

Milestones in Analog and Digital Computing

Herbert Bruderer

Milestones in Analog and Digital Computing

Third edition

Translated from the German by John McMinn

Herbert Bruderer (5)
Rorschach, Switzerland

ISBN 978-3-030-40973-9 ISBN 978-3-030-40974-6 (eBook) https://doi.org/10.1007/978-3-030-40974-6

© Springer Nature Switzerland AG 2015, 2018, 2020

This work is subject to copyright. All rights reserved. The translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction as microfilm or by any other physical process, transmission, as well as information storage and retrieval, electronic modification or use of computer programs, or by any currently known or subsequently developed method requires the express permission of the publisher.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication, even in the absence of a specific context, does not imply that such names are exempt from relevant protective legislation and regulations, therefore precluding their free use.

To the best of their knowledge, the publisher, the authors and the editors attest to the correctness and accuracy of the recommendations and information found in this book at the time of publication. However, neither the publisher, the authors, nor the editors are liable for any errors or omissions, either expressed or implied, with respect to the material of the book. The publisher remains neutral with regard to jurisdictional claims in relation to published maps and institutional affiliations.

This Springer imprint is published by the Springer Nature AG registered company Registered company address: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

As per the title of this book, this work presents selected masterpieces from the field of calculating and computing technology. It also includes related areas, such as historical automatons and scientific instruments (astronomy, land surveying, and time measurement). The book deals with contributions to the history of mathematics, with articles from the history of computer science. The objective is therefore not the complete documentation of historical developments. The focus is primarily on the technical achievements and not on their impact on the economy and society. The work contains no biographies. The history of mathematics and computer science constitutes a cultural-historical travel through time, a journey into the past.

Two Volumes

In view of the scope of this work, the book comprises two volumes. Some selected keywords relate to the following content:

Volume 1

Basic Principles, Mechanical Calculating Devices, and Automatons

- Basic principles (mechanical and electronic calculators, the digital transformation)
- Global overview of early electronic digital computers
- Development of arithmetic
- · Mechanical calculating machines
- Classification of calculating aids
- Museums and their collections
- Famous replicas (Babbage, Pascal, Leibniz, Hollerith)
- Slide rules (linear, circular, cylindrical, and pocket watch slide rules)
- Roman hand abacus
- Historical automatons and robots (automaton figures, musical automatons, Leonardo da Vinci's robots)
- · Automaton clocks
- Scientific instruments (mathematics, astronomy, surveying, time measurement)
- Chronology
- Technological, economic, social, and cultural history
- Step-by-step instructions

Volume 2

Electronic Computers, Glossaries, and Bibliographies

- Invention of the computer (Babbage, Turing, Zuse, von Neumann)
- Development in Germany (Zuse, Telefunken, Siemens)

vi Preface

• Development in Great Britain (Enigma, Turing-Welchman Bombe, Colossus, Bletchley Park)

- Development in Switzerland (Zuse Z4, Ermeth)
- Original documents (Zuse Z4 and Ermeth)
- Global development of the computing technology
- German-English glossary of technical terms
- · English-German glossary of technical terms
- Worldwide bibliography

There are also hybrid forms between analog and digital calculating devices. The use of mechanical and electronic calculating devices is overlapping. The boundary between the two volumes is consequently somewhat fuzzy. Thus, for example, the chapter "Basic Principles" covers both older and newer calculating machines. The German-English and English-German glossaries and the bibliography include entries covering the entire history of computing technology. The 20 step-by-step instructions (including the Roman hand abacus and the pantograph) refer to both analog and digital calculating devices.

The Book in Numbers

The two volumes together encompass around 2000 pages, with more than 150 tables and more than 700 figures. Each of the two German-English and English-German glossaries of technical terms includes more than 5000 entries. The bibliography lists more than 6000 sources.

What Is New?

Compared with the award-winning first edition, the second edition has been thoroughly revised and considerably expanded. For the English version, the entire work has been revised and supplemented and errors corrected. Below are the most important changes of the second and third editions:

- New findings: Multiple Curta (world's smallest mechanical parallel calculator), circular slide rule of Weber, and Summus circular adding machine
- Additional step-by-step operating instructions for especially instructive mechanical calculating devices: Millionaire, Madas, Simex, Summus, Brunsviga, and original Odhner
- Significantly expanded global overview of the existing holdings of valuable historical objects in the most important museums
- About 280 new figures (compared to the second edition) of rare analog and digital calculating devices and other scientific instruments (above all from time measurement and astronomy), as well as historically important automaton figures, musical automatons, Roman bead frames, Leonardo's robots, and famous replicas
- More detailed explanation of the finding of the century, the Antikythera mechanism (world's first known astronomical calculating machine), in connection with a survey among internationally leading researchers

Preface vii

 About 50 new tables (compared to the second edition) relating to different subjects

- Comprehensive German-English and English-German glossaries of technical terms dealing with the history of computer science and related fields, each with more than 5000 entries
- Greatly expanded and updated bibliography with more than 6000 entries, including selected publications about arithmetic teachers, history of technology, and history of science, together with history of astronomy, surveying, clocks, automatons, and the digital transformation
- In general, greater consideration of related fields, such as scientific instruments (mathematics, astronomy, surveying, or measurement of time), typewriters, perforated tape controlled looms, and automatons: automaton figures (androids and animal figures), musical automatons (mechanical music instruments), picture clocks, chess automatons, automaton writers, automaton clocks, drawing automatons, and historical robots
- Dealing with the basic questions of the history of science and technology and the preservation of the cultural heritage of technology
- Additional definitions, such as algorithm, logarithm, and numerical and graphical computation (nomography)
- Numerous new definitions relating to mechanical calculating devices, bookkeeping machines and punched card equipment
- Expanded presentation of the differences between analog and digital
- Details about the origin of the binary system before Leibniz
- Overview of current developments, such as digitization, the digital transformation, artificial intelligence, machine learning, industrial revolutions, robotics, drones, social networks, electronic commerce, privacy protection, and data ownership
- Reference to DNA and quantum computers
- Detailed elaboration of controversial issues: Ada Lovelace (reputed to be first woman programmer), Alan Turing (universal computer, stored program, influence on computer design), Thales of Miletus (measurement of the height of the pyramids, intercept theorem), Heron of Alexandria (invention of the pantograph), and onset of artificial intelligence (international computing machinery conference, 1951 in Paris)
- Additional documents from the first Great Exhibition of 1851 in London
- Evaluation of exhibition catalogs (e.g., the Mustermesse Basel and the Bürofachmesse Zurich) and commercial journals
- Determination of the age of Swiss calculating devices with the help of exhibition catalogs and entries in the Swiss Official Gazette of Commerce
- Dating of the world-famous "Millionaire" direct multiplying machine based on the serial number (thanks to newly discovered findings of documents of the manufacturer and global inquiries, for example, with museums, collectors, and surveying offices)

viii Preface

• Considerations for self-built analog devices (pantograph, pair of sector compasses, and proportional dividers)

• Very detailed index of persons, places, and subjects.

Selected Milestones

This work presents a number of particularly sensational and surprising findings:

- The world's first (mechanical) astronomical calculating machine
- The world's largest and most accurate commercially available cylindrical slide rules
- The world's first (commercially) successful calculating machine
- The world's oldest known keyboard adding machine
- The world's first (mechanical) "process computer"
- The world's smallest mechanical calculating machine
- The world's smallest mechanical parallel calculating machine.

Global Surveys

This work includes numerous global surveys, such as concerning the first (electromechanical) relay and (electronic) vacuum tube computers, the pioneers of computer science and their inventions, and museum holdings. Furthermore, it conveys an overview of the mechanical calculating devices in Switzerland. Together with the extensive index of persons, places, and subjects, the book is therefore suitable as a reference work.

Step-by-Step Operating Instructions

Hard-to-find user instructions for historical analog and digital calculating devices are included in order to enhance the user value of this book. These make clear how cumbersome calculating once was.

Preservation of the Cultural Heritage of Technology

It is my hope that this book will motivate readers to become interested in the cultural heritage of technology and the preservation of such treasures. Perhaps this publication will wrest some outstanding achievements in computer science from oblivion. It would be gratifying if this book is able to encourage young persons to take up a technical education and thus alleviate the shortage specialists in the next generation. A further important objective is the promotion of the history of technology.

Digital Transformation

Groundbreaking inventions, such as the wheel, the steam engine, letterpress, the current generator, the number zero, the computer, the transistor, the World Wide Web, and the robot, have led to a profound reshaping of the world. Many companies have fallen victim to the transition from mechanical systems to electronics. They failed to recognize the signs of the time and were left behind with this development. A similar rapid upheaval is apparent with the

transition from analog technology to digital technology. In this connection, numerous companies have also perished. The upsurge of the global Internet has a far-reaching, many-faceted, and difficult-to-foresee impact on politics, society, economics, science, and technology. The omnipresent informatics penetrates nearly all areas of life. The ongoing digital transformation is often described as the fourth industrial revolution.

Fifty years ago, no one sensed the onset of this fundamental revolution in technology. The inexorable changes overwhelm many persons. Who recalls today how difficult it was to handle the slide rule and tables of logarithms or the typewriter? How will the world look in another 50 years? Will we still be able to read our electronic documents? How long will the lifespan of digital reference works be? Books and newspapers survive for centuries. Let us recall: Albert Einstein derived his groundbreaking insights with paper and pencil, without the help of electronic resources.

Regarding the Origins of This Book

The enormous work required to compile this book entailed negative as well as positive experiences.

Obstacles

The many years of - exclusively unsalaried - researches were unfortunately complicated by the circumstance that the readiness for the support of these was often meager, in some cases because of narrow-minded jealousy. At times, the work was purposely hindered.

Which historical calculating devices are found at which particular places? The most important museums were asked to check their holding lists for correctness and completeness. Unfortunately, some (repeated) questions remained unanswered. Considerable reluctance was also encountered regarding the willingness to deliver difficultly accessible documents.

Further hurdles arose concerning the entry of the work in Wikipedia.

Theft of Intellectual Property

With the discovery of theft or falsification of intellectual property, the victim is often penalized and not the offender. Almost worse than the faulty circumstances themselves is the behavior of the persons involved when this fraudulence comes to light: from resolute silence to intimidation with threatened legal actions. Instead of eliminating plagiarizations and falsifications from the market, these continue to be actively sold.

Works from foreign sources are all too often kept quiet in order to exclude competition.

x Preface

Acquisition of Top-Quality Photographic Material

Acquiring high-resolution photographs of historical calculating devices was enormously time-consuming and in part very expensive. Initially, it was necessary to find the relevant contact partners. In some cases, it was necessary to open an online account with the related illustration database and examine the collections over many hours. Furthermore, the acquisition and use of these photographs required concluding agreements which, in some cases, could be delivered only by letter mail.

Many museums demand exorbitant fees even for works relating to research, which, as experience shows, exist only in limited editions. Apart from one or more specimen copies, it is not at all rare that the cost of a single photograph is more than that of a 1000-page book, even though this provides cost-free transnational advertisement for the institutions in question. For financial reasons, in many cases, it was necessary to do without photographic material. In addition, photos are guarded as though they were state secrets.

For copyright and quality reasons, no photographic material was taken from the Internet. In one particular case, concerning the illustration of the competition between American cyberneticist Norbert Wiener and chess-playing automaton of the Spaniard Leonardo Torres Quevedo (1951), it is not known who is entitled to the copyright. This is evidently a photograph taken from the press. The illustrations were taken from the following countries: Australia, Austria, Belgium, Canada, China, France, Germany, Greece, Italy, Liechtenstein, the Netherlands, Spain, Sweden, Switzerland, the UK, and the USA.

No Financial Support

The entire work was financed by the author alone, without any third-party funding. Consequently, there are no obligations and dependencies. The work originated single-handedly.

Multicolored Mixture

This work is a practice-oriented mixture of history book, informatics book, textbook, museum guide, instructions for use, glossary, bibliography, and reference work. It presents various outstanding achievements, discusses controversial issues, and defines core themes. Both digital and analog computers are considered, including ornate automatons. Understandably, this structure may be somewhat confusing. It is of course not easy to reconcile such diversity. One can say to the detriment of the book that it is "neither fish nor flesh" and that the common thread is not always immediately recognizable.

Additions and Improvements

Wherever possible, the correctness of all assertions was controlled on the basis of the original documents. In spite of great care, however, errors can unfortunately not be excluded. The author is therefore grateful for suggested improvements – calling attention to errors and additional information.

Preface xi

Search for Objects and Documents

I would be pleased to receive any information about rare and unknown historical calculating devices – mechanical calculating machines or slide rules of all types – and previously unknown documents.

English Edition

The tedious international search for the financial backing of the comprehensive English translation remained unsuccessful. The author himself therefore assumed the costs of the transcription. The search for a qualified native English translator also proved very time-consuming. The search was conducted above all in North America, Great Britain, Germany, and Switzerland. The database of the German Federal Association of Interpreters and Translators was especially helpful here. Ultimately, a good solution was found.

It is not at all self-evident that a publishing house is prepared to publish such a large, four-colored work.

Environmental Protection

Although worldwide researches were carried out, not a single flight was necessary for the work. Public transport (train and bus) was used for all domestic and international travel to European museums, libraries, archives, conferences, etc.

Highlighting

Certain words and passages deserving particular emphasis are highlighted in italics.

Herbert Bruderer September 2020

Bruderer Informatik, Seehaldenstraße 26, Postfach 47, CH-9401 Rorschach, Switzerland,

Telephone +41 71 855 77 11,

Electronic mail: herbert.bruderer@bluewin.ch; bruderer@retired.ethz.ch http://orcid.org/0000-0001-9862-1910

Acknowledgments

This book owes its origin to a great many persons. Without their very much appreciated help, this work would never have been possible. I would like to express my heartfelt thanks to all those who supported me during roughly 10 years of work. Because of the danger that I could forget to mention some of those who have helped me, with a few exceptions, I will not name these persons.

Libraries

First of all, I would like to mention the ETH (Swiss Federal Institute of Technology, Zurich) Library. I am very grateful to the staff of the different sections. Beatrice Ackermann, Ursula Albrecht, Manuela Christen, Aristidis Harissiadis, and Patricia Robertson were able to provide me with numerous, often difficult accessible, domestic and foreign documents.

Museums and Archives

Numerous domestic and international technical, scientific, and historical museums were helpful with the researches. Valuable information was obtained from a number of private and public archives.

Magnificent Fully Functional Androids from the Eighteenth Century

The three automaton figures of Jaquet Droz, the "Musician", the "Writer", and the "Draftsman", first introduced in 1774, are regarded as the world's finest examples of sophisticated androids. They are part of the holdings of the Musée d'art et d'histoire in Neuchâtel. In connection with a film for the American journal *Communications of the ACM*, Thierry Amstutz demonstrated this mechanical wonder for us.

Provision of Mechanical Calculating Machines and Cylindrical Slide Rules

Some collectors supported the investigations by providing analog and digital devices of historical importance: Heiri Hefti, Fritz Menzi, Niklaus Ragaz, and Urs Rüfenacht.

Scientific Journals and Conference Proceedings

The results of these time-consuming efforts have found international approval, not in the least thanks to the publications in the flagship magazine of the Association for Computing Machinery (ACM), New York. My special appreciation goes to the editors of the widely circulated Communications of the ACM: Moshe Y. Vardi, Andrew A. Chien, Andrew Rosenbloom, David Roman, Diane Crawford, and Lawrence Fisher. The ACM awards the Turing Prize, generally viewed as the Nobel Prize for informatics.

xiv Acknowledgments

Other articles (talks given in London and New York) are documented in the conference proceedings of the International Federation for Information Processing (IFIP, Laxenburg, Austria), the global parent organization of the national scientific informatics societies.

Worthy of mention are also the IEEE Annals of the History of Computing (New York), the leading journal for the history of computer science, along with the *Journal of the Oughtred Society* (California), *CBI Newsletter* (Charles Babbage Institute, University of Minnesota, Minneapolis), and *Resurrection*, the newsletter of the British Computer Conservation Society (London).

Photographs

To their credit, many institutions made high-resolution black and white and color photographs of history-charged devices, machines, and documents available to me and granted permission to reproduce these. Further information can be found in connection with the respective photographs.

Award-Winning Book

The Oughtred Society conferred an award on the first edition of this work in 2016. This USA-based international association is concerned with the history of the slide rule and other mathematical instruments. The Briton William Oughtred was the inventor of the slide rule.

Book Reviews

I would like to express my gratitude to Thomas Sonar (Technische Universität Braunschweig), Steven Deckelman (University of Wisconsin-Stout, Menomonie, Wisconsin), Rainer Gebhardt (Adam-Ries-Bund, Annaberg-Buchholz), and Maik Schmidt, as well as Peter Schmitz (Magazin für Computertechnik c't, Hanover) for their outstanding reviews of the first edition. These were published by the Mathematical Association of America and in the Mathematische Semesterberichte (Springer Verlag) and reprinted in the Newsletter of the European Mathematical Society and the Deutsche Mathematiker-Vereinigung.

English Translation

The excellent English translation of this difficult and demanding undertaking by the American physicist Dr. John McMinn (Bamberg, Germany), delivered on schedule, deserves a commendation.

The Publisher

Finally, I would like to express my particular gratitude to the staff of Springer Nature Switzerland AG, Cham, for their support and realization of this book.

Contents

Pref	ace	V
Ackı	nowledgments	xiii
Volu	me I	
1	Introduction	1
1.1	Objective	1
1.2	Target Groups	3
1.3	Period of Time	3
1.4	What Is Computing Technology?	4
1.5	Spectacular Device and Document Findings	4
1.6	Most Frequently Asked Questions Regarding Unknown	
	Calculating Devices	9
1.7	Instructions for Operating Historic Calculating Aids	10
1.8	In Regard to the Origin of This Book	13
1.9	In Regard to Language	16
1.10	In Regard to the Content	18
1.11	Priorities	19
1.12	Oral History Interviews	20
1.13	Firsthand Accounts	21
1.14	Approach	22
1.15	Highlights of the Researches	29
1.16	Low Points of the Researches	31
1.17	Plagiarism of Intellectual Property	32
1.18	Publications	32
1.19	Sources	33
1.20	Bibliography	33
1.21	Regarding the Title of the Book	34
1.22	Instructions for Assembly	35
2	Basic Principles	37
2.1	Analog and Digital Devices	38
2.1.1	Numerals or Physical Variables	39
2.1.2	Numeration or Measurement	39
2.2	Parallel and Serial Machines	69
2.3	Decimal and Binary Machines	73
2.4	Fixed Point and Floating Point Computers	78
2.5	Special-Purpose and Universal Computers	80
2.6	Interconnected Computers	82
2.7	Conditional Commands	84
2.8	Components of Relay and Vacuum Tube Computers	86
2.9	Electronic Tubes	90
2.10	Delay Line Memories and Electrostatic Memories	93

xvi Contents

2.11	Main Memory	93
2.12	Magnetic Memory	97
2.13	Hardware and Software	99
2.14	Subtraction with Complements	101
2.15	Direct and Indirect Multiplication	103
2.16	Sequence Control and Program Control	106
2.17	Automation	108
2.18	Punched Card Machines	110
2.19	Electronic Brains	113
2.20	Commercial Data Processing and Scientific Computation	114
2.21	Program-Controlled Digital Computers in the Year 1950	115
2,22	Mechanical Calculating Machines	118
2.23	Accounting Machines	128
2.24	Tabulators	128
2.25	Diversity of Terms and Change of Meaning	129
2.26	Digitization and Artificial Intelligence	138
2.26.1	Algorithms Are Nothing New	138
2.26.2	Artificial Intelligence Is Nothing New	139
2.26.3	Digitization Is Nothing New	139
2.26.4	Two Notable Phases of Digitization	140
2.26.5	Digital History?	140
2.26.6	Industrial Revolutions	140
2.26.7	The Digital Transformation	141
2.27	Quantum Computers	154
2.28	DNA Computers	156
3	The Coming of Age of Arithmetic	157
3.1	From Tally Stick Through Abacus to Smartphone	158
3 . 2	Counting with the Fingers	164
3 . 3	Abacus Calculation	165
3.3.1	Calculating with Roman Numbers Is Laborious	176
3.3.2	Bead Frame Computation	179
3.3.3	Russian Counting Frames and School Abacus	182
3.4	Counting Tables, Counting Boards, and Counting Cloths	183
3 .4. 1	Line Computation/Calculating on Lines	185
3.5	Pen and Paper Calculation	191
3.6	Graphical Computation: Nomography	191
3.7	Lines of Development	192
3.8	Many Technical Objects Are Also Magnificent Works of Art	196
4	Classification of Calculating Aids and Related Instruments .	199
4.1	Calculating Devices and Calculating Machines	200
4.2	Adding Machines and Calculating Machines	201
4.3	Mathematical Machines and Mathematical Instruments	201
4.4	Planimeters	203
4.5	Pantographs	211

Contents xvii

4.6	Intercept Theorems	214
4.6.1	We Are Probably Indebted to Thales of Miletus	
	for the Intercept Theorem	215
4.6.2	The Pantograph: The Invention of Heron or Scheiner?	217
4.6.3	How Does a Pantograph Function?	218
4.7	Sectors	220
4. 8	Proportional Dividers	221
4.9	Protractors and Clinometers	225
4. 10	Coordinatographs	227
4.11	Mathematical Tables	230
4.12	Astronomical instruments	232
4.13	Mechanical and Electronic Calculators	237
4.14	Classification Criteria	238
4.14.1	Types of Calculating and Computing Machines	238
4.14.2	Computer Generations	238
4.14.3	Arithmetic Unit and Memory Unit	239
5	Chronology	245
5.1	Pre- and Early History of Computer Technology	-45
J. 2	and Automaton Construction	245
6	Pioneers in Calculating and Computing Technology	255
6.1	From Which Countries Do the Inventors and Discoverers	
	Come?	257
6.2	Who Invented Which Calculating Aid When?	267
6.3	New Inventions of Fundamental Importance	272
6.4	Manufacturers of Calculating Aids	272
7	Conferences and Institutes	277
7. 1	Early Conferences on Computer Science	277
7.2	Early Institutes for Computing Technology	287
7. 2 7.3	Universities with an Illustrious Past	290
7.4 7.4	Associations and Journals for the History of Computer	290
/•4	Science.	291
		-
8	Global Overview of Early Digital Computers (Tables)	293
8.1	Preliminary Remarks	293
8.2	Early Relay and Vacuum Tube Computers	
	(In Alphabetical Order)	295
8.3	Early Relay and Vacuum Tube Computers	
	(In Chronological Order)	300
8.4	Commentary Regarding the Early Relay and Vacuum	
	Tube Computers	302
9	Museums and Collections	307
9.1	Museums of Science and Technology	308
9.1.1	Collection Databases	312

xviii Contents

9.1.2	Early Exhibits of Calculating Aids	313
9.2	Which Museum Has Which Historical Calculating Devices?	316
9.3	Which Calculating Devices Are Among the Museum's	
	Holdings?	317
9.3.1	Australia	317
9.3.2	Austria	318
9.3.3	Belgium	319
9.3.4	Canada	319
9.3.5	China	319
9.3.6	Czech Republic	319
9.3.7	France	319
9.3.8	Germany	321
9.3.9	Greece	328
9.3.10	Italy	328
9.3.11	Japan	330
9.3.12	The Netherlands	330
9.3.13	New Zealand	330
9.3.14	Spain	330
9.3.15	Sweden	330
9.3.16	Switzerland	331
9.3.17	UK	333
9.3.18	USA	336
9.4	Where Is a Particular Historical Calculating Device on	
	Exhibit?	362
9.4.1	Analog Calculating Aids	362
9.4.2	Digital Calculating Aids	363
9.4.3	Counting Tables, Counting Boards, and Counting Cloths	364
9.4.4	Historical Calculating Aids and Their Exhibition Sites:	
	Originals	366
9.4.5	Historical Calculating Aids and Their Exhibition Sites: Replica	ıS
	and Reconstructions	371
9.4.6	Programmable Historical Automaton Writers (Original	
	Specimens)	374
9.4.7	Why Reconstructions?	375
9.4.8	Roberto Guatelli: Replicas of Machines from da Vinci, Pascal,	
	Leibniz, Babbage, and Hollerith	376
9.4.9	Resurrected Relay and Vacuum Tube Computers	389
9.5	Oldest Surviving Calculating Aids	390
9.5.1	Early Four-Function Machines	390
9.5.2	Early One- and Two-Function Machines	393
9.5.3	Schickard, Pascal, and Leibniz	396
9.5.4	Cylindrical Calculating Machines	407

Contents xix

10	The Antikythera Mechanism	409
10.1	An Astronomical Calculating Machine	409
10.2	The Astrolabe: Planetarium or Calendar Calculator?	412
10.3	When Was the Astronomical Calculator Found?	414
10.4	When Did the Ship Sink?	415
10.5	When Was the Ship Built?	415
10.6	When Was the Astronomical Calculator Built?	416
10.7	Who Constructed the Mechanism?	418
10.8	Reconstructions	420
10.9	Conclusions	425
11	Schwilgué's Calculating Machines	427
 11 . 1	Schwilgué's "Process" Calculator	427
11.1.1	An Unconventional Special-Purpose Calculating	7-1
	Machine Without a Customary Setting Mechanism?	428
11.1.2	The Peculiar Machine Proved to Be an Early	7-0
	"Process" Calculator	432
11.1.3	An Accompanying Document Reveals	-UF
	the First Indications About the Origin of the	
	Calculating Machine	432
11.1.4	Purpose of the Calculating Machine: Calculation	-UF
	of Circle Partitioning Factors	434
11.1.5	The Results of the Calculating Machine Determine	TUT
	the Settings for the Gear Milling Machine	434
11.1.6	Controlling the Gear Milling Machine from a	דכד
	Paper Tape	435
11.1.7	High-Precision Fine Mechanics	437
11.1.8	Gear Milling Machine or Gear Partitioning Machine?	437
11.1.9	A Tooling Machine Specifically Designed	131
	for the Astronomical Clock	442
11.1.10	5 4 4 75 801 1	442
11.1.11		•
	Clock?	443
11.1.12		113
	Trains for the Tape Controlled Milling Machine	445
11.1.13		445
11.1.14		446
11 . 1.15		449
11.2	Schwilgué's Keyboard Adding Machine	451
11.2.1	The World's Oldest Surviving Keyboard Adding Machines	452
11.2.2	Technical Features	452
11.2.3	Inputting Numbers via Keyboard	456
11.2.4	Two Precursors and Two Finalized Devices	457
11.2.5	The Replica of a Solothurn Clockmaker	459
_		

xx Contents

11.2.6	The World Exhibition of 1851 at the Crystal Palace in London	460
12	The Thomas Arithmometer	463
12.1	The Arithmometer: The First Industrially Produced	1.5
	Calculating Machine	464
12.2	The Stepped Drum Machine Is Capable of All Basic	
	Arithmetic Operations	465
12.3	The World Exhibition of 1851 at the Crystal Palace	
	in London	473
12.4	What Was the Cost of an Arithmometer?	479
12.5	A Wealth of Information About the History of Technology	
	and Industry	482
13	The Curta	485
13.1	Preliminary Remarks	485
13.2	Development of the Curta	486
13.2.1	The First Patents for the Curta	488
13.2.2	Arrest and Deportation to the Buchenwald	
	Concentration Camp	488
13.2.3	Curta, a Gift for the Führer for the Ultimate Victory?	489
13.2.4	Design Drawings from the Buchenwald	
	Concentration Camp	490
13.2.5	Contract for Work with Rheinmetall-Borsig in Sömmerda	491
13.2.6	Escape from Russian Persecutors in Thuringia	491
13.2.7	The Crowning Achievement of 350 Years of Mechanical	
	Calculating Machine Development	495
13.3	Description of the Curta	495
13.3.1	Design Drawings	498
13.3.2	Is the Curta the Smallest Mechanical Calculating	
40.7	Machine in the World?	502
13.4	The Founding of Contina in Liechtenstein	502
13.4.1	Swindled Out of His Life's Work	502
13.4.2 13.4.3	Letters of Inquiry to Swiss Machine Builders for the	503
13.4.3	Manufacture of the Curta	503
13.4.4	Opposition from Switzerland	507
13.5	Mass Production of the Curta in Liechtenstein	525
13.5.1	Piece Numbers	526
13.6	Global Sales of the Curta	527
13.6.1	The Curta at the Schweizer Mustermesse in Basel	527
13.6.2	The Curta at the Bürofachausstellung in Zurich	528
13.6.3	Who Used the Curta?	528
13.6.4	Prices	529
13.7	A Mechanical Parallel Calculator from Liechtenstein	530

Contents xxi

13.7.1	Double, Quadruple, and Quintuple Curtas	531
13.7.2	Patent Specifications for the Multiple Calculating Machine	536
13.7.3	The World's Smallest Mechanical Parallel Calculator	536
13.8	A British Mechanical Parallel Calculator	537
13.8.1	The British 12-Fold Curta for Matrix Calculations	537
13.8.2	Independent Development of Two Mechanical Parallel	
	Calculators?	541
13.8.3	The UK Matrix Calculator Has Been Lost	541
14	Slide Rules	543
14.1	Logarithms	543
14.1.1	Graphical Calculation	543
14.1.2	Who Introduced Logarithms and the Slide Rule?	544
14.1.3	Addition and Subtraction with Slide Rules	546
14.2	Types	548
14.2.1	Linear Slide Rules, Circular Slide Rules,	
	and Cylindrical Slide Rules	548
14.2.2	Endless Scales and Double Scales	549
14.3	Classification of Slide Rules	550
14.3.1	Linear Slide Rules	550
14.3.2	Circular Slide Rules	550
14.3.3	Cylindrical Slide Rules	551
14.4	Slide Rule Manufacturers	558
14.5	Dating of Cylindrical Slide Rules	560
14.6	Relationship Between the Serial Numbers	
	and Scale Length	564
14.7	The Weber Circular Slide Rule	569
14.7.1	A Circular Slide Rule of Unusual Design	569
14.7.2	How Does the Device Function?	570
14.7.3	Who Built the Circular Slide Rule?	570
14.7.4	Where Was the Circular Slide Rule Found?	571
14.8	Loga Cylindrical Slide Rules	572
14.8.1	The 24 Meter Cylindrical Slide Rule	572
14.8.2	Determination of Age	575
14.8.3	How Long Is the Scale?	576
14.8.4	Loga Cylindrical Slide Rules: Lists of Models	
	and Price Lists	578
15	Historical Automatons and Robots	593
15.1	Automaton Figures	594
15.1.1	Programmed Cylinders	595
15.1.2	Famous Builders of Automatons	595
15.1.3	Ornate Automaton Figures	598
15.1.4	Jaquet-Droz	602
15.1.5	Maillardet's Automaton in Philadelphia	613

xxii Contents

15.1.6	Programmable Automaton Writers	613
15.1.7	The World's Most Magnificent Mechanical Androids	
	Are from the Eighteenth Century	614
15.1.8	The Mechanical Clock with a Writing Figure	
	of the Beijing Palace Museum	616
15.1.9	Magnificent Human and Animal Automatons	
	from Le Locle	623
15.1.10	The Tower and Ship Automatons and Chariots	628
15.1.11	Leonardo da Vinci's Automatons	636
15.2	Musical Automatons	649
15.2.1	Mechanical Musical Instruments	649
15.2.2	The Wide Variety of Instruments	649
15.2.3	Music Boxes	650
15.2.4	Singing Birds	656
15.2.5	Train Station and Chalet Automatons	661
15.2.6	Violin and Organ Automatons	662
15.2.7	Sound Recording Media	664
15.2.8	Talking Machines	664
15.2.9	Automaton Figures and Musical Automatons in Museums	665
15.2.10	The Componium	666
15.3	Chess Automatons	666
15.3.1	The Niemecz Chess Automaton	667
15.3.2	The End-Game Automaton of Torres Quevedo	667
15.4	Typewriters	668
15.5	Clocks	672
15.5.1	An Enormous Range of Clocks	672
15.5.2	Clockmakers as the Inventors of Automatons	
	and Calculating Machines	729
15.6	Looms	730
16 N	Mechanical Calculating Aids	737
16.1	Counting Tables	737
16.2	Manufacturers of Mathematical Drawing, Measuring,	131
10.2	and Calculating Devices	740
16.3	Slide Bar Adders and Mechanical Calculating Machines	743
16.3.1	The Millionaire	743 744
16.3.2	The Madas	783
16.3.3	The Precisa	784
16.3.4	The Stima.	784 784
16.3.5	The Conto	786
16.3.6	The Coréma.	787
16.3.7	The Correntator.	788
16.3.8	The Demos.	789
16.3.9	The Demos. The Direct	799 790
10.3.9	THE DIRECT	790

Contents xxiii

16.3.10	The Eos	791
16.3.11	The Heureka	791
16.3.12	The St. Gotthard	792
16.3.13	The Ultra	793
16.4	Prices of Calculating Aids	793
16.5	Piece Numbers	798
16.6	Patents for Calculating Aids	800
16.7	Mechanical Calculating Aids (Overview)	801
16.8	Dating with the Help of Exhibition Catalogs	808
16.8.1	Catalogs from the Schweizer Mustermesse, Basel	808
16.8.2	Presence of Manufacturers at the Mustermesse	813
16.8.3	Manufacturers' Presence at the Bürofachausstellung	814
16.9	The Volksrechner	816
16.10	Grunder's Calculating Machine	818
17	Technological, Economic, Social, and Cultural History	823
17.1	The Rich Technical Cultural Heritage	824
17.2	Technology Is Part of Our Culture	825
17.3	The History of Science and Technology	825
17.3.1	What Do We Understand by the History of Science	
	and Technology?	826
17.3.2	Why Does One Pursue the Study of the History of Science	
	and Technology	826
17.3.3	Presentation of Science and Technology in Museums	827
17.4	The Transformation in the History of Technology	827
17.4.1	Does the History of Technology Fulfill the Expectations	
	Placed in It?	829
17.4.2	Technical History Without Relating to Science	
	and Engineering?	831
17.4.3	Combination of "Hard" and "Soft" Technological History	834
17.5	Lack of Appreciation for the History of Technology	835
17.6	Experiencing Technological History	836
17.7	Furthering of the Follow-On Generation of Technological	
	Historians	837
17.8	Computers Were Originally Humans	838
17.9	Patent Protection	841
17.9.1	No Claim to the Protection of Inventions	841
17.9.2	Had the Patent Protection for the Thomas Arithmometer	0
4= 40	Expired?	843
17.10	Discoveries and Inventions	844
17.10.1		845
17.10.2		846
17.11	Patriotism and Hero Worship	846
17.12	Lifespan of Calculating Aids	846

xxiv Contents

18	Preserving the Technical Heritage	851
18.1	Loss of Cultural Heritage	851
18.2	Long-Duration Archiving	852
18.3	Management of Object Collections	855
18.3.1	Building Up a Collection	855
18.3.2	Breakup of a Collection	855
18.3.3	Gloves	856
18.3.4	Functionality of Devices	856
18.3.5	Improper Safekeeping of Cultural Heritage	857
18.3.6	Damage to Devices due to Nonuse	857
18.3.7	Reappraisal of Scientific Collections	858
19	Operating Instructions	859
19.1	The Abacus: Bead Frame	861
19.2	The Aristo Slide Rule: Analog Computing Device	866
19.3	The Brunsviga: Pinwheel Machine	867
19.4	The Curta: Stepped Drum Machine	873
19.5	The Loga Circular Slide Rule: Analog Calculating Device	880
19.6	The Loga Cylindrical Slide Rule: Analog Calculating Device .	882
19.7	The Madas: Stepped Drum Machine	884
19.8	The Millionaire: Direct Multiplying Machine	889
19.9	Napier's Bones: Multiplication and Division Rods	896
19.10	The Odhner: Pinwheel Machine	900
19.11	Schwilgué's Keyboard Adding Machine/Single-Digit	
	Adding Machine	905
19.12	The Sector: Analog Calculating Device	906
19.13	The Simex: Direct Adding Machine	909
19.14	The Stima: Three-Function Machine	911
19.15	The Summus: Disc Adding Machine	915
19.16	The Thomas Arithmometer: Stepped Drum Machine	919
19.17	The Trebla: Slide Bar Adder/Stylus-Operated Calculator	921
19.18	The Volksrechner: Setting Wheel Machine/Stylus-Operated	-
	Calculator	925
Volun	ne II	
20	Who Was the Inventor of the Computer?	927
20.1	Preliminary Remarks	928
20.2	What Is a Computer?	929
20.3	What Is a Turing Machine?	929
20.3.1	Design of the Turing Machine	
20.3.1	Program Flow	930 930
20.3.3	Significance for Theoretical Computer Science	930
20.3.4	Algorithms	931
20.3.4	The Universal Machine	931
20.3.3	What Is a von Neumann Computer?	934
-0.4	That is a foir incumum computer	ラン4

Contents xxv

20.4.1	Design of a von Neumann Computer	934
20.5	Is the von Neumann Computer a Serial or a Parallel	
	Machine?	935
20.6	Who Invented the von Neumann Computer?	936
20.7	What Does Stored Program Mean?	937
20.7.1	Stored Programs Are Nothing New	937
20.7.2	Data and Program in the Same Memory	937
20.7.3	Computers with and Without a Program Memory	938
20.7.4	Prerequisites for Program Storage	939
20.7.5	Faster Data Processing Thanks to Program Storage	939
20.7.6	What Is a Self-Modifying Program?	940
20.7.7	Is the Turing Machine Self-Modifying?	942
20.7.8	Is the Turing Machine Stored Programmed?	943
20.7.9	The Turing Machine: Program and Data in the Same	,
	Memory? (Memory Tape as Program and Data Memory)	944
20.7.10	The Turing Machine: Program and Data on Different	
•	Memory Tapes?	945
20.7.11	Retrospective Firsthand Evidence	945
20.8	The Universal Computer \neq the Stored Program Computer	946
20.9	Who First Had the Idea of the Stored Program?	947
20.9.1	Kurt Gödel as the Founding Father of the Stored Program	950
20.9.2	Zuse's Approaches for the Stored Program	951
20.9.3	Mechanical Components Brake Electronics	952
20.9.4	The Breakthrough of the Stored Program Thanks to von	
	Neumann	953
20.9.5	Turing, von Neumann, or Eckert/Mauchly?	953
20.9.6	Conclusions	955
20.10	Who First Introduced Automatic Programming?	956
20.11	Who Created the First Compiler?	957
20.12	The Early Days of Programming	959
20.13	Open Questions Regarding the History	,,,,
	of Computer Science	960
20.14	Where Did the Construction Knowledge Come From?	961
20.14.1	Academic Lectures	962
20.14.2	Publications	963
20.14.3	The Construction of the First Computing Machines	965
20.14.4	Introduction to Computer Technology and Evaluation	7-3
	of the Situation (Overview)	966
20.15	Early Relay and Vacuum Tube Computers and Their	,,,,
_011	Successors	967
20.16	Motivations for the Building of Computers	969
20.17	Who Was Instrumental in the Development)~ <u>)</u>
	of the Computer?	973
20.17.1	Charles Babbage	973
		ノレン

xxvi Contents

20.17.2	Alan Turing	974
20.17.3	John von Neumann	974
20.17.4	Konrad Zuse	975
20.17.5	Other Possible Inventors	975
20.17.6	Who Invented Which Computing Machine?	976
20.18	Where Is the Cradle of the Computer?	977
20.19	What Point in Time Is Decisive for an Invention?	979
20.20	Who Won the Race Against Time?	980
20.20.1	The Race to Develop the First Stored Program Computer	982
20.21	Which Was the First Stored Program Computer?	985
20.22	Who Influenced the Development of Computers and How Much?	989
20.22.1	The Institute for Advanced Study: A Magnet	
	for Visiting Scholars	990
20.22.2	Who Set the Tone?	993
20.22.3	Was Ada Lovelace Actually the First Programmer?	1002
20.22.4	The Opinions in Regard to Turing's Influence on	
	Computer Construction Differ Considerably	1003
20.23	Which Were the Most Influential Computers?	1009
20.23.1	Model Computer Designs	1010
20.24	Which Computers Were the First Commercially Available?	1010
20.24.1	Ferranti Mark 1 and Univac 1	1011
20.24.2	Leo 1 and IBM 701/650	1011
20.24.3	Zuse Z4	1011
20.25	Where Did the Money Come from?	1011
20.26	Setbacks with the Construction of Computers	1014
20.27	Machines with Print Mechanism	1015
20.28	Chronology: Early Electromechanical and Electronic	
	Digital Computers	1019
20.29	Early Transistor Computers	1020
20.30	For Centuries Only a Limited Computational Need	1021
20.31	Pioneers as ACM and IEEE Award Winners	1022
20.32	Relevant Anniversaries in the History of Computing	1024
21 Co	mputer Development in Germany	1025
21.1	Preliminary Remarks	1025
21.2	Plankalkül	1026
21.3	Early German Relay and Vacuum Tube Computers	1026
21.3.1	The Computer Pioneer Konrad Zuse	1026
21.3.2	Zuse's Process Computer	1029
21.3.3	Zuse's Logistics Machine and Chess	1030
21.3.4	Acquisition of the Zuse KG by BBC Mannheim with the	_
<i>-</i> .	Loss of Millions	1031
21.3.5	Other German Relay and Vacuum Tube Computers	1032
21.4	Early German Transistor Computers	1033

Contents xxvii

21.5	The First German Digital Computers (Overview)	1034
21.5.1	Telefunken GmbH, Berlin: Computer Manufacture	
	in Konstanz	1035
21.5.2	The Analog and Hybrid Computers of Dornier	
	(Friedrichshafen)	1036
22	Computer Development in the UK	1037
22.1	Preliminary Remarks	1037
22.2	The Enigma	1038
22.2.1	The Enigma, a True Puzzle	1038
22.3	The Polish Bomba and the Turing-Welchman Bombe	1042
22.3.1	The Polish Bomba	1042
22.3.2	The Electromechanical Bombe	1042
22.4	The Colossus	1045
22.4.1	The Lorenz SZ	1045
22.4.2	The Electronic Jumbo	1045
22.4.3	Did Turing Collaborate on the Colossus?	1049
22.4.4	Did Churchill Command the Destruction of All	
	Colossus Computers?	1049
22.5	The Tunny	1050
22.6	Enigma and the Bombe, Lorenz and the Colossus	1051
22.6.1	Selected Cryptographic Machines	1051
22.6.2	Bombes and Colossi	1052
22.7	Bletchley Park	1054
22.7.1	Code Names	1054
22.7.2	Technical Terms	1055
22.7.3	The Huts	1056
22.7.4	Regarding the History of Bletchley Park	1057
22.8	Birkbeck College of the University of London	1059
22.9	Imperial College, London	1060
22.10	The Harwell Computer	1060
22.10.1	,	
	Computer	
22.11	The First British Digital Computers (Overview)	1062
23	Computer Development in Switzerland	1065
23.1	Zuse's Relay Computer and the ETH Zurich	_
23.1.1	When Did the ETH Zurich Learn About the Zuse Machine?	
23.1.2	How Did the ETH Zurich Learn About the Zuse Machine?	1066
23.1.3	Zuse and Die ETH Zurich	1070
23.1.4	Why Did Zuse Prepare to Flee to Switzerland in 1949?	1071
23.1.5	What Did the Z4 Cost?	1077
23.1.6	Who Paid for the Z4?	1079
23.1.7	How Was the Conditional Jump Implemented with the Z4?	1080
23.1.8	How Was the Z4 Utilized?	1080

xxviii Contents

23.1.9	The Bark and the Z4	1083
23.2	Difficulties with the Construction of the First Swiss	
	Computer	1085
23.2.1	The Grueling Construction of the First Swiss Electronic	
	Computer	1085
23.2.2	Purchase or Self-Construction?	1088
23.2.3	Five Years for Construction Instead of Three	1090
23.2.4	Vacuum Tube Computer Instead of Relay Computer	1090
23.2.5	Vexation with the Magnetic Drum	1091
23.2.6	The Chief Engineer Jumps Ship	1093
23.2.7	Did IBM Want to Hinder the Ermeth?	1095
23.2.8	Conflicts with Remington Rand over Breach of Contract	1095
23.2.9	Negotiations with Industry	1096
23.2.10	The Project Succeeds with the Support of the School	
	Board President	1096
23.2.11	Problems Abroad Also	1098
23.3	Why Did the Efforts to Establish a Swiss Computer	
	Industry in the 1950s Fail?	1098
23.3.1	Reproaches Against Swiss Industry	1099
23.3.2	Interest on the Part of Industry	1100
23.3.3	Why Only the Drum Memory?	1101
23.3.4	Hasler's Market Prospects	1102
23.3.5	Did the Chief Engineer Prevent the Marketing	
	of the Ermeth?	1102
23.3.6	Consequences	1104
23.4	Construction of Magnetic Drum Memories in Zurich	1106
23.4.1	The Z4: Experimental Drum	1106
23.4.2	The Ermeth: Experimental Drum	
23.4.3	The Ermeth: Large Drum	1108
23.5	The Ermeth's Successor	1109
23.5.1	In 1964, the ETH Zurich Was Without a Large-Scale	
	Computer for Several Months	1109
23.5.2	The Purchase of the Large-Scale Computer Led to the	
	Acquisition of Desktop Computing Machines	
23.6	The Lilith, Ceres, Smaky, and Gigabooster	
23.6.1	Lilith and Ceres	1111
23.6.2	The Music and the Gigabooster	
23.6.3	The Smaky	1115
23.7	Zuse's M9 Calculating Punch and Remington Rand	1116
23.7.1	The M9: The Journeyman Work	1121
23.8	The Cora Transistor Computer of Contraves	1128
23.9	Heinz Rutishauser: A Forgotten Pioneer	1130
23.9.1	Rutishauser and the Universal Turing Machine	1132
23.9.2	A Fundamental Reference Work for Computer	
	Construction	1133

Contents xxix

23.10	Who Was Involved in the Decisions for the Zuse Z4	
22.44	and the Ermeth?	1134
23.11	Schweiz	1135
23.12	Who Took Part in the Meetings Concerning the Z4	1135
2,12	and When?	1136
23.13	Who Took Part in the Meetings for the Ermeth?	1138
24	Documents Relevant to the Z4 and Ermeth	1139
24.1	Preliminary Remarks	1139
24.2	Basic Contract for the Z4 Between Zuse	
	and the ETH (1949)	1141
24.3	Supplementary Agreement for the Z4 Between Zuse	
	and the ETH (1949)	1151
24.4	Contract Extension of the ETH for the Z4 (1950)	1155
24.5	Test Report of the ETH for the Z4 (1949)	1157
24.6	Acceptance Certificate for the Z4 (1950)	1165
24.7	Final Bill of the Zuse KG for the Z4 (1950)	1167
24.8	Agreement for the Return of the Z4 to the Zuse KG (1955)	1168
24.9	Project Proposal for the Building of the Ermeth (1953)	1170
24.10	License Agreement for the Manufacture of the	
	Magnetic Drum Memory (1955)	1184
24.11	Research Contract Between Hasler und Paillard	
	and the ETH (1957)	1189
25	The Global Evolution of Computer Technology	1193
25.1	Preliminary Remarks	1193
25.2	Argentina	1195
25.3	Australia	1195
25.4	Austria	1196
25.4.1	The Tauschek System	1196
25.4.2	The Mailüfterl	1196
25.5	Belgium	1197
25.6	Canada	1198
25.7	China	1199
25.8	France	1199
25.8.1	Couffignal's Failure	1199
25.8.2	SEA	1200
25.8.3	Bull with Gamma	1200
25.9	India	1200
25.10	Israel	1201
25.11	Italy	1201
25.11.1	The UNESCO International Computation Center	1201
25.11.2	Milan and Pisa	1203
25.12	Japan	1203

xxx Contents

25.13	Mexico	1203
25.14	The Netherlands	1204
25.15	Russia	1204
25.16	Spain	1206
25.16.1	The Analog Calculating Machine of Torres Quevedo	1207
25.16.2	The Chess Automatons of Torres Quevedo	1207
25.16.3	The Analytical Engine of Torres Quevedo	1210
25.16.4	Formal Language	1212
25.17	Sweden	1213
25.17.1	The Bark Relay Computer	1213
25.17.2	Who Operated the Bark?	1214
25.17.3	The Besk Electronic Computer	1215
25.18	USA	1216
25.18.1	The Patent and Copyright Dispute	1217
25.18.2	The First American Digital Computers (Overview)	1217
25.18. 3	Eckert and Mauchly Were of Swiss Descent	1218
Glossary	of the History of Technology.	1221 1222
Glossary	of the History of Technology English-German	1382 1382
Bibliography for the History of Science and Technology		
Index of persons, places and subjects		

Chapter 1 Introduction

1

Abstract The chapter "Introduction" describes the goal of the book and the period of time covered by the presentations. It conveys an overview of new and exciting findings of objects (above all calculating machines) and documents and provides insight into their origins. The book focuses on the history predating the emergence of analog and digital computer technology and the early history of their development, automaton construction (automaton figures and musical automatons), and selected scientific instruments from the areas of astronomy, surveying, and measurement of time. Special attention is given to the non-English-speaking countries. It is not the intention of the book to present the entire history without interruption. Instead, the emphasis is on the highlights and the most significant achievements. Overviews in the form of tables facilitate the study of the material. Lines of development depict coherent relationships. Instead of a treatment of the most recent era in computer science, the subjects of digital transformation and artificial intelligence are discussed at length. Numerous step-by-step operating instructions for analog and digital calculating devices round out the volume.

Keywords Analog technology \cdot Artificial intelligence \cdot Automaton construction \cdot Automaton figures \cdot Calculating technology \cdot Digital technology \cdot Digital transformation \cdot Historical calculating aid findings \cdot Historical robots \cdot Musical automatons \cdot Scientific instruments

1.1 Objective

This compilation presents a broad-spectrum of outstanding *masterworks* from the history of computer technology and related fields. The objective is not to present a complete and comprehensive discourse on the development of computer science, but as well as possible to *convey a general understanding of new knowledge*. The milestones should be embedded in a global relationship,