
Information Fusion and Data Science
Series Editor: Henry Leung

Haitao Zhao
Zhihui Lai
Henry Leung
Xianyi Zhang

Feature
Learning and
Understanding
Algorithms and Applications

Information Fusion and Data Science

Series Editor

Henry Leung, University of Calgary, Calgary, AB, Canada

This book series provides a forum to systematically summarize recent developments,
discoveries and progress on multi-sensor, multi-source/multi-level data and infor-
mation fusion along with its connection to data-enabled science. Emphasis is also
placed on fundamental theories, algorithms and real-world applications of massive
data as well as information processing, analysis, fusion and knowledge generation.

The aim of this book series is to provide the most up-to-date research results and
tutorial materials on current topics in this growing field as well as to stimulate further
research interest by transmitting the knowledge to the next generation of scientists
and engineers in the corresponding fields. The target audiences are graduate stu-
dents, academic scientists as well as researchers in industry and government, related
to computational sciences and engineering, complex systems and artificial intelli-
gence. Formats suitable for the series are contributed volumes, monographs and
lecture notes.

More information about this series at http://www.springer.com/series/15462

http://www.springer.com/series/15462

Haitao Zhao • Zhihui Lai • Henry Leung
Xianyi Zhang

Feature Learning and
Understanding
Algorithms and Applications

Haitao Zhao
East China University of Science
and Technology
Shanghai, Shanghai, China

Zhihui Lai
Shenzhen University
Shenzhen, China

Henry Leung
Department of Electrical
& Computer Engineering
University of Calgary
Calgary, AB, Canada

Xianyi Zhang
East China University of Science
and Technology
Shanghai, Shanghai, China

ISSN 2510-1528 ISSN 2510-1536 (electronic)
Information Fusion and Data Science
ISBN 978-3-030-40793-3 ISBN 978-3-030-40794-0 (eBook)
https://doi.org/10.1007/978-3-030-40794-0

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-40794-0

Preface

Big data is a big opportunity for us in this era. The digital transformation leaves no
organization untouched, and all companies have to derive value and insight from
data. The theories and applications of mining-specific information and extracting
knowledge from massive data are becoming more and more important.

Features are data representatives that can be much easier to understand in the
context of a problem, and feature learning is the process of using domain knowledge
and special techniques to transform raw data into features. Feature learning is an
essential procedure for data analysis and machine intelligence. Readers who are not
sure what feature learning is could turn to Chap. 1 or some other works.

This book covers the essential concepts and strategies within traditional and
cutting-edge feature learning methods. Each feature learning method has its own
dedicated chapter that explains how it is theoretically derived and shows how it is
implemented for real-world applications through case studies.

In this book, readers can find not only traditional feature learning methods, such
as principal component analysis, linear discriminant analysis, geometrical structure-
based methods, and kernel-based learning methods but also advanced feature learn-
ing methods, such as sparse learning, low-rank decomposition, tensor-based feature
extraction, and deep learning-based feature learning. Some relevant codes and
experimental results uploaded at https://github.com/haitaozhao/flu allow readers to
reproduce the experiments easily by themselves.

The intended audience of this book are nonspecialists whose needs cannot be
satisfied by the black box. It seems that these people will be chiefly interested in the
methods themselves – how they are derived and how they can be adapted to
particular problems. The aim of this book is to bring the reader to the point where
he/she can go to the research literature to augment what is in this book.

Readers are assumed to have a knowledge of elementary analysis and linear
algebra and a reasonable amount of programming experience. Strictly speaking,
this book is not a textbook. The guiding principle has been that if something is
worth explaining, it is worth explaining clearly. This is necessarily restricted to the

v

https://github.com/haitaozhao/flu

scope of the book, but the authors hope the selected feature learning methods in
this book will give the reader a good basis for further study or research.

Many people have contributed to this book. We would like to thank the following
colleagues and friends for their help: Qianqian Wang, Yuqi Li, Yuru Chen, Ziyan
Liao, Zhengwei Hu, Jingchao Peng, and Yaobin Xu. Their suggestions and remarks
have contributed significantly to improvements.

Shanghai, China
January 2020

Haitao Zhao

vi Preface

Contents

1 A Gentle Introduction to Feature Learning 1
1.1 Introduction . 1
1.2 Data and Preprocessing . 3

1.2.1 Data Collection . 3
1.2.2 Data Cleaning . 4
1.2.3 Data Sampling . 5
1.2.4 Data Transformation . 6

1.3 Feature Learning . 9
1.3.1 Solutions to Eigenvalue Equations 10
1.3.2 Convex Optimization . 10
1.3.3 Gradient Descent . 11

1.4 Summary . 11

2 Latent Semantic Feature Extraction . 13
2.1 Introduction . 13
2.2 Singular Value Decomposition . 14

2.2.1 Feature Extraction by SVD . 15
2.2.2 An Example of SVD . 17

2.3 SVD Updating . 20
2.4 SVD with Compressive Sampling . 22
2.5 Case Studies . 23

2.5.1 Analysis of Coil-20 Data Set . 23
2.5.2 Latent Semantic Feature Extraction

for Recommendation . 24
2.6 Summary . 28

3 Principal Component Analysis . 31
3.1 Introduction . 31
3.2 Classical Principal Component Analysis 32

3.2.1 Maximizing Variance and Minimizing Residuals 32
3.2.2 Theoretical Derivation of PCA 33

vii

3.2.3 An Alternative View of PCA 35
3.2.4 Selection of the Reduced Dimension 37
3.2.5 Eigendecomposition of XXT or XTX 38
3.2.6 Relationship between PCA and SVD 39

3.3 Probabilistic Principal Component Analysis 40
3.3.1 Latent Variable Model . 40
3.3.2 The Probability Model of PPCA 41
3.3.3 The Maximum Likelihood Estimation of PPCA 42
3.3.4 The PPCA Algorithm . 43

3.4 Case Studies . 44
3.4.1 Enterprise Profit Ratio Analysis Using PCA 44
3.4.2 Fault Detection Based on PCA 46

3.5 Summary . 51

4 Manifold-Learning-Based Feature Extraction 53
4.1 Introduction . 53
4.2 Manifold Learning and Spectral Graph Theory 54
4.3 Neighborhood Preserving Projection . 54

4.3.1 Locally Linear Embedding (LLE) 55
4.3.2 Neighborhood Preserving Embedding (NPE) 58

4.4 Locality Preserving Projection (LPP) . 59
4.4.1 Relationship to PCA . 61
4.4.2 Relationship to Laplacian Eigenmaps 62

4.5 Case Studies . 63
4.5.1 Handwritten Digit Visualization 63
4.5.2 Face Manifold Analysis . 64

4.6 Summary . 69

5 Linear Discriminant Analysis . 71
5.1 Introduction . 71
5.2 Fisher’s Linear Discriminant . 72
5.3 Analysis of FLD . 74
5.4 Linear Discriminant Analysis . 77

5.4.1 An Example of LDA . 79
5.4.2 Foley-Sammon Optimal Discriminant Vectors 80

5.5 Case Study . 82
5.6 Summary . 84

6 Kernel-Based Nonlinear Feature Learning 87
6.1 Introduction . 87
6.2 Kernel Trick . 88
6.3 Kernel Principal Component Analysis 90

6.3.1 Revisiting of PCA . 90
6.3.2 Derivation of Kernel Principal Component Analysis . . . 90
6.3.3 Kernel Averaging Filter . 93

6.4 Kernel Fisher Discriminant . 95

viii Contents

6.5 Generalized Discriminant Analysis . 98
6.6 Case Study . 100
6.7 Summary . 102

7 Sparse Feature Learning . 103
7.1 Introduction . 103
7.2 Sparse Representation Problem with Different Norm

Regularizations . 105
7.2.1 ℓ0-norm Regularized Sparse Representation 105
7.2.2 ℓ1-norm Regularized Sparse Representation 107
7.2.3 ℓp-norm (0 < p < 1) Regularized Sparse

Representation . 108
7.2.4 ℓ2,1-norm Regularized Group-Wise Sparse

Representation . 109
7.3 Lasso Estimator . 109
7.4 Sparse Feature Learning with Generalized Regression 111

7.4.1 Sparse Principal Component Analysis 111
7.4.2 Generalized Robust Regression (GRR) for Jointly

Sparse Subspace Learning . 112
7.4.3 Robust Jointly Sparse Regression with Generalized

Orthogonal Learning for Image Feature Selection 117
7.4.4 Locally Joint Sparse Marginal Embedding

for Feature Extraction . 122
7.5 Case Study . 127
7.6 Summary . 133

8 Low Rank Feature Learning . 135
8.1 Introduction . 135
8.2 Low Rank Approximation Problems . 137
8.3 Low Rank Projection Learning Algorithms 140
8.4 Robust Low Rank Projection Learning 143

8.4.1 Low-Rank Preserving Projections 143
8.4.2 Low-Rank Preserving Projection with GRR 147
8.4.3 Low-Rank Linear Embedding 150
8.4.4 Feature Selective Projection with Low-Rank

Embedding and Dual Laplacian Regularization 153
8.5 Case Study . 156

8.5.1 Databases . 156
8.5.2 Observations and Discussions 159

8.6 Summary . 160

9 Tensor-Based Feature Learning . 161
9.1 Introduction . 161
9.2 Tensor Representation Based on Tucker Decomposition 163

9.2.1 Preliminaries of Tucker Decomposition 163
9.2.2 Main Idea of Tucker-Based Feature Learning 167

Contents ix

9.3 Rationality: Criteria for Tucker-Based Feature Learning
Models . 168
9.3.1 Least Square Error Multi-linear Representation:

Tucker-Based PCA . 168
9.3.2 Living in a Manifold: Tucker-Based Manifold

Learning . 170
9.3.3 Learning with the Truth: Tucker-Based

Discriminant Analysis . 171
9.4 Solvability: An Algorithmic Framework of Alternative

Minimization . 173
9.4.1 Alternative Minimization Algorithms 174
9.4.2 A Unified Framework . 180
9.4.3 Sparsity Helps: Sparse Tensor Alignment 185

9.5 Case Study . 187
9.5.1 Alternative Minimization for MJSPCA 188
9.5.2 Action Recognition with MJSPCA 190

9.6 Summary . 193

10 Neural-Network-Based Feature Learning: Auto-Encoder 195
10.1 Introduction . 195
10.2 Auto-Encoder (AE) . 196

10.2.1 Fully Connected Layer and Activation Function 196
10.2.2 Basic Auto-Encoder . 198
10.2.3 Backpropagation and Computational Graphs 200
10.2.4 Relationship Between the Dimension of Data

and the Dimension of Feautures 207
10.3 Denoising Auto-Encoder (DAE) . 208
10.4 Stacked Auto-Encoder . 209

10.4.1 Training Stacked Auto-Encoder 210
10.4.2 Stacked Denoising Auto-Encoders (SDAE) 211

10.5 Applications of Auto-Encoders . 211
10.6 Case Studies . 213

10.6.1 Auto-Encoder for Feature Learning 213
10.6.2 Auto-Encoder for Fault Detection 215

10.7 Summary . 217

11 Neural-Network-Based Feature Learning: Convolutional
Neural Network . 219
11.1 Introduction . 219
11.2 Basic Architecture of CNNs . 220

11.2.1 Convolutional Layer . 220
11.2.2 Pooling Layer . 223
11.2.3 Batch Normalization . 224
11.2.4 Dropout . 225

x Contents

11.2.5 Relationship between Convolutional Layer
and Fully Connected Layer . 226

11.2.6 Backpropagation of Convolutional Layers 228
11.3 Transfer Feature Learning of CNN . 237

11.3.1 Formalization of Transfer Learning Problems 238
11.3.2 Basic Method of Transfer Learning 238

11.4 Deep Convolutional Models . 240
11.4.1 The Beginning of Deep Convolutional Neural

Networks: AlexNet . 241
11.4.2 Common Architecture: VGG . 242
11.4.3 Inception Mechanism: GoogLeNet 243
11.4.4 Stacked Convolutional Auto-Encoders 244

11.5 Case Studies . 246
11.5.1 CNN-Based Handwritten Numeral Recognition 246
11.5.2 Spatial Transformer Network 249

11.6 Summary . 250

12 Neural-Network-Based Feature Learning: Recurrent Neural
Network . 253
12.1 Introduction . 253
12.2 Recurrent Neural Networks . 254

12.2.1 Forward Propagation . 254
12.2.2 Backpropagation Through Time (BPTT) 255
12.2.3 Different Types of RNNs . 257

12.3 Long Short-Term Memory (LSTM) . 258
12.3.1 Forget Gate . 260
12.3.2 Input Gate . 260
12.3.3 Output Gate . 261
12.3.4 The Backpropagation of LSTM 262
12.3.5 Explanation of Gradient Vanishing 265

12.4 Gated Recurrent Unit (GRU) . 265
12.5 Deep RNNs . 268
12.6 Case Study . 269

12.6.1 Datasets Introduction . 270
12.6.2 Data Preprocessing . 270
12.6.3 Define Network Architecture and Training

Options . 272
12.6.4 Test the Networks . 274

12.7 Summary . 274

References . 277

Index . 289

Contents xi

Notation

Numbers and Sets

x A scalar
x A vector
X A matrix
 A tensor
xij The element of matrix X at row i and column j
Xr The matrices formed by the first r columns of X
\ The intersection of two sets
[The union of two sets
[n
i¼1 The union of n sets

8 For all
R The set of all real numbers
R n The set of n-dimensional column vectors of real numbers
R m�n The set of matrices of real numbers with m rows and n columns
xif gni¼1 The set consists of samples x1, x2, . . ., xn

Operators and Functions

(∙)T The transpose of a vector or a matrix
kxk0 The ℓ0-norm of a vector x
kxk(kxk2) The ℓ2-norm of a vector x
kXkF The Frobenius norm of a matrix X
kXk2,1 The ℓ2,1-norm of a matrix X
kXk� The nuclear norm of a matrix X: the sum of all its singular values
X�1 The inverse of matrix X
X+ The generalized inverse of matrix X
det(X) The determinant of matrix X

xiii

rank(X) The rank of a matrix X: the dimension of the vector space generated
(or spanned) by its columns

trace(X) The trace of a matrix X: the sum of all its diagonal entries
⨂ The Kronecker product
⨀ The Hadamard (elementwise) product
b∙c Rounding a number to the next smaller integer
∑ Series addition
∏ Series multiplicationR
f(x)dx The indefinite integral of f with respect to x

R b
a f xð Þdx The definite integral of f from a to b with respect to x

f(∙) A function
ln(∙) The natural logarithm
exp(∙) The exponential function

Derivative and Gradient

dy
dx

The derivative of y with respect to x
∂y
∂x

The partial derivative of y with respect to x

∇f The gradient of function f

Probability and Statistics

p(x) The probability density function of a random variable x
p(x| y) The conditional probability of the random variable y given x
P(n) The probability distribution of a discrete variable n
E(x) The expectation of x
cov(x) The covariance matrix of a random vector x
N μ,Σð Þ The normal (Gaussian) distribution with mean μ and covariance Σ

Graph Theory and Symbols

G A graph
V The set of nodes
E The set of edges connecting the points
L The Laplace Beltrami operator
� a � b means a is much less-than b
2 s 2 S means s is an element of set S

xiv Notation

Chapter 1
A Gentle Introduction to Feature Learning

1.1 Introduction

Data is the new oil, and artificial intelligence and machine learning are powerful
tools to convert data into information that fuels humans (Sarkar et al. 2018; Ray
2019). In this age, it is hardly a surprise that big data and machine learning are some
of the top words. Due to the rapid development of computer technology, information
technology, and internet technology, the cost of data storage has dropped signifi-
cantly. Over the last 2 years alone, 90% of the data in the world has been generated
(Einolander 2019). This data comes from everywhere: sensors that gather shopper
information, posts to social media sites, digital pictures and videos, purchase trans-
actions, and cell phone GPS signals, to name a few. The theory and application of
mining-specific information and extracting knowledge from massive data are
becoming more and more important (Yu and Yan 2018).

Feature learning and understanding is a crucial part of machine learning. The
main challenge for today’s enterprises and organizations is how to use various
techniques to learn from data and use valuable information and insights to make
better decisions (Wu et al. 2013). Feature learning can build derived values (fea-
tures), eliminate irrelevant, redundant, or noisy data, accelerate the speed of data
processing, and improve the understanding of the data (Guyon and Elisseeff 2006).

Since the 1970s, feature learning has become an essential research content of
machine learning and pattern recognition, and widely used in text analysis (Yan et al.
2009), speech processing (Sivaram et al. 2010), image/video recognition (Jiang et al.
2019; KalaiSelvi et al. 2014), biological information analysis (Hanna and Zaki
2015), and other fields. In this book, we will focus on the theory and methods of
feature learning widely studied in machine learning and pattern recognition.

As shown in Fig. 1.1, a typical learning or recognition system consists of two
parts: data preparation and algorithm. Generally, the algorithm alone is not intelli-
gent enough to process the raw data from the real world and discover the latent
patterns to train the system. Hence, we need data preparation to discover better data

© Springer Nature Switzerland AG 2020
H. Zhao et al., Feature Learning and Understanding, Information Fusion and Data
Science, https://doi.org/10.1007/978-3-030-40794-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40794-0_1&domain=pdf

representatives, or more precisely, features. And the process of using domain
knowledge and special techniques to transform raw data into features is called
feature learning, which is our area of focus in this book.

Feature is a broad concept in machine learning and pattern recognition. Any
attribute could be a feature, as long as it is useful to the following algorithms. The
purpose of a feature, other than being an attribute, would be much easier to
understand in the context of a problem. A feature is a characteristic that might
help when solving the problem.

The initial set of raw data can be noisy and redundant. A fundamental procedure
in many applications of machine learning is to select a subset of features or construct
a new and informative feature set to facilitate learning and improve generalization
and interpretability. When we talk about feature learning, it comes with a set of
techniques to transform raw data into features.

There are no fixed rules for feature learning. Generally, we generate features from
real-world data through domain knowledge and mathematical transformation. With
the development of deep learning, convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) and other neural network architectures are widely
used in feature learning tasks (Bengio et al. 2012; Tetko et al. 2019; Ibrahim and
Al-Jumaily 2016). Deep-learning-based methods learn features directly from the
original data, which is often called end-to-end feature learning (Goodfellow et al.
2016). As shown in Fig. 1.2, traditional feature learning basically describes data with
features without relying on explicit algorithms and then apply a learning algorithm.
However, end-to-end feature learning attempts to learn features and optimize the
following algorithm together (Wen et al. 2016).

Real-world data such as images, video, and sensor data is usually high dimen-
sional, noisy, and redundant for machine learning algorithms. Building informative,
representative or discriminative features is a crucial step for the algorithms in
machine learning tasks.

In this chapter, we will go over the life cycle of data, including data collection,
data cleaning, data sampling, and feature learning.

Fig. 1.1 Machine learning pipeline

2 1 A Gentle Introduction to Feature Learning

1.2 Data and Preprocessing

Raw data refers to numbers or characters collected before being “cleaned” and
corrected. Raw data needs to be corrected by eliminating outliers or obvious
instruments or data input errors. Data processing is usually carried out in stages,
and “processed data” in one stage can be considered as “raw data” in the next stage
(Hand 2006; Wu et al. 2013; Kantardzic 2011; Drabas 2016).

1.2.1 Data Collection

Data collection is the process of gathering and measuring information from different
sources. These data can be numerical (temperature, loan amount, customer retention
rate), categorical (gender, color, highest degree earned), or even free text (doctor’s
notes or opinion surveys).

Predictive algorithms are only as good as the data from which they are built, so
good data collection practices are crucial to developing high-performing algorithms.
The data are expected to be error-free and contain relevant information for the task
at hand.

There is no specific way to collect data. Deciding what data to use involves using
a combination of domain knowledge and business constraints. And it takes a lot of
trial and error. For different real-world problems, we can usually think about the
following aspects:

• How can we get the data: Not all the useful data for the problem can be obtained
from real life. For example, it is difficult to know the decision of the top
management of a company in time, even if it is useful for predicting the market
value of the company.

Fig. 1.2 Traditional feature learning (a) and end-to-end feature learning (b)

1.2 Data and Preprocessing 3

• How quickly the data can be accessed online in real-time: In practice, it is hard
to pay for a long wait if the data is not available in time, even if the model is
accurate. Therefore, we should try our best to collect data that is easily available.

1.2.2 Data Cleaning

Data cleaning is the process of detecting and correcting (or removing) corrupt or
inaccurate records and refers to identifying incomplete, incorrect, inaccurate, or
irrelevant parts of the data and then replacing, modifying, or deleting the dirty or
coarse data (Wickham 2014). Incorrect or inconsistent data can lead to false con-
clusions and misdirected investments. Here are some common situations for data
cleaning and their corresponding solutions (Idris 2016; Ilyas and Chu 2019).

• Missing or Incomplete Data

First, we should determine the range of missing values: calculate the proportion
of missing values for each field and then formulate strategies according to the
missing proportion and the importance, which we can see clearly in Fig. 1.3 (Graham
2009; Enders 2010).

Then we should remove unnecessary fields by deleting them directly. Here we
strongly recommend to do a backup every step of the cleaning or to test the full
amount of data on small-scale data. Otherwise, it will be regrettable to delete
important data.

Next, we should fill the missing content. Here we provide three common ways to
solve the problems. The first is to predict missing values with business knowledge or
experience. The second is to fill in missing values with the same metric (mean,
median, mode, etc.). The third is to fill in missing values with calculation results for

Fig. 1.3 Strategies for missing data based on the importance of the data and the missing rate

4 1 A Gentle Introduction to Feature Learning

different metrics, like to get the date of birth from the ID card field (Bouza-Herrera
2013).

Finally, if some fields are very important and the missing rates are high, then we
need to contact people or business personnel to see if there are other channels to get
relevant data.

• Content in Different Format

Sometimes display formats such as time, date, value, and full-width are
inconsistent, which is usually related to the input or integrating multi-source data.
And we should process it in a consistent format (Dong and Liu 2018).

Sometimes there are characters in the content that should not exist, such as space
at the beginning, end, and middle of the data. In this case, semi-manual methods are
needed to identify problems and remove unwanted characters.

Sometimes the content does not match the content that should be, such as the
place where the name should be filled now filled with the gender. The reason may be
a small mistake when filling in the form, or the front end may not be verified, or the
columns are not aligned when the data is imported. We can not simply delete them.
Instead, we should identify the problem types in detail and give corresponding
solutions (Idris 2016).

• Logical Error

The idea here is to remove some data that can be directly found problems using
simple logical reasoning to prevent the analysis results from going wrong, usually
about duplicate values and unreasonable values.

1.2.3 Data Sampling

Data sampling is a statistical analysis technique used to select, manipulate, and
analyze a representative subset of data points to identify patterns and trends in the
larger data set being examined. It enables predictive modelers with a small, man-
ageable amount of data to build and run analytical models more quickly, while still
producing accurate findings (Thompson 2012; Singh 2013). The common data
sampling methods are as follows:

• Simple random sampling: Software is used to select subjects from the whole
population randomly.

• Stratified sampling: Subsets of the data sets or population are created based on a
common factor, and samples are randomly collected from each subgroup.

• Cluster sampling: The larger data set is divided into subsets (clusters) based on a
defined factor, then a random sampling of clusters is analyzed.

• Systematic sampling: A sample is created by setting an interval at which to extract
data from the larger population – for example, selecting every tenth row in a
spreadsheet of 200 items to create a sample size of 20 rows to analyze.

1.2 Data and Preprocessing 5

In many cases, data sampling may result in an imbalance between positive and
negative samples (Komori and Eguchi 2019). For example, to study a disease, the
number of healthy people will be much larger than the number of sick people. It is
important to solve the imbalance of positive and negative samples in data sampling.
Usually, if the number of positive samples is much bigger than the negative samples,
an effective way to approach this imbalance would be to subsample the positive class
randomly. For example, if you have 10,000 positive samples and 100 negative
samples, we might consider taking 100 samples out of 10,000 positive samples.
The other way may consider taking the following aspects:

• Collect more negative samples if conditions permit
• Oversampling, such as mirroring and rotation in image augmentation
• Increase the weights of the negative samples in the total “loss” of the

classification

1.2.4 Data Transformation

Data transformation plays a key role in big data analytics (Dong and Liu 2018). Data
often exist in various forms, such as image, text, graph, sequence, and time-series. A
common way to represent data objects for data analytics is to use vectors.

Raw data refers to some existing information or knowledge convenient for people
to use. Usually, the data we have may not be simply numerical (i.e., age), but
categorical (i.e., gender), time type (i.e., 9:30), text type (i.e., sentence) and so
on. For different data types, there can be different data transformation methods.

• Numerical variable

A numerical variable can be continuous or discrete, generally expressed as a real
value, like age, price, height, weight, and so on. Even though numerical data can be
directly fed into a machine learning algorithm, important aspects including scale and
distribution should still be focused on (Kuhn and Johnson 2019).

• Standardizing/Normalizing: Standardizing, which is usually (but not always)
the same thing as normalizing means transforming a variable so that it has a mean
of 0 and a standard deviation of 1. This is done by subtracting the mean from each
value of a variable and then dividing by its standard deviation. Different variables
may not have the same unit. Therefore, standardization is needed to eliminate the
dimension influence among different variables and bring data into a common
format that allows for comparative evaluation (Spivak and Brenner 2001). It
should be noted that a new data point also needs to be standardized before testing.

• Log Transformation: Log transformation is a common process of taking a
mathematical function and applying it to the data (Vittinghoff et al. 2006).
Each variable x is replaced with log(x), where the base of the log is left up to
the analyst. Log transformation is useful for compressing the y-axis when plotting

6 1 A Gentle Introduction to Feature Learning

histograms, leading the visualization to be clearer. And it also de-emphasizes
outliers and allows us to obtain a bell-shaped distribution potentially.

• Discretization: The use of continuous attributes requires large storage. A
discretization technique is required to change the continuous value to discrete
value (Wohlmuth 2012). It should be noted that the data distribution is often
uneven by equidistant segmentation. In this case, the segmentation can be
designed according to quantile.

• Categorical variable

Categorical variables represent characteristics such as a person’s gender, marital
status, hometown, etc. Categorical data can take on numerical values (such as “1”
indicating male and “2” indicating female), but those numbers do not have mathe-
matical meaning. Some tree-based algorithms can work with categorical data
directly, but other machine learning algorithms require all input variables to be
numerical.

One-hot encoding is widely used to deal with the categorical feature (Simonoff
2013). One-hot is a group of bits among which the legal combinations of values are
only those with a single high (1) bit and all the others low (0).

In general, we use one-hot if there is no logical relationship between different
categories (such as male and female). Taking the “RGB color” variable as an
example, there are three categories, and therefore, three binary variables are needed.
A “1” value is placed in the binary variable for the color and “0” values for the other
colors. So red can be written as “100”, blue as “010”, and green as “001”.

One-hot coding can transform a categorical variable into points in Euclidean
space. Moreover, there is no numerical relationship in one-hot coding.

• Time/date variable

In machine learning, there is often time type data, such as year, month, day, hour,
minute, and so on. In practical application, time is a useful and important feature. We
may find that some action is more probable on certain days of the week, or
something happens around the same month every year. Two common approaches
to deal with the date feature is to transform it into multiple attributes or into a
difference between dates.

Time data can be regarded as either continuous data or discrete data. Take CTR
(click-through rate) as an example: the time length of the user’s single-page brows-
ing time and the time interval between the last click and the current one are
continuous data. While in the processing of evaluating the days of the week or the
months of the year, the time variable can be viewed as discrete data.

• Text variable

Text variables include all the components of a story or an article that is not the
main body of the text. These components include the table of contents, index,
glossary, headings, bold words, sidebars, pictures and captions, and labeled dia-
grams. To deal with the unstructured data like text documents, the first challenge is
the unpredictable nature of the syntax, format, and content of the documents, which

1.2 Data and Preprocessing 7

make it difficult to extract useful information for building models. The second
challenge is to transform the textual representations into numerical representations
that can be understood by machine learning algorithms.

• Bag-of-words model: A bag-of-words is a representation of text that describes
the occurrence of words within a document (Dong and Liu 2018; Zheng and
Casari 2018). It involves the vocabulary of known words and the frequencies of
the known words. For example, if there is a text document including “John likes
to watch movies” and “Mary likes movies too”, then a list is constructed as
follows for each document: “John”, “likes”, “to”, “watch”, “movies”, “Mary”,
“likes”, “movies”, “too”. The feature can be written as BoW1 ¼ {“John”:1,
“likes”:2, “to”:1, “watch”:1, “movies”:2, “Mary”:1, “too”:1}. Each key is the
word, and each value is the number of occurrences of that word in the given text
document. If phrases or collection of words rather than a single word are taken
into account, it is usually called the “Bag-of N-Grams model”.

• TF-IDF model: Tf-idf stands for term frequency-inverse document frequency,
which is a numerical statistic that is intended to reflect how important a word is to
a document in a collection or corpus (Dong and Liu 2018; Zheng and Casari
2018). Typically, the tf-idf weight is composed of two terms: the first computes
the normalized term frequency (TF), aka, the number of times a word appears in a
document, divided by the total number of words in that document; the second
term is the inverse document frequency (IDF), computed as the logarithm of the
number of the documents in the corpus divided by the number of documents
where the specific term appears. The importance increases proportionally to the
number of times a word appears in the document but is offset by the frequency of
the word in the corpus. Hence, the product of TF � IDF (TF�IDF) of a word
gives a product of how frequent this word is in the document multiplied by how
unique the word is w.r.t. The entire corpus of documents. Words in the document
with a high TF�IDF score frequently occur in the document and provide the most
information about that specific document.

• Hashing Trick: If a data point is converted into a vector by a hash function, it is
usually called “the hashing trick” (Garreta et al. 2017). A hash function can be
any function used to map data of arbitrary size to fixed-size values, and one of the
most popular hashing algorithms is MURMURHASH3. To do the hashing trick,
the first thing is to fix the length (M) of the vector. Then using the hash function to
get hash value and let the hash value mod M to make it return a number between
0 and M � 1.

Compared with other methods to transform data into numerical types, such as
one-hot encoding and the bag-of-words model, the most important advantage of the
hashing trick is that the data of arbitrary size is mapped to fixed-size values. Using
one-hot encoding, we create N binary variables where N is the number of possible
values of the categorical variable. And using the bag-of-words model, we create
N binary variables where N is the number of words. Both of them create high-
dimensional and very sparse input vectors or matrices.

8 1 A Gentle Introduction to Feature Learning

1.3 Feature Learning

Feature learning is to build informative features from an initial set of training data,
ignoring redundant and irrelevant information (Kantardzic 2011). From the mathe-
matical sense, that is to find a mapping f : R n ! R m, so that a set of n-dimensional
original data points can be transformed into a set of m-dimensional features (Ding
et al. 2012). It’s noteworthy that when m < n, the feature space can also be called
subspace in subspace learning, submanifold in manifold learning, and embedded
space in embedding (Ghojogh et al. 2019). In this case, feature learning is related to
dimensionality reduction, which is useful when reducing the number of resources is
needed for data processing (Burges 2010). Moreover, dimensionality reduction can
also provide an easier visualization of data (Liu et al. 2016). Please note that in
certain feature learning methods, m can be larger than n, such as in kernel-based
methods and deep-learning-based methods.

Generally, feature learning can be divided into two main categories: supervised
feature learning and unsupervised feature learning.

In supervised feature learning, each example is a pair consisting of an input data
point and the desired output value (often a label of the data point), i.e. xi, yif gni¼1 .
Supervised features are extracted or constructed by analyzing the training data under
certain criteria. Approaches include linear discriminant analysis, supervised neural
networks, etc.

In unsupervised feature learning, features are built with unlabeled input data,
i.e. xif gni¼1 . Since the main goal of feature learning is to build features, without
pre-existing labels, most of the unsupervised feature learning methods concentrate
on the reconstruction errors or the preservation of the geometrical structure of the
original data. Approaches include principal component analysis, locally linear
embedding, and autoencoders, etc.

The difference between supervised and unsupervised feature learning is whether
or not using the label information of the data. If label information is available,
supervised feature learning methods often try to incorporate this information in their
metric designs, criteria, or loss functions (Onwubolu and Babu 2013). For example,
the similarities between different data points can be designed according to the label
information of the data points. The similarity of data points with different labels can
be designed as zero or a negative value, while the similarity of data points of the
same label may have a positive value. When label information is unavailable,
unsupervised feature learning methods often try to preserve the statistical or geo-
metrical information of the original data. For instance, without pre-existing labels,
the similarity between different data points usually designed based on their inner
products or other nonlinear functions which emphasize certain local structures of
the data.

Although criteria or loss functions may be different between supervised and
unsupervised feature learning methods (Onwubolu and Babu 2013). The optimiza-
tion techniques used in these methods are almost the same. There are three types of
optimization techniques that are widely used in feature learning: directly solving

1.3 Feature Learning 9

eigenvalue equations (or generalized eigenvalue equations), convex optimization,
and gradient descent.

1.3.1 Solutions to Eigenvalue Equations

Using training data points (no matter with labels or not), many feature learning
methods need to obtain a mapping or a transformation that can be further used on
testing data points. Examples include principal component analysis, locality pre-
serving projection, linear discriminant analysis, etc. (Ghojogh et al. 2019; Bengio
et al. 2012). These methods look for linear transformations through which the
obtained features can best explain the data or model the difference between the
classes of data (Jimenez-Rodriguez et al. 2007). Although the criteria are quite
different, the objective functions of these methods are all formed into eigenvalue
problems (Bai et al. 2000). The linear transformations of these methods are obtained
by solving different eigenvalue equations. For example, principal component anal-
ysis can compute an orthogonal linear transformation by the eigendecomposition of
the empirical covariance matrix of the data (Jolliffe and Cadima 2016; Sakurai et al.
2018).

There are several advantages of solving eigenvalue equations to obtain the feature
learning methods. First, analytical solutions can be obtained with
eigendecomposition. Second, theoretical analysis of these equations is simple, and
the connections with other methods, such as linear regression and logistic regression,
are easy to obtain. Third, the extension of these feature learning methods can be
derived effectively based on the formations of the eigenvalue equations. For exam-
ple, using the kernel trick, principal component analysis can be extended to its
nonlinear version, kernel principal component analysis, which can also be obtained
by eigenvalue equations.

1.3.2 Convex Optimization

In order to obtain a mapping or transformation with certain properties, such as
sparsity or low rank, feature learning methods also add constraints in their optimi-
zation problems (Tetko et al. 2019; Gao et al. 2010). In this case, directly analytical
solutions cannot be obtained, and convex optimization techniques are widely
adopted to solve the constrained optimization problems.

For example, sparse principal component analysis (Zou et al. 2006) extends the
classical principal component analysis for feature extraction by introducing sparsity
constraints to the input variables (Lee et al. 2007). Semidefinite programming (SDP)
(Vandenberghe and Boyd 1996), a widely used convex optimization method, can be
used to solve sparse principal component analysis with ℓ1-norm convex constraint.

10 1 A Gentle Introduction to Feature Learning

Although convex optimization techniques used for feature learning are usually
iterative, they still can be solved efficiently in polynomial time. Moreover, global
optimization can be achieved with a theoretical guarantee.

1.3.3 Gradient Descent

Feature learning does not always mean dimension reduction. In certain applications,
the dimension of constructed features can be larger than the dimension of original
training data. For example, in deep-neural-network-based methods (Goodfellow
et al. 2016), multiple layers of features can be obtained after the training of deep
neural networks with multiple layers. Commonly the number of features is much
larger compared with the original number of variables. Through the nonlinear
transformations in the neural networks, the original data points are mapped into a
much higher-dimensional space in which the transformed data can be more repre-
sentative than original data according to the loss function of the neural networks. In
this case, feature learning can be viewed as “feature augmentation” through the
multiple-layer aggregation of the original data (DeVries and Taylor 2017; Liu et al.
2017).

Optimization problems in neural-network-based methods are not convex, which
are widely solved by gradient descent or its extensions (Looi 1992). In deep neural
networks, backpropagation (BP) is an algorithm widely used in the training of neural
networks. Gradient descent with backpropagation can find a local minimum of the
loss function, and the convergence to a local minimum can be guaranteed
(Goodfellow et al. 2014b).

It should be noted that certain feature learning methods can take more than one
optimization technique. For example, in sparse learning methods,
eigendecomposition and gradient descent are utilized iteratively. In this case, the
criterion or the loss function often have two sets of parameters to be optimized. One
set of parameters can be obtained by solving eigenequations, while the other set of
parameters can be optimized by gradient descent. Although the convergence can be
proved, the solution is also a local minimum.

1.4 Summary

In this chapter, we give a gentle introduction to feature learning. Firstly, we show
that feature learning is fundamental to the application of machine learning. Then we
briefly reviewed the data preparation, which includes data pre-processing and feature
learning. Through this chapter, readers can have a general understanding of feature
learning. Please note that in machine learning, feature learning refers to a set of
techniques that allows a system to automatically build features, which is different
from manual feature engineering.

1.4 Summary 11

In the following chapters, we mainly focus on latent semantic analysis (LSA,
Chap. 2), principal component analysis (PCA, Chap. 3), manifold-learning-based
feature learning (Chap. 4), linear discriminant analysis (LDA, Chap. 5), kernel-based
feature learning (Chap. 6), and more advanced feature learning methods, such as
sparse learning (Chap. 7), low-rank learning (Chap. 8), tensor-based learning
(Chap. 9) and neural networks (Auto-Encoders, Chap. 10; Convolutional neural
networks, Chap. 11; Recurrent neural networks, Chap. 12).

12 1 A Gentle Introduction to Feature Learning

Chapter 2
Latent Semantic Feature Extraction

2.1 Introduction

Latent semantic feature extraction (LSFE) (Deerwester et al. 1990) is a dimensional
reduction framework to obtain meaningful features from large volumes of data.
LSFE identifies the pattern in an unstructured collection of data and finds the
relationship between them (Hofmann 2001). LSFE tries to capture the hidden
structure using methods from linear algebra (Hofmann 2017). The main idea of
LSFE is to project the raw data into a low-dimensional subspace such that the noise
in the raw data can be removed (Landauer et al. 1998). In information retrieval,
LSFE enables retrieval on the basis of semantic contents (Dumais 2004), instead of
directly matching different raw data. LSFE is widely used in search engines (Wieser
et al. 2013), recommendation systems (Wu et al. 2008), and textual analysis
(Yu et al. 2008).

A Latent-semantic-structure-based information retrieval technique was first pro-
posed in 1988 (Deerwester et al. 1989). Due to its wide applications to concept-
based automatic indexing, it is also called latent semantic indexing (LSI) (Zha and
Simon 1999). In concept indexing, synonymy and polysemy are two fundamental
problems. Synonymy refers to the problem that multiple words express the same
concept, while polysemy means that words have multiple meanings.

A latent semantic model can be viewed as an extension of the vector space model
for information retrieval (Furnas et al. 1988). In the vector space, the collection of
text documents is represented by a co-occurrence matrix that describes the occur-
rences of terms in documents (Van Rijsbergen 1977). In recommendation systems,
the co-occurrence matrix depicts the relationships among different customers and
distinct catalog items (Wetzker et al. 2009).

After the construction of the co-occurrence matrix, LSFE tries to find a low-rank
approximation to the co-occurrence matrix. The computation of the approximation
can be viewed as the extraction of key features that are computationally efficient and
effective to reduce noise in the original co-occurrence matrix.

© Springer Nature Switzerland AG 2020
H. Zhao et al., Feature Learning and Understanding, Information Fusion and Data
Science, https://doi.org/10.1007/978-3-030-40794-0_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40794-0_2&domain=pdf

In this chapter, we will give a review of the classical theory of singular value
decomposition (SVD), which is well studied as a key method of LSFE. We will also
discuss the SVD updating technique, which is designed for incremental feature
extraction. Finally, through case studies, we show how SVD can be used in a
movie recommendation system.

2.2 Singular Value Decomposition

Let the co-occurrence matrix be A ¼ aij
� � 2 R m�n whose rank is r, there exist

orthogonal matrices P 2 R m�m and Q 2 R n�n such that

A ¼ PΣQT ð2:1Þ

where

Σ ¼ Σr 0

0 0

� �
2 R m�n

and Σr ¼ diag (σ1, σ2, . . ., σr) with σ1 � σ2 � � � � � σr > 0.
The diagonal elements of Σr are called singular values of A, and the columns of P

and Q are called left and right singular vectors of A, respectively. Equation (2.1) is
the singular value decomposition (SVD) of A.

It is easy to verify that the left singular vectors are eigenvectors of AAT, while the
right singular vectors are eigenvectors of ATA.

Without loss of generality, consider the case m � n. We have Σ ¼ Σn

0

� �
with

Σn ¼
Σr 0

0 0

� �
2 R n�n. Figure 2.1 illustrates SVD with m � n.

Following Eq. (2.1), the SVD of A can be written as

A ¼ PrΣrQr
T ð2:2Þ

where Pr and Qr are the matrices formed by the first r columns of P and Q,
respectively. Figure 2.2 illustrates Eq. (2.2) with m � n and r < n. It is easy to see
that {σ1, σ2, . . ., σr} consists of the nonnegative square roots of the eigenvalues of

Fig. 2.1 Schematic
diagram of SVD with m � n

14 2 Latent Semantic Feature Extraction

AAT (or ATA). The singular vectors are not unique, but they are by no means
arbitrary. The columns of Pr form an orthonormal basis for the column space of A,
while the columns of Qr form an orthonormal basis for the column space of AT.

The reduced-dimension representation (RDR) is given by the best rank-k approx-
imation Ak ¼ PkΣkQk

T, where Pk and Qk are composed of the first k (k < r) columns
of P and Q, respectively and Σk is the k-th leading principal submatrix of Σ,
i.e. Σk ¼ diag (σ1, σ2, . . ., σk). Figure 2.3 illustrates SVD with m � n and k < r.
The approximation error introduced by Ak in Frobenius norm is formed by the ℓ2-
norm of the sum of the remaining singular values,

A� PkΣkQk
T

�� ��
F
¼

Xr

i¼kþ1
σ2i

� �1
2 ð2:3Þ

2.2.1 Feature Extraction by SVD

Matrix A in Eq. (2.1) contains a set of n samples {a1, a2, . . ., an} where ai 2 R m.
Considering Eq. (2.2), we define Br ¼ ΣrQr

T. It is easy to find that Br 2 R r � n. Let
Br ¼ [b1, b2, . . ., bn] and bi 2 R r. In the following, we show that {b1, b2, . . ., bn}
preserves the geometrical structure of the samples {a1, a2, . . ., an} while r features
are extracted from original data of dimension m in the sense that the distance and the
angle (correlation coefficient) between each pair of original samples are preserved,
i.e.

Fig. 2.2 Schematic diagram of SVD with m � n and r < n

Fig. 2.3 Schematic diagram of SVD with m � n and k < r

2.2 Singular Value Decomposition 15

