Essential ASPNET
Web Forms
Development

Full Stack Programming with C#, SQL,
Ajax, and JavaScript

Robert E. Beasley

Apress’

Essential ASPNET Web
Forms Development

Full Stack Programming with C#,
SQL, Ajax, and JavaScript

Robert E. Beasley

Apress’

Essential ASP.NET Web Forms Development: Full Stack Programming with C#, SQL,
Ajax, and JavaScript

Robert E. Beasley
Franklin, IN, USA

ISBN-13 (pbk): 978-1-4842-5783-8 ISBN-13 (electronic): 978-1-4842-5784-5
https://doi.org/10.1007/978-1-4842-5784-5

Copyright © 2020 by Robert E. Beasley

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484257838. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5784-5

To Elizabeth, Zachariah, Isaac, Nathanael, and Elijah
I Love You

Table of Contents

About the AUROFcccciicmmmiimsinn s XV
Acknowledgments..........cccuusmmmmsnsmmmssmmmnsmmmsssmmssssss s —————— xvii
Preface ... —————————— XixX
Part I: OVerVIEWccuiseeeenmmesssssnsnnmmsssssnssnmnssssssnnsnnsssssssnnnnessssssnnnnsnsssssnnnnnnssssnnnns 1
Chapter 1: Web Application Developmentcccccuusemmmmmnsssnsnmnsssssnmmsssssssssssssnenns 3
1.1 INTrOTUCTION....c.eeeeeeeee e e r e nrnne s 3
1.2 Client-Server MOGELccocvererrineiiss s 4
1.3 .NET FrAMEBWOIK ..o s s 8
1.4 Object-0rientation CONCEPIS......cccvciriric e 9
1.4.1 Classes and ODJECESccveernierrenire s e e s 10

8 o (0] T (T 12

1.4.3 MEENOGS.....cocveece et bbb 12

L L 1 N 13

1.4.5 ENCAPSUIALIONeeeeceeeirie ettt sa e s s s n e s s n 13

1.4.6 INNEITANCE ... s 14

1.5 ASP.NET and C# Programimingccccueerrerenmnsessesessnssssessessssssessesssssssessessessssssssssessssssssssesses 21
1.6 VISUAL STUAIO ... 22
1.7 Starting @ NEW PrOjECT ... 23
1.8 SOIULION EXPIOTEE ...ttt e e s s s e e 24

TABLE OF CONTENTS

Part lI: Single-Page Web Application Development............cccccemrrrnssnnnnnnnnssans 27
Chapter 2: Page Development.........cccccuisemnmmnssssnnmmsssssssmesssssssmsssssssssssssssssssssssnnnsnsss 29
2.1 INEFOTUCTION.......ceeececece s se e nn e 29
2.2 Identifier Naming Standards ... s 29
B o 10T I 0 OSSR 30
2.4 Adding @ PAge ClaSS........ccevrererrenerinsesessesessssessssesessessssesessssesesssssssssssssssssssssssssnssssssssssssssssnnes 32
Chapter 3: Basic Server Controls..........ccoussmmsemmssnmmssmmsssmssssssssssssssssssssssssssssssssssansas 39
BT 10T T £ 39
B 00) G 39
BT I I 0T 40
BATEXIBOX ClASS ...c.vrueuereeerererersesessee e sesessee s e es e s e s e s e sae e se s e sse e e e sen s e nsnnens 43
3.5 BUHON ClASS.....covieiereeerreeresene s s ne e n e nnenens 45
BB TADIC ClASSveueeereeerreerrsesesseses e s se s e s s s e e r s e s r e e s e s ne e p e nr e e e nne e 52
3.7 TADICROW ClaSS ..veueereuerrnserrnseserseesssessssessssssessssessssessssesessssessssessssssssssssssssessssensssanssssssssnsenees 53
3.8 TADIECEII ClASSccrvrrrrirrcirerisisssse s 54
Chapter 4: More Server COntrolsccusesmssemmssnmssassssasssssssssssssasssssssssnsssassssnsssansas 59
g 11010 1 £ SR 59
A 07 11 1 o T I SRR 59
4.3 CNECKBOX ClASS......erueerererersenerseersesesessesessssessssesessesessesessssesessssssssssssssssessssssssnsssenssssssssnsenens 63
4.4 RAUIOBULLON ClaSS......ccerrrererseserrenersssesessessssesessssesessessssesessssssssssssssssssssssssssssssssnsssssssssssssanees 65
4.5 FIleUPIOAA ClaSS.....ccvvererirreriereresinsessessessessssessessessssessessesasssssessessessssessessesssssssessessesssssssenseses 68
4.6 HYPEILINK ClASS ...veererrerieieriereressssesessesssssssessessessssessessesassssssssessesssssssessesssssssensessesssnsssessenes 71
4.7 IMAQE ClASS...uerrereererersersersrserersesssssrsessesssssssessessesssssssessessssssssssessessessssessessessssensesaesssssnsesseres 72
4.8 IMAgEBULION ClASScccciiiriircierin et e e e 74
4.9 IMAGEIMAP ClASS......ceeerrrererererresereesesessesessese s sessesessesessssesessesssssssssssssesssssssssssesssssssssnsenens 77
4.10 RectangleHotSPOt ClIaSS.......cccvererrrserenenersnersssesesesessesessssesessesssssssssssssessssssssssssesssssssssssenens 78
4,11 LINKBULEON ClASSveerrierersesirriesissessssesssssse s ssssess e e sss s ssssesssssssssssssssssssssssssssssssssssnsenens 82
T I (0] 40 R T 87
I 11 -1 R P 89

TABLE OF CONTENTS

4.14 DropDOWNLISE ClaSScevvierrererrersrsersersersessssessessessssessessesssssssessessesssssssessesssssssessessesssssssessees 90
415 LISTBOX ClASS.....cccrrrerrereesereressasessesesssssseesesessssssssssesessssssssssssesssssssassssesssssssssssssssassnssssssnsans 92
4,16 PANEI CIASS.....covrueereeereeerersesessesesessesessese s e ssssesessesessesesss e ses e sse e sse e sensssessssessssssssssensenens 94
Chapter 5: Data Validation Controls..........ccoiummmmmmmmssssnnmmssssssnmssssssssssssssssnssssssnnnssss 99
5.1 INEFOUUCTION.......coeeeeeccere s e nr e nnnn e 99
5.2 Script Manager PACKAge..........cviuerrrermrrenerinessse s s sesse s se e sssessesenns 101
5.3 BaSeValidator CIASScocvrermmiseserinsssse s e sesnsssssas 101
5.4 RequiredFieldValidator ClaSScccvverierrererserieressnsersessessssessessesssssssessessessssessessessessssessesses 103
5.5 CompareValidator Class ..o s st se s sessesens 105
5.6 RangeValidator ClIaSs ..o s s s snas 107
5.7 RegularExpressionValidator ClIass............ccuuerrenerenernsesesesesese s sessesessssesessesenns 110
5.8 CuStOMVAlIAALOr ClASSccveeerrrereresesrenesesesese e se s s se s se s sesssnenns 114
5.9 ValidationSUMmMAry ClIASSc.ccvivvivrrierierinninere s s sas e se s ssessssessesaesassessesaesaes 117

Part IlII: C# Programming......ccccuscemmmsssnsmmssssnsmssssnssssssssssssssssssssssssssssnsnnssannnns 123

Chapter 6: Assignment Operations......c..cccccrrnsssnnnmmsssssnsmssssssssmmsssssssesssssssesssssnnns 125
6.1 INErOTUCTION.......ceeeeeeeeec et ne e 125
5.2 TYPES ceveerreeressesesseserrssesesse e s e e s e s e s e e s e e R e R e e e R e R e e e R e R e e e R e e e 125
6.3 Variable DecClarationscccucerevernenmnnsernessse s s 127
6.4 Constant DeClarations..........c.coverrnnni s 130
6.5 ASSIGNMENT OPEIALOrS......cccvvererertrrerere e e s s e s s s e s e s sae e s e s e saesaese s e saesaese e e naenaes 130
6.6 ENUMEIALIONS.....ccveeeeeree e 133
6.7 Exception Handling ... s e s se e s sns s s snas 134
6.8 EXCEPLION ClaSS......cverrireiiirierere s ses st sttt st s b s s bt 135

6.8.1 DivideByZeroEXCEPtioNn Classccccvrererenerensesesesessesesessesesesessssessssesessssessssesessesenns 137
6.8.2 FOrmatEXCeplion Class.........ccuererinininennninsine s s sessesnens 138
6.8.3 IndexOutOfRangeEXception Class...........cuovrerrererenerenerrssesesesese s e ses e 139
6.8.4 OverflowEXCEPTION ClASScccveririiirire st s sne s 141
6.8.5 Multiple EXCEPLIONScociiciiiircrerin st se s s s e nne s 142

vii

TABLE OF CONTENTS

Chapter 7: Conversion Operations.......ccuusesressssssnsmsssssnnsessssssnsessssssnsssssssssssssssnnnnss 145
8 11 (010 1T £ 145
7.2 Widening CONVEISIONS........cucveririininiesesis st s e s sss st se s sss st se s s s st s s s s s snesnes 145
7.3 NarroWing CONVEISIONS.......ccceeerrreerereserseserensesessesessesesessesessssessssesesssssssssssssssssssssssssnsssssssnns 148
7.4 CONVEIT ClASS ...c.viveerreerrssesesesessssessssesssse e sss s s sse e s e s s sss e sss e sessssn e e ssasssessssnssessssnssssnns 153

Chapter 8: Control Operationsccciussseenmmmssssnnnmssssssnnmsssssssnssssssnnssssssnnnssssssnnnnss 161
8.1 INTrOAUCTION ...t 161
8.2 Relational OPEratorsccccvevererersersere e serse e s s e e s s e s sae e s e s sae s e e s saesaese s e naenaes 162
8.3 EqUAlity OPErators.......ccocueviriernierine s st e e 162
8.4 L0giCal OPEIatOrs.......cccceiiirierere s sir s bbb e nn 163
8.5 DECISION SIUCIUIES......covieeereerrererese e 164

T S (11 (1 164
8.5.2 If-EISE SIIUCIUIE ... e 167
8.5.3 If-EISe-If SIrUCIUNE ..o e 168
8.5.4 NeSted-If STrUCIUIE..........corererererr e 169
8.5.5 SWItCH SIIUCIUNE.......ceeeec s 171
8.5.6 SWItCh-Through STrUCIUNE ... 173
8.6 [terative SIFUCLUIESc.ceeercer e 174
8.6.1 WRIle STIUCTUIE ... 174
8.6.2 DO-While STFUCLUIEcoveeereeeree s e 175
8.6.3 FOI SEIUCIUIE ... 176
8.6.4 FOr-EACH STTUCTUIE ... 178
8.6.5 Break Statement.............coveierenrnscrrese e 180
8.6.6 Continue Statement.........ccooeorecrrcr s 180

Chapter 9: String Operations.......c.ccccmmnssenmmmssssnnmmsssssnnmsssssnnmsssssnesssss s 183
9.1 INTrOAUCTION.......veccerir bbb 183
9.2 CONCAIBNALIONSccivrerriseccsere e srsp s 183
0.3 ESCAPE SEUUBNCEScuererreirieerise it se e st e s et et e et 184
9.4 Verbatim LItEralS.........ccoveoreerrcrerese s 186
9.5 SHNG ClaSS......covrreererererrererene s s s s n e e e e 186

viii

TABLE OF CONTENTS

Chapter 10: Arithmetic Operations..........ccccrrmsssnnnmmsssnnnmssssssssessssssssessssssssesssssnnnes 193
10,1 INEFOUUCTION......ceeeeeeece e e ne e 193
10.2 Arithmetic OPErators.........cccvvriniininie et 194
10.3 Order of Precedence and ASSOCIALIVILYcooveererrermrenernsernsese s 197
10.4 PArENTNESESc.veeeercrerieserse s s s e e e r e e e e s re e e e nnnnnens 199
10.5 MAth ClaSScoviviiiiririsiis s s 201

Chapter 11: Date and Time Operations........ccccusssssmsennnmmmmmmmssssssssnemes—————— 207
11,1 INErOTUCTION. ... s 207
11.2 DAteTiME STUCTUIE ...t 208
11.3 Date-Related Properties. ... s s ssssss e s ssessssessesnens 211
11.4 Date-Related MEthodscccoveeerrnenrereree s 212
11.5 Date FOrmMattingccccvveernenmrnse s s 213
11.6 DALE PArSING....cceviierererissinsere s s sas e s se s st se s s s se s saesae st e e s nae e 214
11.7 Time-Related Propertiesccveverrrriererssserrenessssessessesesessessessessssessessesssssssessessesssssssessens 216
11.8 Time-Related Methods..........cccoorncr s 216
11.9 Time FOrmatting........ccccviiniiinisnsre s s s s 218

Chapter 12: Array Operationsccuuusseeesmmmmmsmsssssssssssssssssssssssssssssnssssssssssssssssnnssness 221
L8 L1010 1 e OSSR 221
12,2 AITAY ClaSS ..cvvueerrierreesrssessssesessssessssessssese s e srs e s s e e sesss e se s e s ssese e ses e s sssnnssasesensesnns 222
12.3 0NE-DIimeNSIONAl AITAYSccceverrererierrerersesessessessesessessessessssessessesssssssessesssssssessessesssssssessens 224
12.4 TWO-DIimenSioNal AITAYSccecevveririirinsese s s see s s s e s s s ss e s s s e s e snesaenaens 231

Chapter 13: Collection Operations.......ccuccurrmsssnnnmmssssnsnsssssssnssssssssnsssssssssssssssnnnnss 241
L T L1010 1 £ 241
L T T Q5T 242
13.3 QUEUE ClASSeeueeeeereeereresesse e ne e ne e e s 244
13.4 LINKEALISE CIASScuerveeressesessesessesessssessssesessassssssessssessssesesssssssssesssssssssssssssssssssssssssssssnsssnns 246
13.5 SOMEALIST ClASScucuerererriiiisssisssssiss s s s s 250

ix

TABLE OF CONTENTS

Chapter 14: File System 0perationsccccunsesmnmmsssssnnmsssssssnsssssssssssssssssssssssnnnns 253
L0 L1010 1 £ 253
T4.2 Filg ClASS.....coeeeeeeeereecreneresese e eses e se s e s s e nas e e nesse e nns 254

Chapter 15: Custom C# ClasSeS......cccurrussssnmmmsssssnnnsssssnnnnssssssnnnssssssnnnsssssnnnssssssnnnnss 265
LS T 1010 1 e £ SRS 265
15.2 ClaSS DESIGN ...vccvrveerreirrsessssesssse s sssse e srs s s se s srs e sr s s s e s s e s ssssnssasesensssenns 266
15.3 CH ClASSecueererrineiire s 267
15.4 Adding @ ClasSSES FOIARTccvierreverieriererisserreseressessessessesessessessessesessessesssssssessessesssssnsessens 268
15.5 Adding @ NON-Static C# ClaSS.......cceevrererenrerrererssssssesessessssessessesssssssessesssssssessessesssssssessens 268
15.6 Adding @ StatiC CH# Classcccevvrrniriennnininess s s ssssss s ssessssessesnens 273

Part IV: Multiple-Page Web Application Development.........cccccvisneeennnissnns 279

Chapter 16: State Maintenanceccuucemmmniseenmmnnsssnnmnssssnmssss s ——————— 281
16.1 INTrOAUCTION.......cvcc s 281
16.2 Client-Based State MaiNtENANCEcooverererirncsesrr s 282

16.2.1 VIEW STALE.....cccucerrrerecisineses st snssensans 282
16.2.2 COOKIEScvrvveuenceresessseee e a s sesp s 284
16.2.3 QUENY STFNGS.....ccivierirerire et s 289
16.3 Server-Based State MaiNtENaANCEcccecvererirnenescser e 294
16.3.1 SESSION STALE......cccrererrccecr e 294
16.3.2 HtPSeSSIONSIALE ClASScovververerererrereressrsersessesaesessessessessssessessesssssssessesasssssessesaes 296
16.4 Maintaining the State of a Data Structure ... 301

Chapter 17: Master PAgesccciuuussammmmmssssnnsmsssssnnnssssssnnnssssssnnnssssssnnnsssssnnnnsssssnnnnss 303
L L1010 1 e £ ST 303
17.2 MASLEIPAQR ClASScccrvrerrrreerreserinsesssese s srs s srs e s sn s nesse e s 303
17.3 Adding @ MasterPage Classccucvrererrrnersesiernsessesesesessessessessssessessesssssssessessesssssssesaens 305
17.4 Adding a Page Class with @ MasterPage.c.ccvevverrerrereressenseressssessessessesessessessessssessessens 309

TABLE OF CONTENTS

Chapter 18: THEMES...uuiceurrrisnnnnrsssssnnnssssssnssesssssnnsssssssnssesssssnnsesssssnnnsssssnnnnssssnnnnnss 323
L T L1010 L1 £ 323
18.2 AdAING @ TREIME ... s p e nae 323
18.3 SKIiN FilES ..ot 325
18.4 AddiNg @ SKIN Filecccerieriresircse s s s 325
18.5 Cascading Style SHEEt FileS........covvvvrvnrinire s sessesaens 332
18.6 Adding a Cascading Style ShEet File.........cccvvriererrrnieniensserrereses s ssessessssessesaens 333

Chapter 19: Navigation.........ccccerrmmsnmnnmmssssssmmssssssssssssssssssssssssssssssssnnsssssssnnssssssnnnnss 343
19,1 INEFOUUCTION..c...eceeeeeec e e ne e 343
19.2 SItEMAP CIASSccviircrreririrere s s s s e s be e e e nne 344
19.3 Adding @ SitEMaP ClaSScceeerrerererererererrene s sesese s ses s se e ses e ssssessesesessssenns 345
19,4 MENU CIASS ...vvveerreerieeressessssesessssesessesssse e s e ssssesss e e e e sss e ssssessssssessasessssesssssnsssansssnsesnns 349
19.5 TrEEVIBW ClaSSecueueireriisiiri s 353

Part V: Database CONNECLIVIlYcuuvseesrmrsssssnnnnsssssssssnnsssssssssnnnsessssssnnnssessnns 357

Chapter 20: Database Design, SQL, and Data Bindingccocsesssssessssnssssnnssssanssssas 359
20.1 INErOAUCTION......ceeeeeeceee e e n e r e 359
20.2 Database SCHEMA..........cccovererrererenere e e 360
20.3 TADIESvevvrvrrersrserisise e e e bbb e AR R p e e 361
20.4 ALTIDULES.....vcvveeererere e 362
20.5 RElAtiONSNIPS . veoveererrerresersereresessessessessssssessesaessssessessesssssssessesasssssessessessssessesaesssssssessesses 363
20.6 Structured QUErY LANGUAGEcceverererrrreerereressssesesesesss e e sesessssssssesesesasssssssssssssssssensaes 364

20.6.1 Select Statement ... s 366
20.6.2 Insert Statement..........ccoiiecinresre s 374
20.6.3 Update Statement........c.ccoovvrrvierernserrere s s s s e sse e s sae e s e ssesnessssesnesnees 377
20.6.4 Delete Statement.........cooviennns 378
20.7 DataBoundCoNtrol CIASSouoeeeerererenseeseseressssessesesessssssssssesessssssssssssssassssssssssssesssssnsaes 379
20.8 SQIDALASOUICE ClASS......cctrierreriiririirere st s s s b s e s p e s nns 380
20.8.1 CONNECHION STFNGS ...cocereeriiirire e e e 383
20.8.2 Data-Bound Control Population ... 384
20.8.3 Data-Bound Control FIREriNg........ccccccvvrierininnnienis s ssssessesse s 386

TABLE OF CONTENTS

Chapter 21: Single-Row Database Table Maintenance.........ccccuuseensrsssssnsssssssnnnns 395
P2 T 4100 1T 1o o 395
21.2 FOrMVIBW ClaSScveeereeerieereeeresesessese s ese e e ses e e s s e sesse e e e sssesessssessssesessssenns 395

Chapter 22: Multiple-Row Database Table Maintenance.........ccccciurrerssssssssssnnnnnnas 419
P I 41110 1T o o S 419
22.2 LISTVIEW ClaSScerveererrerersserrssessse e sssse e s ssssesssssss s s sessssssssssssssssssssssssssssssssssnns 420
22.3 DAtAPAGET ClaSS.....cceruerrrreriereresirseresessssesse s ssese s ssessesssssssessesseses e ssesaessssessesaessessssesaesses 441
22.4 NextPreviousPagerField Classcccvvvererverierenessersesessssessessessessssessessessssessessesssssssessesses 442
22.5 NUMETICPAQGEIFIEIU ClASSevuerrererrerersersrserersessessssersessesssssssessessessssessessesssssssessesssssssessesses 445

Chapter 23: Code Behind Database Operations.........cccussssssassssnssssssssassssnsssansssans 449
P T I 4100 1T 10 o 449
23.2 SAICONNECLION ClASS ...cvevererierierirsirere st b s e s b s 450
23.3 WebConfigurationManager Classccvuerrreneresersnsesssessssssessssesssssssssssssssssssssssssssssssnns 452
23.4 SAICOMMANG ClASSevveerierrerierersereressesesse s sse e s sse e sse e s e ssesaese s e saesaessesessesaesaesessesaesaes 453
23.5 SQIDALAREAUET ClASS......ccerserrerrererserererseserersessessssessessessssessessessesssssssessessssessessssssssssensesses 455
23.6 Non-parameterized QUEKIES.......ccovereruirerinenire st 458
23.7 Parameterized QUEKIES........cocreeerererereereresese e se s ses s 463

23.7.1 SqIParameterCollection Classcccvcvverreererserrenreeserserseessesessesseessessessesssesaessessens 464
23.7.2 SOIPArameter Classc.ccvvrierennsinine s s s 465
23.8 STOred PrOCEAUIEScoveeeereeerircresese e e 471

Part VI: Additional Functionality........ccccccmmmmnmmnmmsssssssssssnsssssnnnnnnsssssssssssssnnns 487

Chapter 24: Email MeSSagiNg.....ccusseurressssnnsmsssssnnsssssssnnssssssssnnssssssnnssssssnnnssssssnnnnss 489
241 INErOAUCTION.......cieieicirce e 489
24.2 Development Maching EMail SEIVEFccviernirrniesns s sesse s sesesens 490
24.3 MailMESSAQE ClaSScceirrverrerininiirese s s s s s s e e 490
24.4 SMIPCHENT ClASS...ccciverriciriere st p e e et 492

xii

TABLE OF CONTENTS

Chapter 25: Ajax Programmingcccceusssssssessssssssssssssssssssssssssssssssnnsssssssnnssssssnnnnss 499
25.1 INErOUCTION......cceeeeeceee et 499
25.2 SCHPtMaNAQer Class........ccccveriniiincrirn s s 500
25.3 EXIENSION CIASSEScvvreeerreerenesenseessesesesesessesessssesessesessssessssssesssssssssssssssssssssssssnsssssssnns 501

25.3.1 UpdatePanel Class..........cccuvvvririninnininens s s st sse s e sne s 501
25.3.2 UpdateProgress Classccovrerereserensmsessessssesesessesessssessssesesssssssssessssesssssssssssssenes 504
25.4 Ajax Control TOOIKIL.......cccoerenerrnserenenesesesessesesesess e ses e ss s s sn s sessssnssssssessssenns 507
25.4.1 Installing the Ajax Control TOOIKILc.ccccverererenernseseseserese s s sesennes 507
25.4.2 CONTIOl ClASSES.....crvrererreerrssesessesessesessssssesssssssasesesssssssssssssssssssssssssssssssessssssssssnsssanes 509
25.4.3 Control EXtENder ClasSes........cuurenmrnsmsesesssesesessessssssessssessssssssssssssssessssssssssssssanes 517

Chapter 26: JavaScript Programmingccccsssssssmsssssssssnsssssssssssnsssssnnssssasssssanssssns 533
P 10T (1T P 533
26.2 Browser CompatiDility........ccooeviernrnierirrsersere s sere s nnen 534
26.3 SCHPt EIBMENES.....coviccicccc et e e 535
26.4 FUNCLIONS ... s s n e s e e e 535
26.5 HTML Document ODJjeCt MOGEL..........cceeeererererenereneressese s se e 536
26.6 EXAMPIES......oiiiiecee et ne e 537

26.6.1 AsSigNMeNt OPErations..........ccuuererenernsmsessesssese s sesse s s e sessesssssssssass 538
26.6.2 Confirm Dialogs and Alert MESSAQES........cururrrrermrnsesesesessssessssessssssssssesessesssssssssanes 544
26.6.3 Control Property Manipulation...........ccccocvinnnnininnnnnsnss s sessessens 547
26.6.4 Date and Time DiSPlaYcccueerrrerereserensmsessesessesesessesssssessssssessssssssssssssessssssssssssssenes 550
26.6.5 lterative Operations ..o e s 553
INA@X...ciiiisnmnnrssssnnnnsssssnnnsnssssnnssnssssnnnsnssssnnnsnssssnnnsnsssnnnnsnsssnnnnsnsssnnnnsnsssnnnnnnsssnnnnnnnss 559

xiii

About the Author

Robert E. Beasley is Professor of Computing at Franklin College in Franklin, Indiana,
USA, where he teaches a variety of software engineering courses. He received both his
BS and MS degrees from Illinois State University and his PhD from the University of
Ilinois at Urbana-Champaign. He has been developing software since 1981, has been

an active software consultant in both the public and private sectors since 1987, and has
been teaching software engineering since 1995. He has authored three books on software
engineering, contributed chapters to two books, published over 50 articles in refereed
journals and conference proceedings, and delivered numerous speeches and keynote
addresses at international conferences.

Acknowledgments

For any project like this to be successful, input is required from a number of people.

I would like to thank David G. Barnette for providing a significant amount of technical
feedback on the entire book, Elijah M. Beasley for providing a number of suggestions
for improving the flow and continuity of the book, and my other software engineering
students for reporting misspellings, typos, and other defects as they were encountered.

Xvii

Preface

Audience

This book was written for anyone interested in learning the ASP.NET Web Forms,
C#.NET, SQL, Ajax, and JavaScript Web application development stack, including
novice software developers, professional software developers, and college or university
students enrolled in a one-semester course or two-semester sequence of courses in Web
application development.

Organization

This book helps you become a pro in one of the most effective and widely used
technology stacks for developing highly interactive, professional-grade, database-driven
Web applications—ASP.NET Web Forms, C#.NET, SQL, Ajax, and JavaScript. It takes

you from beginner to pro in no time. In Part 1, you become familiar with some of the
major concepts, methodologies, and technologies associated with .NET Web application
development. In this part, you learn about the client-server model, the .NET Framework,
the ASP.NET and C# programming languages, and the Visual Studio integrated
development environment. In Part 2, you learn how to develop a single-page .NET

Web application. In this part, you learn how to create a page and add server and data
validation controls to it. The concepts in this part of the book lay the foundation required
for learning the C# programming language in the context of an ASP.NET Web application.
In Part 3, you learn how to program in the C# programming language. In this part, you
learn how to perform assignment operations, conversion operations, control operations,
string operations, arithmetic operations, date and time operations, array operations,
collection operations, and file system operations, as well as create custom C# classes—in
the context of a .NET Web application. In Part 4, you learn how to develop a multiple-
page .NET Web application. In this part, you learn how to maintain state between pages
and create master pages, themes, and navigation controls. In Part 5, you learn how to
connect a .NET Web application to a SQL Server database. In this part, you learn to read
a database schema, program in the SQL programming language, utilize data binding,

Xix

PREFACE

perform single- and multiple-row database table maintenance, and write code behind
database operations. And in Part 6, you learn how to enhance the interactivity of a .NET
Web application. In this part, you learn to generate email messages, make use of basic
Ajax controls and the Ajax Control Toolkit, and program in the JavaScript programming
language.

Features
Class Focus

A class diagram is included for every class discussed in the text. Each class diagram
articulates some of the most important properties, methods, and events of the class. For
those properties, methods, and events that are not included in the class diagram, a link
to the official class reference is provided.

Real-Life Examples

A significant proportion of the examples in the text are drawn from the real-life
experiences of the author’s own software development practice that began in 1987.

Clear-Minded, Consistent, and Concise Prose

Every effort has been made to present concepts clearly and logically, utilize consistent
language and terminology across all chapters and topics, and articulate concepts fully
yet concisely.

Accessible Language

Although the subject matter of this book is highly technical and specialized, trendy and/
or arcane language that is inaccessible to the average learner is either clearly defined or
replaced in favor of clear and generalizable terminology.

PART |

Overview

CHAPTER 1

Web Application
Development

1.1 Introduction

The concept of hypermedia (i.e., the combination of hypertext and media) was first
envisioned in 1945 by American engineer, inventor, and science administrator Vannevar
Bush. However, it wasn’t until much later that the technology required to support such a
concept was mature enough to make hypermedia something most of us take for granted today.

In 1969, the Advanced Research Projects Agency Network (ARPANET) became the
first computer network to implement packet switching using the Transmission Control
Protocol/Internet Protocol (TCP/IP) suite—the protocol suite that forms the technical
foundation of the Internet today. Packet switching is a method of data transmission
that requires three basic steps to get data (e.g., remote computer screens, files, email
messages, Web pages) from one computer on a network to another. First, at its origin, the
data to be transmitted is separated into a sequenced set of relatively small parts called
packets. Second, the packets are transmitted independently from their origin to their
final destination over routes that have been determined to be optimal for each packet.
And third, after all the packets have made their way to their final destination, the data is
reassembled from its packets. Early TCP/IP Application Layer protocols included Telnet
for logging in to remote computers, File Transfer Protocol (FTP) for transmitting files
from one computer to another, and Simple Mail Transfer Protocol (SMTP) for sending
email messages. These protocols are still in heavy use today.

Although the Internet was alive, well, and growing from the late 1960s through the late
1980s, there was no World Wide Web (a.k.a., Web). However, this was about to change.
In 1989, development of the Hypertext Transfer Protocol (HTTP) was initiated by English
scientist Tim Berners-Lee at the European Organization for Nuclear Research (a.k.a., CERN)
in Meyrin, Switzerland—a suburb of Geneva. This protocol was to become the standard for

© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_1

CHAPTER 1 WEB APPLICATION DEVELOPMENT

governing the communication between distributed hypermedia systems. With the definition
of the first official version of HTTP in 1991, the Web, the hypermedia part of the Internet, was
born, and HTTP became another TCP/IP Application Layer protocol like its predecessors
Telnet, FTP, and SMTP. Shortly thereafter, Berners-Lee created the very first Web browser.
This browser became available to other researchers in January 1991 and was released to the
public in August 1991.

Early on, the Web was simply a large collection of static Web pages. These pages
did little more than display formatted text and visual media (i.e., images, graphics,
animations, videos) and permit us to download files and play audio recordings. Today,
however, the Web is a massive collection of both static and dynamic Web pages. And
thanks to programming languages like ASP.NET, dynamic Web pages can do much more
than static Web pages can. In addition to the things static Web pages allow us to do,
dynamic Web pages allow us to interact with the items displayed on a Web page. They
also permit us to do things like edit the data on a page, check the data for errors, and save
the data to a database.

In this chapter, we will begin by looking at the client-server model, which is a
computing approach that distributes processing between servers and clients. Next, we
will introduce the .NET Framework. The .NET Framework is Microsoft’s Windows-based
software development and execution framework. Then, we will discuss ASP.NET and
C# programming. ASP.NET is a software development framework that includes all of
the classes necessary for building modern, sophisticated Web applications, and C# is
a general-purpose programming language for building a variety of application types,
including Web applications and Windows applications. After that, we will look at Visual
Studio, which is Microsoft’s flagship integrated development environment (IDE). This
development environment permits us to code and test in several different programming
languages via a consistent user interface. And finally, we will learn how to start a new
ASP.NET Web Application project.

1.2 Client-Server Model

The client-server model is a computing approach that distributes processing between
a server (i.e., the provider of a resource, service, or application) and its clients (i.e.,

the users of a resource, service, or application). A server is composed of a server host,
which is a physical computing device connected to a network, and a server application,
which is a software program that manages multiple, simultaneous client access to the

4

CHAPTER 1 WEB APPLICATION DEVELOPMENT

server. Likewise, a client is composed of a client host, which is a physical computing
device connected to a network, and a client application, which is a software program
that initiates a session with a server so that it can access the server’s resources, services,
and/or applications. Examples of client-server systems include Web servers and Web
clients, email servers and email clients, and FTP servers and FTP clients. Examples of
Web server applications include Internet Information Services (11S), Apache HTTP Server,
and Oracle iPlanet Web Server. Examples of Web client applications include Microsoft
Internet Explorer, Google Chrome, and Mozilla Firefox. Web client applications are
usually called Web browsers.

Figure 1-1 shows an example of the client-server model as it applies to a Web
application. In the middle of the figure, we see a Web server. As mentioned previously,
this server is composed of a server host and a server application that manages client
access to the host. Connected to this server via a network (e.g., the Internet) are a
number of different clients, including a tablet client, a laptop client, a Mac client, a PC
client, and a phone client. The dotted line in the figure indicates that the phone client
is connected to the Internet wirelessly. Of course, any server or client can be connected
to the Internet wirelessly. Again, each of these clients is composed of a client host and a
client application that initiates a session with the server and then accesses the server’s
resources, services, and/or applications.

Tablet Client Laptop Client Mac Client

/

Network
(e.g., Internet)

Phone Client

PC dient

Server

Figure 1-1. Example of the client-server model as it applies to a Web
application

CHAPTER 1 WEB APPLICATION DEVELOPMENT

Recall that Web pages are either static or dynamic. The content and appearance of
a static Web page doesn’t change each time it is requested. Instead, it always looks the
same no matter how many times it is requested or who requests it. It is easy to tell if a
Web page is static because it has a file extension of .htm or .html. As we will see in the
next figure, this type of Web page only requires the attention of a Web server.

Figure 1-2 shows the processing cycle of a static Web page. As can be seen, a Web
client (e.g., a laptop computer running Internet Explorer) requests a Web page from a
Web server (e.g., a tower computer running IIS) via an HTTP request. One important
part of this request is the name of the requested Web page (e.g., Display_Products.html).
Two other important parts of the request are the IP addresses (i.e., the unique Internet
addresses) of the server and client. These are necessary so that the HTTP request can
make its way to the Web server and so that the requested Web page can make its way
back to the requesting Web client. When the Web server receives the HTTP request, it
locates the desired Web page file on its hard drive, attaches the file’s Hypertext Markup
Language (HTML) code to an HTTP response, and then sends the response to the
requesting Web client. When the Web client receives the HTTP response, it uses the
attached HTML code to format and display the requested Web page for the end user. If
the requested Web page does not exist on the server, the infamous 404 (i.e., Page Not
Found) error is passed back to the Web client where it is displayed for the end user.

HTTP Request
Web Web
Client Server
<
HTTP Response
(HTML)

(eq., IE) (e.g., 11S)

Figure 1-2. Processing cycle of a static Web page

Unlike the content and appearance of a static Web page, a dynamic Web page can
(and usually does) change each time it is requested. In fact, depending on when it is
requested and by whom, it usually contains different information (e.g., different customer
information) and can look completely different (e.g., different fields, different images). It is
easy to tell if a Web page is dynamic because it has a file extension that is associated with
dynamic Web pages. Examples of such file extensions are .aspx (active server page), .php
(hypertext preprocessor), and .jsp (java server page). As we will see in the next figure, this
type of Web page is processed by both a Web server and an application server. When a Web
application requires database functionality, a database server is required as well.

6

CHAPTER 1 WEB APPLICATION DEVELOPMENT

Figure 1-3 shows the processing cycle of a dynamic Web page. As before, a Web client
requests a Web page from a Web server via an HTTP request. In this case, however, the
request contains the name of a dynamic Web page (e.g., Display_Products.aspx) and the
state of any Web page controls (e.g., a name entered into a text box, a check mark placed
into a checkbox, a date selected from a calendar). When the Web server receives the
HTTP request and sees that the Web page has a file extension of .aspx, it passes processing
control to the application server where the business logic (e.g., ASP.NET and C# code)
of the Web page is executed. If the business logic of the Web page requires the services
of a database server (i.e., reading, inserting, updating, or deleting data), the application
server passes processing control to the database server (along with any pertinent input
parameters) where the database call (usually a Structured Query Language [SQL] call)
of the Web page is executed. Once the database call is executed, the response from the
database server (e.g., the retrieved data and/or the status of the call) is passed back to the
application server where it is processed (e.g., the retrieved data is formatted and/or the
status of the call is handled). After this, the application server passes its work back to the
Web server, where it locates the desired Web page file on its hard drive, formats the Web
page’s HTML based on the results of the application server’s work, attaches the resulting
HTML code to an HTTP response, and then sends the response to the requesting Web
client. When the Web client receives the HTTP response, it uses the attached HTML code
to format and display the requested Web page for the end user. Again, if the requested Web
page does not exist on the server, the infamous 404 (i.e., Page Not Found) error is passed
back to the Web client where it is displayed for the end user.

HTTP Request
—> —>
Web Web Application Database
Client Server Server Server
<€ €— €<
HTTP Response
(e.g., IE) (HTML) (e.g., OS) (e.g., .NET Framework) (e.g., SQL Server.

Figure 1-3. Processing cycle of a dynamic Web page

Keep in mind that although servers and clients usually run on separate computing
devices, they can run on the same device. As an example of the latter, we often use a Web
server (e.g., IIS Express), an application server (e.g., .NET Framework), a database server
(e.g., SQL Server), and a Web client (e.g., Internet Explorer) all installed on the same
machine when developing ASP.NET Web applications.

CHAPTER 1 WEB APPLICATION DEVELOPMENT

1.3 .NET Framework

The .NET Framework is a Windows-based software development and execution
framework from Microsoft. This framework consists of two main parts—the Framework
Class Library (FCL) and the Common Language Runtime (CLR).

The Framework Class Library is a large library of classes. These classes perform many
of the functions needed to develop modern, state-of-the-art software applications, such
as Windows applications and Web applications. The classes in the FCL can be utilized
by any of the programming languages associated with the .NET Framework (e.g., Visual
Basic, Visual C++, Visual C#, Visual F#) and include user interface classes, file access
classes, database access classes, and network communication classes. By combining
our own custom programming code with the classes in the FCL, we can develop
sophisticated software applications relatively efficiently.

The Common Language Runtime is an environment in which all .NET applications
execute. These applications do not interact with the operating system directly like some
software applications do. Instead, regardless of the programming language used to
develop them, .NET applications are compiled into a Microsoft Intermediate Language
(MSIL) assembly and then executed by the CLR. Thus, it is the CLR that interacts with the
operating system, which then interacts with the computer’s hardware via device drivers.
An important aspect of the CLR is the Common Type System. The Common Type System
defines how all of the value types, reference types, and other types are declared, used,
and managed across all of the programming languages of the .NET Framework. Since
the CLR provides for its own security, memory management, and exception handling,
code running in the CLR is referred to as managed code. Figure 1-4 summarizes the
organization of the .NET Framework.

CHAPTER 1 WEB APPLICATION DEVELOPMENT

Framework Class Library (FCL)
(e.qg., User Interface, File Access, Database
Access, Network Communication Classes)

Programming Languages
(e.g., VB.NET, C++.NET, C#.NET, F#.NET)

are compiled into a

Microsoft Intermediate
Language (MSIL) Assembly

is run by

Common Language Runtime (CLR)
(Common Type System)
(Managed Code)

interacts with

Operating System

¢ interacts with

Hardware

Figure 1-4. Organization of the NET Framework

1.4 Object-Orientation Concepts

Object Orientation is a software development paradigm where virtually everything is
viewed in terms of classes (e.g., customers, Web pages, buttons on a Web page) and
objects (e.g., a specific customer, a specific Web page, a specific button on a Web page).
A class can contain properties (i.e., the data of the class) and methods (i.e., the
functionality of the class) and can handle events (i.e., end-user actions or other things
that occur in time). The properties, methods, and events of a class are referred to as its
members. A class encapsulates its properties, methods, and events by bundling them
together into a single unit and by hiding the details of those internals from other classes.
And finally, a class can inherit (i.e., take on and utilize) the properties, methods, and
events of other classes. We will learn more about these concepts next.

CHAPTER 1 WEB APPLICATION DEVELOPMENT

1.4.1 Classes and Objects

Classes are like “templates” that represent the characteristics and behaviors of things
we encounter in the real world. In our professional lives, we would likely encounter
things like customers, employees, products, and orders. On a Web page, we would
normally interact with things like buttons, checkboxes, calendars, and text boxes. When
developing software applications that involve such things, we typically design and/or
utilize classes that model their attributes and actions.

In the .NET Framework, there are two types of classes—non-static classes and static
classes. As a general rule, a non-static class contains non-static properties, non-static
methods, and non-static events that we can utilize, but only after an object has been
instantiated from the class.! A static class, on the other hand, contains static properties,
static methods, and static events that we can utilize immediately, without having to
instantiate an object from the class.

When describing a class in this book, we will include a class diagram. Table 1-1 shows
the general format of a class diagram. Such a diagram will always contain the name of the
class and the namespace in which it resides. A namespace contains classes that provide
specific functionality (e.g., page functionality, email functionality, database access
functionality) or specialized types (e.g., interface types, array types, value types, reference
types, enumeration types). A class diagram will also list some selected properties, methods,
and events of the class. The descriptions of these items will be taken directly from
Microsoft’s official documentation so that they can be trusted as authoritative. And finally,
a class diagram will provide a reference to Microsoft’s official documentation of the class.
To see all of a class’s properties, methods, and events, as well as see code samples of how
the class can be used, the interested reader can refer to this documentation.

'A non-static class can also contain static properties, static methods, and static events that we can
utilize immediately, without having to instantiate an object from the class.

10

CHAPTER 1 WEB APPLICATION DEVELOPMENT

Table 1-1. General format of a class diagram

Class
Namespace
Properties
Methods
Events

Reference

There is one more very important thing to remember about the class diagrams used
in this book. The event handler methods used to handle the events of a class will be
omitted to conserve space. Event handler methods are those methods that begin with
the word “On” and end with an event name. For example, Onlnit is an event handler
method that is raised by the Init event. If the Init event is already displayed in the Events
section of the class diagram, then the OnlInit event handler method will be omitted from
the Methods section of the class diagram to conserve space.

An object is a single instance of a class. For example, say we have an Employee class that
serves as the “template” for all employees. In this case, we might have an Employee object
that represents Jim J. Jones who has an email address of jjones@mail.com and a password of
abc123. We might also have an Employee object that represents Mary M. Morris who has an
email address of mmorris@work.com and a password of xyz789. These two distinct objects,
both of which are viewed as independent items, were instantiated from the Employee
class by constructing each one and then setting their respective Name, EmailAddress, and
Password properties. The ability to instantiate multiple objects from a single class is why, for
example, we can have several text box and button objects on a single Web page, and each one
of them can look and behave similarly yet differently.

11

CHAPTER 1 WEB APPLICATION DEVELOPMENT

1.4.2 Properties

Properties represent the data of a class. Properties are read from (via a get method) and
written to (via a set method). For example, the .NET TextBox class has a Text property.
If we wish to retrieve the value entered into a text box object, we would need to get this
property. As another example, the .NET Button class has a BackgroundColor property,
a ForegroundColor property, and a Text property. If we wish to display a gray button
with red lettering that says “Submit,” we would need to set these three properties
appropriately. Properties can be non-static or static.

1.4.3 Methods

Methods perform a function (i.e., a task that returns a value) or a procedure (i.e., a task that
does not return a value) and are invoked or called. There are two types of methods—non-static
methods and static methods.

A non-static method is a method that can be invoked, but only after an object
has been instantiated from its associated non-static class. For example, if we have an
Employee object that has been created from a non-static Employee class, and this class
includes a non-static ModifyPassword method, then we can invoke the Employee object’s
ModifyPassword method to update the employee’s password, something like this

booSuccess = Employee.ModifyPassword("abc123");

where Employee is an object of the non-static Employee class and ModifyPassword is a
non-static method of the Employee object.

A static method, on the other hand, is a method that can be invoked immediately,
without having to instantiate an object from a class. For example, if we have a static Math
class that includes a static Sqrt method, and we want to take the square root of 100, then
we can invoke the Math class’s Sqrt method directly (i.e., without having to instantiate a
Math object from the Math class) to get the square root of 100, something like this

bytResult = Math.Sqrt(100);

where Math is a static class and Sqrt is a static method of the Math class.

12

CHAPTER 1 WEB APPLICATION DEVELOPMENT

1.4.4 Events

Events are things that happen. Events are raised by an end-user action or by something
else that occurs in time. When an event is raised, and we wish to handle that event, we
invoke a corresponding method. For example, the .NET Page class raises a Load event
every time a Web page loads. If we want to display something for the end user every time
the page loads, we would need to handle that event by adding the necessary code to the
corresponding OnLoad method. Keep in mind that we need not handle every event that
is raised. Events can be non-static or static.

1.4.5 Encapsulation

Encapsulation has two meanings in the context of object orientation. First, it refers to
the notion that a class’s properties (i.e., data) and methods (i.e., the processing that
operates on that data) are bundled together and treated as a single unit. Second, it refers
to the notion that a class’s properties and methods cannot be directly accessed by code
that resides outside of the class itself. Thus, in order to get or set a class’s properties

or execute a class’s methods, a class that requires such operations must request them
from the class that contains the desired properties or methods. This idea is referred

to as information hiding. Although the concept of information hiding is an important
guideline of object orientation, the .NET programming languages permit us to explicitly
relax or enforce such access restrictions by declaring properties and methods as private
(i.e., they can only be accessed by code within the same class), protected (i.e., they can
be accessed by code within the same class and by any related subclasses), or public (i.e.,
they can be accessed by code in any other class).

One of the benefits of encapsulation is that it shields the internals of a class from
other classes so that they can utilize the class’s functionality without concern for how the
class actually performs its duties. The only thing the other classes need to know about
the class is what inputs it requires and what outputs it produces—that is, knowledge of
the class’s interface. In addition, encapsulation facilitates code refactoring (e.g., making a
method more efficient or easier to maintain). This is because we can modify the methods
of a class without disrupting the class’s use by other classes—as long as the modifications
do not affect the class’s interface. Another benefit of encapsulation is that it encourages
us to think through all of a class’s properties and methods and to keep them together in
one place. This makes coding, testing, and maintenance much easier.

13

CHAPTER 1 WEB APPLICATION DEVELOPMENT

1.4.6 Inheritance

Inheritance permits a child class (a.k.a., subclass, derived class) to take on and utilize
the properties, methods, and events of its parent class (a.k.a., superclass)—as well as its
parent’s parent class and so on. A child class inherits all of the properties, methods, and
events of its parent class (with the exception of its constructor methods and destructor
methods), but it also contains properties, methods, and/or events of its own. Thus, a
child class always extends the attributes and functionality of its parent class. A parent
class that does not inherit any of its properties, methods, or events from another class
is referred to as a base class. In a class inheritance hierarchy, the relationship that exists
between a parent class and its child class is an is-a-type-of relationship.

As will become apparent, the main benefits of class inheritance are that code redundancy
is minimized and code reuse is maximized. This is because a child class can use all of the
properties, methods, and events of its parent class as if they were its own—we need not
write that code again. Keep in mind that inherited properties, methods, and events can be
overridden by a child class when necessary.

Figure 1-5 shows an example of a class inheritance hierarchy for an employee.

In the figure, we can see that the base class in the hierarchy is the Employee class.

This class contains the most fundamental properties and methods of the class.? The
Employee class’s child classes (i.e., the Salaried class and the Hourly class) not only
inherit all of the properties and methods of the Employee class, but they each include
additional properties and methods that extend the characteristics and functionality of
the Employee class. Looking farther down the hierarchy, we can see that the Salaried
class’s child classes (i.e., the Administrator class and the Faculty class) not only inherit
all of the properties and methods of the Salaried class and the Employee class, but they
each include additional properties and methods that extend the characteristics and
functionality of those classes. Thus, we can see, for example, that a faculty member is a
type of salaried employee, who is a type of employee, who works in a department, who
has a list of degrees, has a title, gets paid a salary, has a name, has an email address, and
has a password. The Faculty class also inherits all of the methods of the classes above
it, so in addition to a ModifyDepartment method, the Faculty class has a ModifyTitle
method, a ModifyName method, and so on.

“No events are shown in this example.

14

