau	des Berechnungsmodells	51
		5.1.1	Aufbau des Werkzeuges	53
		5.1.2	Beschreibung der Kinematik	55
		5.1.3	Berechnung der Verzahnungsgeometrie	58
		5.1.4	Virtuelle Verzahnungsmessung	61

	5.2	Einflussfaktoren auf die Prozessanalyse	63	
		5.2.1 Abtastrate der Simulation	63	
		5.2.2 Diskretisierung der Zahnflanke und Schleifschnecke	65	
	5.3	Berechnung der Zerspankräfte	66	
		5.3.1 Auswertung der Spanungsgeometrie	68	
		5.3.2 Zerspankraftmodell für das kontinuierliche Wälzschleifen	73	
		5.3.3 Bestimmung der spezifischen Zerspannormalkraft	74	
		5.3.4 Einfluss der Überdeckung auf die Zerspankräfte	75	
	5.4	Validierung des Berechnungsmodells	79	
		5.4.1 Berechnung der bezogenen Zerspannormalkraft	79	
		5.4.2 Berechnung von Kenngrößen zur Analyse des Schleifprozesses	81	
	5.5	Fazit	85	
6	Anw	endung des Zerspankraftmodells	87	
	6.1	Kritische Prozessauslegungen der Versuchsverzahnung	87	
	6.2	Anwendung des Modells	91	
	6.3	Verknüpfung des Zerspankraftmodells mit weiteren Modellen	92	
	6.4	Fazit und Reflexion	94	
7	Ana	lyse des Eingriffes von Schleifkörnern bei der Zerspanung von		
	eins	atzgehärteten Bauteilen	97	
	7.1 Analyse der verwendeten Schleifschneckentonografien			
	7.2	Analyse des Einzelkorneingriffes während des Wälzschleifprozesses10	00	
8	Zusa	ammenfassung und Ausblick1	05	
	0 1		05	
	0.1 0.2		00	
	0.2		50	
9	Liter	raturverzeichnis1	11	
10	Lebe	enslauf1	19	

Formelzeichen und Abkürzungsverzeichnis

Formula Symbols and Abbreviations

Lateinische Formelzeichen (Großbuchstaben)

A"	mm²	Eingriffsflächen einzelner Schleifkörner
Acu	mm²	Spanungsquerschnittsflächen
A _{ES}	mm²	Mittlere Schneideneingriffsfläche
Ak	mm²	Kontaktfläche
F'n	N/mm	Bezogene Schleifnormalkraft
Fo	Ν	Initialkraft
Fc	Ν	Schnittkraft
ks	-	Schneidenformfaktor
Lα	mm	Auswertelänge in Profillinienrichtung
Lβ	mm	Auswertelänge in Flankenlinienrichtung
M _{dk}	mm	Diametrales Zweikugelmaß
Ndyn	1/mm²	Dynamische Schneidenanzahl
Nkin	1/mm²	Kinematische Schneidenanzahl
Nstat	1/mm²	Statische Schneidenanzahl
Р	-	Punkt
Q'w	mm³/(mm*s)	Bezogenes Zeitspanungsvolumen
Q" _w	mm³/(mm²*s)	Flächenbezogenes Zeitspanungsvolumen
V	mm³	Volumen
VB	Vol%	Bindungsvolumenanteil
Vĸ	Vol%	Kornvolumenanteil
VP	Vol%	Porenvolumenanteil
Wk	mm	Zahnweite
Lateinische Formelzei	chen (Kleinb	uchstaben)
ae	mm	Zustellung
ap	mm	Eingriffsbreite
b	mm	Verzahnungsbreite
b _{s,eff}	mm	Effektive Schleifscheibenbreite
C1	1/mm	Statische Scheidendichte

Cgw	-	Faktor Materialkenngröße des Kornmaterials
Cβ	mm	Breitenballigkeit
d	mm	Teilkreisdurchmesser
dь	mm	Grundkreisdurchmesser
d _{eq}	mm	Äquivalenter Schleifschneckendurchmesser
d _{Fa}	mm	Kopfformkreisdurchmesser
dFf	mm	Fußformkreisdurchmesser
dm	mm	Messkugeldurchmesser
dve	mm	Erzeugungswälzkreis
е	-	Materialkenngröße des Kornmaterials
epo	mm	Lückenweite
fa	mm	Axialer Vorschub
f _{hβ}	mm	Flankenlinienwinkelmodifikation
ga	mm	Kopfeingriffsstrecke
9f	mm	Fußeingriffsstrecke
h _{aP0}	mm	Kopfhöhe Bezugsprofil
h _{cu}	mm	Spanungsdicke
h _{eq}	mm	Äquivalente Spanungsdicke
h _{fP0}	mm	Fußhöhe Bezugsprofil
io	-	Übersetzungsverhältnis
k	-	Spezifische Schnittkraft, Meßzähnezahl
lcu	mm	Spanungslänge
lk	mm	Kontaktlänge
l _{k,max}	mm	Maximale Kontaktlänge
mn	mm	Normalmodul
n	1/s	Drehzahl
n _{Cut}	-	Schnittzahl
n _{Kontakt}	-	Anzahl Kontaktpunkte
р	mm	Teilung
prP0	mm	Protuberanzbetrag
р _{zн}	mm	Steigungshöhe der Hüllschraube

q	mm	Zahnflankenaufmaß
qws	W/mm²	Wärmestromdichte
r	mm	Radius
S	mm	Zahndicke
t	S	Zeit
t _k	S	Kontaktzeit
Vc	m/s	Schnittgeschwindigkeit
Xe	mm	Erzeugungsprofilverschiebung
z	-	Zähnezahl
Griechische Formelze	eichen	
α	0	Eingriffswinkel
α _{prP0}	0	Protuberanzprofilwinkel
β	0	Schrägungswinkel
Y	0	Steigungswinkel
Δ	-	Inkrement
3	-	Exponent
εα	mm	Profilüberdeckung
a3	mm	Sprungüberdeckung
ε _y	mm	Gesamtüberdeckung
η	0	Schwenkwinkel
θ	0	Kopfkonuswinkel
θ	0	Differenzwinkel
μ		Reibkoeffizient
ξ	0	Wälzwinkel
π	-	Kreiszahl
ρ	mm	Krümmungsradius am Teilkreis
ρ _{aP0}	mm	Rundungsradius Kopf Bezugsprofil
ρ fP0	mm	Rundungsradius Fuß Bezugsprofil
ρу	mm	Ersatzkrümmungsradius der Zahnflanke
φ	0	Drehwinkel
ω	S ⁻¹	Winkelgeschwindigkeit

V

Abkürzungen

AF	Auslaufende Flanke
CBN	Kubisches Bornitrid
DIN	Deutsches Institut für Normung
EF	Einlaufende Flanke
EHT	Einsatzhärtetiefe
FEM	Finite-Elemente-Methode
FEPA	Federation of European Producers of Abrasives
HRC	Härte nach Rockwell – Skala Typ C
HV	Härte nach Vickers
ISO	Internationale Organisation für Normung
Nfl	Anzahl von Profilpunkten in Zahnhöhenrichtung
Npl	Anzahl der Stirnschnittebenen in Zahnbreiten- richtung
RWTH	Rheinisch-Westfälisch Technische Hochschule Aachen
WZL	Werkzeugmaschinenlabor der RWTH Aachen University
Indizes	
0	Größe am Werkzeug
a	Größe im Axialschnitt; Größe am Zahnkopf
f	Größe am Zahnfuß
i	Nummer des aktuellen Profipunktes
j	Nummer des aktuellen Achsabschnittes
mess	Größe gemessen
n	Größe im Normalschnitt
sim	Größe simuliert
t	Größe im Stirnschnitt
У	Größe am y-Kreis Durchmesser

1 Einleitung

In der Fertigung von Maschinenelementen nimmt die Berechnung einzelner Prozessschritte während der Auslegungsphase eine zunehmende Bedeutung ein. Dies spielt insbesondere vor dem Hintergrund steigender ökonomischer und ökologischer Forderungen eine wichtige Rolle. Bereits das erste Bauteil sollte in der geforderten Qualität gefertigt werden. Zudem stellt die Abbildung ganzer Prozessketten durch virtuelle Zwillinge steigende Anforderungen an Prozessmodelle.

Zur Erfüllung der ökonomischen und ökologischen Forderungen liefern Prozessmodelle einen wichtigen Beitrag. Durch fundierte Berechnungsmodelle lassen sich komplexe Wirkzusammenhänge zwischen Werkzeuggeometrie, Fertigungsparametern und Prozesskinematik sowie dem Prozessergebnis abbilden. Bisher werden Prozesse basierend auf empirischen Versuchsreihen ausgelegt, wobei gezielt Einflussgrößen untersucht werden. Berechnungsmodelle ermöglichen Wirkzusammenhänge zu erkennen und Prozessauslegungen theoriebasiert zu ermitteln.

Die Stirnradverzahnung als leistungsübertragendes Maschinenelement stellt in diesem Kontext ein besonders herausforderndes Bauteil dar. Die komplexe Geometrie einer Verzahnungsflanke erfordert hochspezialisierte Fertigungsverfahren. Bereits geringe Abweichungen der Zahnflanke können zu unerwünschter Geräuschbildung oder verringerter Tragfähigkeit führen. Insbesondere im Bereich der Automobilgetriebe werden hohe Anforderungen an eine robuste, präzise und effiziente Fertigung gestellt. Da die finale Geometrie häufig durch den Bearbeitungsschritt der Hartfeinbearbeitung eingestellt wird, hat dieser Prozess einen entscheidenden Einfluss auf das Einsatzverhalten. Ein umfassendes Prozessmodell des Hartfeinbearbeitungsprozesses liefert einen wichtigen Beitrag zur Beurteilung des Einsatzverhaltens. Dies unterstützt den Auslegungsingenieur bei der Erfüllung der Zielsetzung "first part right".

Das kontinuierliche Wälzschleifen stellt aufgrund seiner hohen Wirtschaftlichkeit einen industriell weit verbreiteten Prozess dar. Insbesondere in der Serienfertigung von Automobilverzahnungen bildet das kontinuierliche Wälzschleifen einen der letzten Bearbeitungsschritte von Verzahnungen.

Aufgrund der breiten Anwendung des kontinuierlichen Wälzschleifens im industriellen Umfeld, erfährt das Fertigungsverfahren eine zunehmende Bedeutung im wissenschaftlichen Umfeld [DIET17; REIM14; TÜRI02]. Das Wälzschleifen zeichnet sich durch komplexe geometrische Zusammenhänge des vorliegenden Schraubradgetriebes aus, die sich nicht auf analytischem Wege beschreiben lassen. Der Eingriff zwischen Schleifwerkzeug und Verzahnung wird in der Regel basierend auf iterativen Ansätzen abgebildet. Zusätzlich ist ein komplexer Abrichtprozess der gewünschten Schleifschneckengeometrie notwendig. Durch die Eingriffsbedingungen lassen sich Erkenntnisse, die für konventionelle Schleifprozesse entwickelt wurden, begrenzt auf den kontinuierlichen Wälzschleifprozess übertragen. Des Weiteren ist eine Abbildung des komplexen Prozesses mit einer hohen Genauigkeit nur durch effiziente Algorithmen möglich. Insbesondere die Prozesskräfte sowie deren lokale Verteilung sind ak-