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Preface

Building on its heritage in planetary science, remote sensing of the Earth’s atmo-
sphere and ionosphere with occultation methods has undergone remarkable devel-
opments since the first GPS/Met ‘proof of concept’ mission in 1995. Signals of
Global Navigation Satellite Systems (GNSS) satellites are exploited by radio occul-
tation while natural signal sources are used in solar, lunar, and stellar occultations. A
range of atmospheric variables is provided reaching from fundamental atmospheric
parameters such as density, pressure, and temperature to water vapor, ozone, and
other trace gas species. The utility for atmosphere and climate arises from the unique
properties of self-calibration, high accuracy and vertical resolution, global coverage,
and (if using radio signals) all-weather capability. Occultations have become a valu-
able data source for atmospheric physics and chemistry, operational meteorology,
climate research as well as for space weather and planetary science.

The 3rd International Workshop on Occultations for Probing Atmosphere and
Climate (OPAC-3) was held September 17-21, 2007, in Graz, Austria. OPAC-3
aimed at providing a casual forum and stimulating atmosphere for scientific discus-
sion, co-operation initiatives, and mutual learning and support amongst members of
all different occultation communities. The workshop was attended by 40 participants
from 14 different countries who actively contributed to a scientific programme of
high quality and to an excellent workshop atmosphere.

The programme included 6 invited keynote presentations and 16 invited presen-
tations, complemented by about 20 contributed ones including 8 posters. It covered
occultation science from occultation methodology and analysis via results of recent
occultation missions and application of occultation data in atmospheric and climate
science to the presentation of future occultation missions. The detailed programme
and all further workshop information will continue to be available online at the
OPAC-3 website at http://www.uni-graz.at/opac3.

Key challenges, as defined by the workshop participants, are to establish occul-
tation as a future climate monitoring system demanding the demonstration of trace-
ability to the International System of Units (SI), which is a fundamental property of
a climate benchmark data type. Enhancement and validation of processing chains for
the quantification of uncertainty between different retrieval methods and processing
systems are further important requirements. Of high importance in this respect is
the continuation of GNSS radio occultation missions with a sufficient number of
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satellites as well as the conveyance of new mission concepts towards new horizons
in occultation research.

This book was compiled based on selected papers presented at OPAC-3 and well
represents in its five chapters the broad scope of the workshop. Occultation method-
ology and analysis with an overview on applications is given in chapter 1. The use
of solar, lunar, and stellar occultations from SCIAMACHY and GOMOS onboard
ENVISAT for atmospheric studies is described in chapter 2. Chapter 3 and chapter 4
present applications of GNSS occultation from the current missions CHAMP and
Formosat-3/COSMIC for atmospheric and climate studies. The topics comprise the
use of occultation data in numerical weather prediction and atmospheric wave anal-
ysis as well as in climate monitoring and change research. Upcoming occultation
missions and new concepts are presented in Chapter 5.

We cordially thank all OPAC-3 colleagues, who contributed as authors and co-
authors to the book, for their effort and work. All papers were subject to a peer
review process, involving two independent expert reviewers per paper from the com-
munity of OPAC-3 participants and beyond. We very much thank these reviewers
for their important service to ensure scientific correctness and high quality of the
book. The reviewers, in alphabetical order, were S. P. Alexander, L. K. Amekudzi,
C. O. Ao, G. Beyerle, C. Boone, K. Bramstedt, S. Cho, L.B.Cornman,
M. Dominique, A. von Engeln, U. Foelsche, J. M. Fritzer, S. Healy, S.-P. Ho, K.
Hocke, N. Jakowski, Y.-H. Kuo, B. C. Lackner, F. Ladstadter, K. B. Lauritsen, S. S.
Leroy, A. Loscher, J.-P. Luntama, A. G. Pavelyev, M. Petitta, D. Pingel, B. Pirscher,
P. Poli, T. M. Schrgder, S. Schweitzer, V. F. Sofieva, S. V. Sokolovskiy, A. K. Steiner,
M. Stendel, S. Syndergaard, A. de la Torre, F. Vespe, J. Wickert, and J. J. W. Wilson.

Special thanks are due to Mrs. Helen Rachner and Mrs. Janet Sterritt-Brunner
from Springer Verlag, Heidelberg, for the kind offer to issue this book as Springer
publication and for the related technical support. Many thanks also to all others who
provided support in one or another way, in representation of which we thank the
sponsors of OPAC-3 (http://www.uni-graz.at/opac3). The Department of Science
and Research of the Province of Styria is especially thanked for providing financial
support enabling to cover the costs of the book.

We hope that, in the spirit of the OPAC-3 aims, the book will become a useful
reference for the members of the occultation-related community but also for mem-
bers of the science community at large interested in the present status and future
promise of the field of occultations for probing atmosphere and climate.

Graz, Austria Andrea K. Steiner
July 2009 Barbara Pirscher
Ulrich Foelsche

Gottfried Kirchengast
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Part I
GNSS Occultation: Methodology,
Analysis, and Applications



GPS Radio Occultation with CHAMP,
GRACE-A, SAC-C, TerraSAR-X,

and FORMOSAT-3/COSMIC: Brief
Review of Results from GFZ

J. Wickert, T. Schmidt, G. Michalak, S. Heise, C. Arras, G. Beyerle,
C. Falck, R. Konig, D. Pingel, and M. Rothacher

Abstract Several GPS Radio Occultation (RO) missions (GRACE-A (GRavity
And Climate Experiment), FORMOSAT-3/COSMIC (FORMOsa SATellite
mission-3/Constellation Observing System for Meteorology, Ionosphere, and
Climate), and MetOp) started data provision in 2006 and 2007. Together with the
measurements from CHAMP (CHAllenging Minisatellite Payload, since 2001) and
the recently launched (June 15, 2007) TerraSAR-X an operational multi-satellite
constellation for precise GPS based atmospheric sounding became reality. The
data base is supplemented by measurements from SAC-C (Satélite de Aplicaciones
Cientificas-C). Our contribution briefly reviews current GFZ activities regarding
processing and application of GPS RO data from different satellites. These activ-
ities include precise satellite orbit determination and the provision of near-real
time analysis results for weather forecast centers within 2 h after measurement.
Auvailable satellite data are used for climatological investigations of global gravity
wave characteristics.

1 Introduction

During the last decade ground and space based GPS techniques for atmospheric and
ionospheric remote sensing were established (see, e.g., Wickert et al. 2007). The
currently increasing number of receiver platforms (e.g., extension of regional and
global GPS ground networks and additional Low Earth Orbiting (LEO) satellites)
together with future additional transmitters (GALILEO, reactivated GLONASS,
new GPS satellite generations, and COMPASS) will extend the potential of these
innovative sounding techniques during the next years. Here, we focus on GPS
radio occultation for the derivation of vertical profiles of atmospheric parameters
on a global scale (e.g., Kursinski et al. 1997). We present selected examples of

J. Wickert (=)
German Research Centre for Geosciences (GFZ), Potsdam, Germany
e-mail: wickert@ gfz-potsdam.de

A. Steiner et al. (eds.), New Horizons in Occultation Research, 3
DOI 10.1007/978-3-642-00321-9_1, © Springer-Verlag Berlin Heidelberg 2009
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i ‘.,
GRACE ay, TerraSAR-X

MetOp COsSMIC @ SAC-C

Fig. 1 Current GPS radio occultation missions: CHAMP (launch July 15, 2000), GRACE (March
17, 2002), TerraSAR-X (June 15, 2007), MetOp (October 19, 2006), FORMOSAT-3/COSMIC
(April 15, 2006), and SAC-C (November 21, 2000)

recent GFZ activities. These include orbit, atmospheric, and ionospheric occulta-
tion data analysis for several satellite missions (CHAMP (Wickert et al. 2004),
GRACE-A (Wickert et al. 2005), SAC-C (Hajj et al. 2004), TerraSAR-X, and
FORMOSAT-3/COSMIC (Anthes et al. 2008); see Fig. 1) , but also scientific appli-
cations of the GPS radio occultation data.

2 Status of Radio Occultation with CHAMP and GRACE

CHAMP is in orbit already for more than seven years. Currently it is expected to get
occultation data until 2009. CHAMP’s observations form the first and unique long
term set of GPS radio occultation data. The measurements are recorded with a con-
sistent receiver firmware since March 2002. Continuous activation of GRACE-A
occultations (settings only) began on May 22, 2006 (Fig. 2), after a longer tem-
porarily measurement campaign in January/February 2006. The GRACE mission
is currently expected to last at least until 2012/13. We note that setting GRACE-B
occultations (except the initial measurements, (see, e.g., Beyerle et al. 2005; Wickert
et al. 2005, 2006a) were activated only for a short period between September 23
(14:00 UTC) and 30 (12:00 UTC), 2005. During this time GRACE-B trailed
GRACE-A and its occultation antenna pointed to anti-velocity direction. A valida-
tion study for occultation results within this period with ECMWF (European Centre
for Medium-Range Weather Forecasts) showed nearly identical characteristics as
those from GRACE-A (Wickert et al. 2006b). The major difference between the
GRACE satellites is the better value for the long-term stability of the Ultra Sta-
ble Oscillator (USO) aboard GRACE-B (about 30 ns/s) compared to GRACE-A
(about 230 ns/s). The current GRACE constellation would allow for the additional
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Fig. 2 Number of daily vertical atmospheric profiles, derived from CHAMP (left) and GRACE-
A (right) GPS occultation measurements (GFZ processing). For the 2357 days of CHAMP RO
activation 329 295 profiles have been collected (on average about 140 per day) as of December 31,
2007. The number of available profiles from GRACE-A for 618 days of RO activation is 77 136 as
of the same day (on average about 120 daily)

activation of rising occultations aboard GRACE-B. Technical aspects of such acti-
vation are currently under evaluation. For more details see Wickert et al. (2009) and
references therein.

3 Data Analysis and Validation

We briefly review current GFZ activities in RO data processing and validation
(Sects. 3.1-3.4) and present new gravity wave results (Sect. 4). Other activities at
GFZ, related to the application of GPS RO data as, e.g., global investigations of
tropopause parameters and ionospheric disturbances, are treated by, e.g., Schmidt
et al. (2005, 2006); Viehweg et al. (2007); Wickert et al. (2009).

3.1 Vertical Profiling of the Neutral Atmosphere

GPS RO data from CHAMP, GRACE (complete data set, see Fig. 2), and SAC-C
(August 18—October 22, 2001 and March 11-November 16, 2002) have been pro-
cessed by GFZ, including precise satellite orbit determination (GPS and LEO),
atmospheric excess phase calibration, and inversion to get atmospheric parame-
ters. The algorithms for the GFZ orbit and occultation processing are described in
several publications (e.g., Wickert et al. 2004, 2006a, 2009; Konig et al. 2005a,b).
The FORMOSAT-3/COSMIC temperature profiles for the gravity wave study, pre-
sented in Sect. 4, were provided by UCAR (University Corporation for Atmospheric
Research, Boulder).

Current plans at GFZ related to the GPS RO data analysis are, e.g., a complete
reprocessing of the CHAMP and GRACE data including the calibration files (level
2, PD, atmospheric Phase Delay) and the extension of the operational analysis soft-
ware to process OpenLoop (OL, see, e.g., Sokolovskiy et al. (2006)) data from
FORMOSAT-3/COSMIC, TerraSAR-X, or SAC-C (after 2003). Initial GFZ results
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of orbit and OL processing for selected examples of FORMOSAT-3/COSMIC data
were presented by Michalak et al. (2007a) and Wickert et al. (2009). There are cur-
rently no plans for an operational FORMOSAT-3/COSMIC processing at GFZ.

3.2 Ionosphere Profiling: Initial Results

The GFZ processing system will be extended to operationally generate vertical elec-
tron density profiles. These data can be used for several applications in ionospheric
research and space weather monitoring and forecast (e.g., Hajj et al. 2000; Jakowski
et al. 2005).

Figure 3 shows the first vertical electron density profile, derived with GFZ soft-
ware from CHAMP SST (Satellite-Satellite Tracking) GPS observation processing
level. The data are compared with inversion results from UCAR (Schreiner et al.
1999), DLR (Jakowski 2005), and in-situ data, provided by the Planar Langmuir
Probe (PLP) aboard CHAMP. We have used the differences of the excess phases
L, — L, during the occultation (1 Hz data), which directly can be converted to a
series of TEC values (Total Electron Content). Orbit and clock errors are automat-
ically eliminated in the difference. The series of TEC data can be converted to a
vertical electron density profile using the spherical symmetry assumption by Abel
inversion. Details of this technique are given by Schreiner et al. (1999). In contrast
to the authors, we apply an alternative technique for the absolute calibration of the
TEC values before Abel inversion, described by Lei et al. (2007). This approach is
used to estimate the exponential decrease of the electron density vs. height above
the orbit altitude.

The initial GFZ results are in nearly perfect agreement with profiles from UCAR
and DLR. Depending on the different scale heights used, 98 km and 182 km (right

CHAMP June 20, 2004; 00:12 UTC, 46.3°N, 50.5°E CHAMP June 20, 2004; 00:12 UTC, 46.3°N, 50.5°E
400 - - - - 400
300 300 |-
T T
= =
3 200 8 200
2 2
H <
GFZ GFZ
100 |-
100 DLR DLR
UCAR UCAR
0 : . . . 0
0 50x10" 1.0x10"" 1.5x10"" 2.0x10'" 2.5x10" 0 50x10'°  1.0x10" 1.5x10" 20x10" 2.5x10"
Electron density [1/m?] Electron density [1/m?]

Fig. 3 First vertical profiles of electron density (red) from CHAMP, completely derived using GFZ
analysis software. The data are compared with processing results from UCAR (green), DLR (dark
blue diamond), and in-situ data from the PLP (Planar Langmuir Probe, light blue cross). A sporadic
E-layer was observed at ~100 km altitude. The GFZ profiles are derived using two different scale
heights for the estimation of the TEC (Total Electron Content) above the orbit altitude (scale height
for exponential decrease of the electron density 182 km, left; and 98 km, right)
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and left plot in Fig. 3), the GFZ profile is more close to the UCAR or DLR solution.
GFZ and UCAR profiles show remarkably good agreement with the completely
independent PLP measurements. Future work will be related to the optimal choice
for the TEC calibration and to the automatization of the ionosphere profiling.

3.3 Water Vapor Comparison with MOZAIC

Beside radiosonde observations and meteorological analyses, aircraft measurements
of pressure, temperature, and humidity provide a valuable data source for GPS
RO validation in the troposphere region. The MOZAIC (Measurement of OZone
and wAter vapor by Airbus Inservice airCraft) program currently includes five air-
crafts performing up to 2500 flights per year. These data are not assimilated to
ECMWEF analyses and consequently provide an opportunity to assess whether GPS
RO data could provide significant additional water vapor information compared to
ECMWEF data without assimilating RO. In a first comparison study for GPS RO
and MOZAIC data (Heise et al. 2008), about 320 coinciding profiles of CHAMP
and MOZAIC (Fig. 4) were found from March 2001 until March 2006 (coincidence
radius: 3 h, 300 km). Between about 650 hPa and 300 hPa (not shown here), this
comparison reveals slightly better agreement of MOZAIC humidity with CHAMP
than with ECMWEF analyses. Figure 5 gives an example of CHAMP (1DVAR and
DWVP, Direct Water Vapor Pressure, retrievals) specific humidity (left) and refrac-
tivity (right) vertical profiles in comparison to MOZAIC and ECMWF data. Here,

Fig. 4 Global distribution of coincidences of CHAMP and MOZAIC (during aircraft ascent and
descent) vertical profiles from March 2001 until March 2006 (coincidence criteria: 3 h, 300 km)
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Fig. 5 Comparison of vertical specific humidity (leff) and refractivity (right) profiles derived from
CHAMP (1DVAR and DWVP) retrieval with MOZAIC and ECMWEF data. Example for a CHAMP
occultation on April 12, 2002, 20:33 UTC, 33.32°N, 132.09°E

both CHAMP humidity retrieval methods come to similar results revealing signifi-
cant improvement over the ECMWF specific humidity in comparison to MOZAIC
data. This is obviously due to better refractivity agreement between MOZAIC and
CHAMP than between MOZAIC and ECMWEF (Fig. 5, right).

3.4 Near-Real Time Data Processing

The Near-Real Time (NRT) processing is an essential key in ensuring that the
GPS radio occultation data collected by CHAMP and GRACE are fully exploited
and benefit the numerical weather prediction. Various weather forecast centers
monitor and assimilate GPS RO bending angle and refractivity profiles from
FORMOSAT-3/COSMIC, CHAMP, and GRACE since September 2006. These cen-
ters are ECMWE, Met Office, Japan Meteorological Agency (JMA), Meteo France,
National Center for Environmental Prediction (NCEP, US), and Deutscher Wet-
terdienst. Results of a recent impact study with GPS RO data from CHAMP and
GRACE-A NRT data were published by Healy et al. (2007).

The GFZ work on NRT data provision is supported by an international research
project (NRT-RO, Near-Real Time Radio Occultation), funded by the German



GPS Radio Occultation: Brief Review of Results from GFZ 9
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Fig. 6 Time delay between CHAMP (left) and GRACE-A (right) occultation measurements
aboard the satellites and availability of corresponding bending angle and refractivity profiles
(BUFR file format, Binary Universal Form of Representation of meteorological data) at the GFZ
NRT ftp-server in 2007. Light gray triangles indicate the daily mean time delay for all occultation
events. The significant reduction of the delay end February (CHAMP) and June (GRACE-A) is
due to the activation of an improved NRT processing mode

Federal Ministry of Education and Research within the GEOTECHNOLOGIEN
research program. The project is also supported by contributions from ECMWF
and Met Office.

The main goals of this project are: 1. The development of appropriate analysis
software for the precise and rapid derivation of GPS and LEO satellite orbits and
globally distributed atmospheric profiles from GPS SST data; 2. The demonstra-
tion of a NRT provision of atmospheric data from CHAMP and GRACE-A with
an average delay of less than 2 h; and 3. The corresponding assimilation in global
weather models. Bending angles and refractivities are made available with average
delay between the LEO measurements and provision of corresponding atmospheric
data of less than 2 h since 2007 with the activation of the new NRT processing mode
on February 21 (doy 52) for CHAMP and on June 26 (doy 177) for GRACE-A (see
Fig. 6, Fig. 7). The monitoring of the GFZ data product latency at the Met Office
(http://monitoring.grassaf.org) confirms that processing at GFZ delivers continu-
ously data in a timely manner — some 50% of the data arrives in less than 2 h and
almost all within 3 h (personal communication, Dave Offiler, Met Office, 2008). A
crucial task of the NRT data analysis is the precise and rapid satellite orbit determi-
nation. More details on this task are given by Michalak et al. (2007b) and Wickert
et al. (2009).

4 Selected RO Application: Global Gravity Wave Characteristics

Gravity waves (GW) play an important role for the general atmospheric circula-
tion, as they transport energy and momentum between different regions of the atmo-
sphere. Various satellite data sets enable a global view on major GW parameters, as
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e.g., temperature variances, momentum fluxes, or (potential) energy. But this view
depends on the used measurement characteristics, which was described in more
detail by Wu et al. (2006). According to the categorization of Wu et al. (2006) GPS
RO belongs to the sensors, which observe the atmosphere through a long transpar-
ent LOS (Line of Sight) path centered at the tangent point where most of the signal
comes from. Since such instruments normally have a narrow field of view (FOV),
their vertical resolution is often excellent, while their horizontal resolution is coarse
due to the LOS-smearing. Thus, GPS RO is mostly sensitive to GWs with small ratio
of vertical to horizontal wavelengths A,/Aj. Up to the present, GW analysis from
GPS RO temperature measurements is restricted to vertical wavelengths mostly less
than ~10 km to separate the GWs from the background and planetary waves (PW).
The current restriction to provide only vertical GW information with GPS RO is
caused by the sparse temporal and spatial measurement density provided by a sin-
gle satellite only (e.g., CHAMP). Data from missions as FORMOSAT-3/COSMIC
could also allow to derive information on horizontal GW properties.

In the past several GW studies based on GPS RO were mainly focussed on the
lower stratosphere (Tsuda et al. 2000; Ratnam et al. 2004a,b; de la Torre et al.
2006a,b, 2009; Frohlich et al. 2007). A study to Kelvin waves using the CHAMP
data set from 2001 to 2003 was performed by Randel and Wu (2005).

De la Torre et al. (2006b) applied a Gaussian filter to investigate different vertical
wavelength ranges (A, <10 km, A, < 4 km, and 4 km< X, <10 km). The authors
used the specific potential energy Ej, to describe the GW activity. Here we use also
the potential energy derived for vertical wavelengths less than 10 km, expressed by
db values, to describe the wave activity. Figure 8 (top) shows the global GW activ-
ity averaged over the northern hemispheric (NH) winter (DJF) and summer (JJA)
months between 20 km and 25 km based on CHAMP data from 2001 to 2007. The
maximum GW activity is clearly seen in the tropics with slightly higher values dur-
ing NH winter. In the extra-tropics the maximum GW activity is also found during
winter. Due to the sparse data density of the CHAMP measurements the horizontal
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Fig. 8 Above: Global mean potential energy between 20 and 25 km altitude derived using a
Gaussian filter for CHAMP/SAC-C/GRACE for northern hemispheric winter (DJF) and summer
(JJA) based on the data from May 2001 to June 2007. The latitude/longitude resolution represent
10° x 10°. Below: same as above, but using FORMOSAT-3/COSMIC data from DJF 2006/2007
and JJA 2006/2007. The latitude/longitude resolution is 2.5° x 2.5°

resolution is only 10° x 10°. The FORMOSAT-3/COSMIC mission offers new pos-
sibilities because of the much better data density (about 10 times more temperature
profiles daily than CHAMP). Figure 8 (bottom) demonstrates this showing only one
NH winter and summer season, but with a horizontal resolution of 2.5° x 2.5°. These
plots represent first GW related results with FORMOSAT-3/COSMIC data using the
GFZ GW analysis software, which is described in more detail by de la Torre et al.
(2006b) for the CHAMP data.

5 GPS Radio Occultation with TerraSAR-X

The German TerraSAR-X satellite (see Fig. 1) was launched on June 15, 2007 with a
Dnepr-1 rocket from the Aerodrome Baikonur. The main science instrument aboard
is a new generation X-band radar (9.65 GHz) for Earth observation with up to
1-2 m resolution (spotlight mode). GFZ (together with University Texas) is oper-
ating an IGOR (Integrated GNSS Occultation Receiver). The operational activation
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of occultation measurements is planned for 2008. GFZ is planning a near-real time
data provision similar to CHAMP and GRACE-A.

The multi mission reception of GPS data from CHAMP, GRACE-A, and Terra-
SAR-X at the GFZ receiving station Ny Alesund, Spitsbergen, was already success-
fully demonstrated. Several test campaigns took place between July and October
2007 using both antennas for either redundant or parallel satellite reception. Dur-
ing these time periods also near-real time orbit processing was activated. Figure 9
shows results of a comparison of TerraSAR-X NRT orbit data with SLR (Satellite
Laser Ranging) measurements between August 28 and October 8, 2007. The com-
parison yields an average RMS of 3.7 cm, which is in good agreement with the NRT
orbit comparisons from CHAMP and GRACE-A with SLR (Michalak et al. 2007b).
The operational NRT reception of IGOR data from TerraSAR-X was activated for a
longer period from October 2007 until mid February 2008. The TerraSAR-X occul-
tation data are recorded in OpenLoop (OL) mode (see, e.g., Beyerle et al. (2006);
Sokolovskiy et al.(2006)). To analyze the OL data the navigation bit information
from the respective occulting GPS satellite is required. For this purpose GFZ oper-
ates a dedicated global ground network (Beyerle et al. 2008), which currently (as of
end 2008) consists of 6 stations.

6 Conclusions and Outlook
Several GFZ results from the current GPS RO multi-satellite constellation were pre-

sented. CHAMP is generating the first long-term set of GPS radio occultation data,
which is expected to cover at least a period of 8 years. GRACE-A is expected to
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extend this data set until at least 2013. CHAMP and also GRACE-A data are pro-
vided to various international weather centers and stimulated the use of GPS RO
data for numerical weather forecast. Currently these data are provided with average
delay of less than 2 h.

Initial results of ionospheric occultation processing at GFZ were presented. The
profiles are in good agreement with inversion results from other centers but also with
PLP data from CHAMP. Further work is needed for an automatization of the pro-
cessing. FORMOSAT-3/COSMIC orbit and occultation data are processed at GFZ
for selected periods. Currently the OpenLoop analysis of the occultation data is not
yet operational.

Results on validation of RO data with airplane measurements within the interna-
tional MOZAIC research program were presented. It was shown, that these data
are a valuable source for the evaluation and improvement of the GPS RO data
quality.

Data from CHAMP, GRACE-A, SAC-C, and FORMOSAT-3/COSMIC are used
to derive characteristics of vertical gravity waves on a global scale. It was shown,
that especially the FORMOSAT-3/COSMIC data allow a significant enhancement
of the spatial and temporal resolution of these investigations.

It is expected that TerraSAR-X will extend the current multi-satellite configura-
tion for GPS RO with continuous occultation activation in 2008. Current activities
are aimed to provide TerraSAR-X occultation data also in near-real time, similar to
CHAMP and GRACE-A. Initial results on NRT orbit determination of TerraSAR-X
were presented, indicating appropriate accuracy for precise occultation processing.

MetOp (EUMETSAT, launched October 2006) GPS occultation data are avail-
able since 2008. The Indian OCEANSAT-2 satellite is schedule for launch in 2009
and will carry an Italian GPS flight receiver with occultation capability (ROSA,
Radio Occultation Sounder Antenna for the Atmosphere).

In general the described multi-satellite configuration significantly increases the
potential of GPS RO for atmospheric sounding on a global scale with application in
weather forecast, climate research, and for other atmospheric investigations.
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Error Estimate of Bending Angles
in the Presence of Strong Horizontal Gradients

M.E. Gorbunov and K.B. Lauritsen

Abstract The CT/FSI (Canonical Transform/Full-Spectrum Inversion) technique
permits achieving a high accuracy and vertical resolution in the retrieval of bending
angle from radio occultation data. This technique can be universally applied for the
(hypothetical) spherically-symmetric atmosphere and any multipath situation can be
unfolded. The reason is that the CT/FSI technique uses a Fourier Integral Operator
that maps the measured wave field into the impact parameter representation, and for
a spherically-symmetric medium each ray has a unique impact parameter. For the
real atmosphere with horizontal gradients the situation is different. Horizontal gra-
dients result in the variation of the impact parameter along a ray. In the presence of
strong horizontal gradients, a bending angle profile can become a multi-valued func-
tion. In this case, the CT/FSI technique in its standard variant will fail to correctly
retrieve the bending angle profile. It is, however, possible to estimate bending angle
errors. For this purpose we apply the sliding spectral analysis of the CT-transformed
wave field. The spectral width is used as a measure of the bending angle errors. We
perform numerical simulations with global fields from re-analyses of the European
Centre for Medium-Range Weather Forecasts and show that this radio holographic
technique can be effectively used for error estimation in the areas of multi-valued
bending angle profiles.

1 Introduction

The Canonical Transform (CT) (Gorbunov 2002; Gorbunov and Lauritsen 2004),
Full-Spectrum Inversion (FSI) (Jensen et al. 2003), and Phase Matching (Jensen
et al. 2004) methods were designed for the reconstruction of the ray manifold struc-
ture from the measurements of the complex wave. They are widely used for the
retrieval of bending angle profiles from radio occultation (RO) data. The central
concept of the CT method is the ray manifold in the phase space. The canonical
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coordinates (coordinates and momenta) in phase space can be chosen in different
ways. A particular choice is the physical coordinate and ray direction vector pro-
jection to the coordinate axis. This coordinate system is used for the description
of the physical wave field. Multipath propagation corresponds to the multi-valued
projection of the ray manifold to the coordinate axis. For the retrieval of the ray
manifold structure it is however necessary to find another coordinate axis such that
the ray manifold should have a single-valued projection upon it. For the rays in a
spherically-symmetrical atmosphere the impact parameter is an invariant quantity
that is constant for each ray. The impact parameter is, therefore, a unique coordi-
nate along the ray manifold. Impact parameter and bending angle are conjugated
coordinate and momentum. The canonical transform from the physical coordinate
and ray direction vector projection to impact parameter and bending angle would
then completely disentangle multipath structure. The impact parameter provides a
universal coordinate choice for the case of the spherically symmetrical atmosphere.

The situation changes as we consider the atmosphere with horizontal gradients.
In this case, it is possible to introduce the effective impact parameter, whose defini-
tion will depend on the horizontal gradients of refractivity. It turns out that the stan-
dard CT algorithm can work in most practical situations. However, numerical sim-
ulations with global fields from the European Centre for Medium-Range Weather
Forecasts (ECMWF) do also reveal cases where atmospheric horizontal gradients
are strong enough to make the bending angle a multi-valued function of the effec-
tive impact parameter. Because the structure of the ray manifold depends on the
unknown horizontal gradients, it proves impossible to specify a universal coordi-
nate choice that can unfold multipath. Therefore, it is necessary to estimate bending
angle errors.

Two approaches were introduced for the dynamic estimate of bending angle
errors, both based on the analysis of the CT/FSI-transformed wave field: (1) the
sliding spectral analysis of the full complex wave fields in the transformed space
(Gorbunov et al. 2005, 2006) and (2) the analysis of the fluctuation of the ampli-
tude of the wave field in the transformed space (Lohmann 2006). The first approach
is applied in the operational processing of RO data. The second approach was
recently used to estimate the summary effect of receiver tracking errors and lower-
tropospheric turbulence and to generate maps of convection and turbulence struc-
tures (Sokolovskiy et al. 2007).

Here, we estimate errors of the bending angle retrieval by using the sliding-
spectral analysis of the CT-transformed wave field. We will present some atmo-
sphere examples with horizontal gradients and obtain results for the corresponding
bending angle error estimates.

2 Ray Manifold and its Description in the Phase Space

In a RO experiment rays are emitted by a GPS satellite, pass through the atmo-
sphere, where they undergo refraction, and are received by a Low-Earth Orbiter
(LEO). Each ray may be characterized by its impact parameter p. For a spherically
symmetrical medium, Snell’s law reads (Kravtsov and Orlov 1990):
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Fig. 1 Schematic drawing of the occultation geometry. The various quantities are discussed in the
main text

nrsiny = p = const (D

where ¥ is the angle between the ray direction and the radius vector r (Fig. 1)
and n is the refractive index. Since the GPS and LEO satellites are located outside
of the atmosphere where n = 1 (here we neglect the ionosphere), it follows that
p = rg sin g = rp, sin Y., which equals the leveling distance between the ray and
the Earth’s curvature center.

When considering an atmosphere with horizontal gradients, the situation
changes. The complex wave field in the inhomogeneous medium can be written
in the following form: u(x) = A(x)exp(ik¥(x)), where x = (x') is the coordinate
vector, k = 27 /X is the wave number, A is the wavelength, A(X) is the amplitude,
and ¥ (x) is the eikonal. The geometrical optics of inhomogeneous media is based
on the eikonal equation (Kravtsov and Orlov 1990):

(V¥)? = n*(x) 2)

Rays are described by the Hamilton system, where the Hamilton function follows
from Eq. 2): H(p,x) = 1/2- (p2 — n?(x)), where p = V¥ is the momentum. The
associated Hamilton equations for a ray take the following form:

dx ) dp

&P dr nvn, )
where 7 is the trajectory parameter. Along the ray trajectories, H(p, x) = 0, there-
fore |[dx/dt| = |p| = n(x), which allows for the conclusion that dt = ds/n (since
ds = |dx]|). Consider now polar coordinates (r, #) and the corresponding metrics
diag(1, r?). The equations for the angular component of the momentum py take the
following form:



