
SystemVerilog 
For Design 
Second Edition 

A Guide to Using SystemVerilog 
for Hardware Design and Modeling 



SystemVerilog 
For Design 
Second Edition 

A Guide to Using SystemVerilog 
for Hardware Design and Modeling 

by 

Stuart Sutherland 

Simon Davidmann 

Peter Flake 

Foreword by Phil Moorby 

1 3 



Stuart Sutherland 
Sutherland DHL, Inc. 
22805 SW 92nd Place 
Tualatin, OR  97062 
USA 

Simon Davidmann 
The Old Vicerage 
Priest End 
Thame, Oxfordshire 0X9 3AB 
United Kingdom 

Peter Flake 
Imperas, Ltd. 
Imperas Buildings, North Weston 
Thame, Oxfordshire 0X9 2HA 
United Kingdom 

SystemVerilog for Design, Second Edition 
A Guide to Using SystemVerilog for Hardware Design and Modeling 

Library of Congress Control Number:    2006928944 

ISBN-10: 0-387-33399-1   e-ISBN-10:   0-387-36495-1 
ISBN-13: 9780387333991   e-ISBN-13:   9780387364957 

Printed on acid-free paper. 

© 2006 Springer Science+Business Media, LLC 
All rights reserved. This work may not be translated or copied in whole or in part without 
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring 
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or 
scholarly analysis. Use in connection with any form of information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and similar terms, 
even if they are not identified as such, is not to be taken as an expression of opinion as to 
whether or not they are subject to proprietary rights. 

Printed in the United States of America.    

9  8  7  6  5  4  3  2                                         

springer.com 



Dedications

To my wonderful wife, LeeAnn, and my children, Ammon, Tamara, Hannah, Seth and 
Samuel — thank you for all your patience during the many long hours and late nights 
while writing this book.

Stuart Sutherland
Portland, Oregon

To all of the staff of Co-Design and the many EDA colleagues that worked with me 
over the years — thank you for helping to evolve Verilog and make its extension and 
evolution a reality. And to Penny, Emma and Charles — thank you for allowing me 
the time to indulge in language design (and in cars and guitars...).

Simon Davidmann
Santa Clara, California

To my wife Monique, for supporting me when I was not working, and when I was 
working too much.

Peter Flake
Thame, UK



Table of Contents

Foreword ................................................................................................................. xxi

Preface ................................................................................................................... xxiii
Target audience...................................................................................................................... xxiii
Topics covered........................................................................................................................xxiv
About the examples in this book..............................................................................................xxv
Obtaining copies of the examples...........................................................................................xxvi
Example testing.......................................................................................................................xxvi
Other sources of information .................................................................................................xxvii
Acknowledgements..................................................................................................................xxx

Chapter 1: Introduction to SystemVerilog...............................................................1
1.1 SystemVerilog origins.......................................................................................................1

1.1.1 Generations of the SystemVerilog standard.......................................................2
1.1.2 Donations to SystemVerilog ..............................................................................4

1.2 Key SystemVerilog enhancements for hardware design...................................................5
1.3 Summary ...........................................................................................................................6

Chapter 2: SystemVerilog Declaration Spaces ........................................................7
2.1 Packages ...........................................................................................................................8

2.1.1 Package definitions ............................................................................................9
2.1.2 Referencing package contents..........................................................................10
2.1.3 Synthesis guidelines .........................................................................................14

2.2 $unit compilation-unit declarations.................................................................................14
2.2.1 Coding guidelines.............................................................................................17
2.2.2 SystemVerilog identifier search rules ..............................................................17
2.2.3 Source code order.............................................................................................17
2.2.4 Coding guidelines for importing packages into $unit ......................................19
2.2.5 Synthesis guidelines .........................................................................................25

2.3 Declarations in unnamed statement blocks .....................................................................26
2.3.1 Local variables in unnamed blocks ..................................................................27

2.4 Simulation time units and precision ................................................................................28
2.4.1 Verilog’s timescale directive............................................................................28
2.4.2 Time values with time units .............................................................................30
2.4.3 Scope-level time unit and precision .................................................................31



viii

2.4.4 Compilation-unit time units and precision.......................................................32
2.5 Summary .........................................................................................................................34

Chapter 3: SystemVerilog Literal Values and Built-in Data Types.....................37
3.1 Enhanced literal value assignments.................................................................................38
3.2 ‘define enhancements ......................................................................................................39

3.2.1 Macro argument substitution within strings.....................................................39
3.2.2 Constructing identifier names from macros .....................................................41

3.3 SystemVerilog variables..................................................................................................42
3.3.1 Object types and data types..............................................................................42
3.3.2 SystemVerilog 4-state variables.......................................................................43
3.3.3 SystemVerilog 2-state variables.......................................................................44
3.3.4 Explicit and implicit variable and net data types .............................................47
3.3.5 Synthesis guidelines .........................................................................................48

3.4 Using 2-state types in RTL models .................................................................................48
3.4.1 2-state type characteristics ...............................................................................49
3.4.2 2-state types versus 2-state simulation.............................................................49
3.4.3 Using 2-state types with case statements .........................................................51

3.5 Relaxation of type rules...................................................................................................52
3.6 Signed and unsigned modifiers .......................................................................................55
3.7 Static and automatic variables .........................................................................................56

3.7.1 Static and automatic variable initialization ......................................................59
3.7.2 Synthesis guidelines for automatic variables ...................................................60
3.7.3 Guidelines for using static and automatic variables.........................................61

3.8 Deterministic variable initialization ................................................................................61
3.8.1 Initialization determinism ................................................................................61
3.8.2 Initializing sequential logic asynchronous inputs ............................................65

3.9 Type casting ....................................................................................................................67
3.9.1 Static (compile time) casting............................................................................67
3.9.2 Dynamic casting...............................................................................................69
3.9.3 Synthesis guidelines .........................................................................................70

3.10 Constants .........................................................................................................................71
3.11 Summary .........................................................................................................................72

Chapter 4: SystemVerilog User-Defined and Enumerated Types .......................75
4.1 User-defined types...........................................................................................................75

4.1.1 Local typedef definitions..................................................................................76
4.1.2 Shared typedef definitions................................................................................76
4.1.3 Naming convention for user-defined types ......................................................78

4.2 Enumerated types ............................................................................................................79
4.2.1 Enumerated type label sequences.....................................................................83



ix

4.2.2 Enumerated type label scope............................................................................83
4.2.3 Enumerated type values ...................................................................................84
4.2.4 Base type of enumerated types.........................................................................85
4.2.5 Typed and anonymous enumerations...............................................................86
4.2.6 Strong typing on enumerated type operations..................................................86
4.2.7 Casting expressions to enumerated types.........................................................88
4.2.8 Special system tasks and methods for enumerated types.................................89
4.2.9 Printing enumerated types................................................................................92

4.3 Summary .........................................................................................................................93

Chapter 5: SystemVerilog Arrays, Structures and Unions ..................................95
5.1 Structures.........................................................................................................................96

5.1.1 Structure declarations.......................................................................................97
5.1.2 Assigning values to structures..........................................................................98
5.1.3 Packed and unpacked structures.....................................................................101
5.1.4 Passing structures through ports.....................................................................104
5.1.5 Passing structures as arguments to tasks and functions .................................105
5.1.6 Synthesis guidelines .......................................................................................105

5.2 Unions ...........................................................................................................................105
5.2.1 Unpacked unions ............................................................................................106
5.2.2 Tagged unions ................................................................................................108
5.2.3 Packed unions.................................................................................................109
5.2.4 Synthesis guidelines .......................................................................................111
5.2.5 An example of using structures and unions ...................................................111

5.3 Arrays ............................................................................................................................113
5.3.1 Unpacked arrays.............................................................................................113
5.3.2 Packed arrays .................................................................................................116
5.3.3 Using packed and unpacked arrays ................................................................118
5.3.4 Initializing arrays at declaration.....................................................................119
5.3.5 Assigning values to arrays .............................................................................121
5.3.6 Copying arrays ...............................................................................................123
5.3.7 Copying arrays and structures using bit-stream casting.................................124
5.3.8 Arrays of arrays..............................................................................................125
5.3.9 Using user-defined types with arrays .............................................................126
5.3.10 Passing arrays through ports and to tasks and functions................................127
5.3.11 Arrays of structures and unions......................................................................128
5.3.12 Arrays in structures and unions......................................................................128
5.3.13 Synthesis guidelines .......................................................................................128
5.3.14 An example of using arrays............................................................................129

5.4 The foreach array looping construct..............................................................................130



x

5.5 Array querying system functions ..................................................................................132
5.6 The $bits “sizeof” system function ...............................................................................134
5.7 Dynamic arrays, associative arrays, sparse arrays and strings ......................................135
5.8 Summary .......................................................................................................................136

Chapter 6: SystemVerilog Procedural Blocks, Tasks and Functions ................137
6.1 Verilog general purpose always procedural block ........................................................138
6.2 SystemVerilog specialized procedural blocks...............................................................142

6.2.1 Combinational logic procedural blocks .........................................................142
6.2.2 Latched logic procedural blocks ....................................................................150
6.2.3 Sequential logic procedural blocks ................................................................152
6.2.4 Synthesis guidelines .......................................................................................152

6.3 Enhancements to tasks and functions ............................................................................153
6.3.1 Implicit task and function statement grouping...............................................153
6.3.2 Returning function values ..............................................................................153
6.3.3 Returning before the end of tasks and functions ............................................154
6.3.4 Void functions ................................................................................................155
6.3.5 Passing task/function arguments by name .....................................................156
6.3.6 Enhanced function formal arguments ............................................................157
6.3.7 Functions with no formal arguments..............................................................158
6.3.8 Default formal argument direction and type ..................................................158
6.3.9 Default formal argument values.....................................................................159
6.3.10 Arrays, structures and unions as formal arguments .......................................160
6.3.11 Passing argument values by reference instead of copy..................................161
6.3.12 Named task and function ends .......................................................................165
6.3.13 Empty tasks and functions .............................................................................166

6.4 Summary .......................................................................................................................166

Chapter 7: SystemVerilog Procedural Statements..............................................169
7.1 New operators................................................................................................................170

7.1.1 Increment and decrement operators ...............................................................170
7.1.2 Assignment operators.....................................................................................173
7.1.3 Equality operators with don’t care wildcards.................................................176
7.1.4 Set membership operator — inside ................................................................178

7.2 Operand enhancements..................................................................................................180
7.2.1 Operations on 2-state and 4-state types..........................................................180
7.2.2 Type casting ...................................................................................................180
7.2.3 Size casting.....................................................................................................181
7.2.4 Sign casting ....................................................................................................182

7.3 Enhanced for loops ........................................................................................................182
7.3.1 Local variables within for loop declarations ..................................................183



xi

7.3.2 Multiple for loop assignments........................................................................185
7.3.3 Hierarchically referencing variables declared in for loops ............................185
7.3.4 Synthesis guidelines .......................................................................................186

7.4 Bottom testing do...while loop ......................................................................................186
7.4.1 Synthesis guidelines .......................................................................................188

7.5 The foreach array looping construct..............................................................................188
7.6 New jump statements — break, continue, return ..........................................................188

7.6.1 The continue statement ..................................................................................190
7.6.2 The break statement .......................................................................................190
7.6.3 The return statement.......................................................................................191
7.6.4 Synthesis guidelines .......................................................................................192

7.7 Enhanced block names ..................................................................................................192
7.8 Statement labels.............................................................................................................194
7.9 Enhanced case statements .............................................................................................195

7.9.1 Unique case decisions ....................................................................................196
7.9.2 Priority case statements..................................................................................199
7.9.3 Unique and priority versus parallel_case and full_case .................................201

7.10 Enhanced if...else decisions...........................................................................................203
7.10.1 Unique if...else decisions ...............................................................................203
7.10.2 Priority if decisions ........................................................................................205

7.11 Summary .......................................................................................................................206

Chapter 8: Modeling Finite State Machines with SystemVerilog ......................207
8.1 Modeling state machines with enumerated types..........................................................208

8.1.1 Representing state encoding with enumerated types .....................................210
8.1.2 Reversed case statements with enumerated types ..........................................211
8.1.3 Enumerated types and unique case statements...............................................213
8.1.4 Specifying unused state values.......................................................................214
8.1.5 Assigning state values to enumerated type variables.....................................216
8.1.6 Performing operations on enumerated type variables ....................................218

8.2 Using 2-state types in FSM models...............................................................................219
8.2.1 Resetting FSMs with 2-state and enumerated types ......................................219

8.3 Summary .......................................................................................................................221

Chapter 9: SystemVerilog Design Hierarchy.......................................................223
9.1 Module prototypes.........................................................................................................224

9.1.1 Prototype and actual definition ......................................................................225
9.1.2 Avoiding port declaration redundancy...........................................................225

9.2 Named ending statements..............................................................................................226
9.2.1 Named module ends .......................................................................................226
9.2.2 Named code block ends .................................................................................226



xii

9.3 Nested (local) module declarations ...............................................................................227
9.3.1 Nested module name visibility.......................................................................230
9.3.2 Instantiating nested modules ..........................................................................231
9.3.3 Nested module name search rules ..................................................................232

9.4 Simplified netlists of module instances.........................................................................233
9.4.1 Implicit .name port connections....................................................................238
9.4.2 Implicit .* port connection ...........................................................................242

9.5 Net aliasing....................................................................................................................244
9.5.1 Alias rules.......................................................................................................245
9.5.2 Implicit net declarations .................................................................................246
9.5.3 Using aliases with .name and .* .....................................................................247

9.6 Passing values through module ports ............................................................................251
9.6.1 All types can be passed through ports............................................................251
9.6.2 Module port restrictions in SystemVerilog ....................................................252

9.7 Reference ports..............................................................................................................255
9.7.1 Reference ports as shared variables ...............................................................256
9.7.2 Synthesis guidelines .......................................................................................256

9.8 Enhanced port declarations ...........................................................................................257
9.8.1 Verilog-1995 port declarations ......................................................................257
9.8.2 Verilog-2001 port declarations ......................................................................257
9.8.3 SystemVerilog port declarations ....................................................................258

9.9 Parameterized types.......................................................................................................260
9.10 Summary .......................................................................................................................261

Chapter 10: SystemVerilog Interfaces..................................................................263
10.1 Interface concepts..........................................................................................................264

10.1.1 Disadvantages of Verilog’s module ports ......................................................268
10.1.2 Advantages of SystemVerilog interfaces .......................................................269
10.1.3 SystemVerilog interface contents ..................................................................273
10.1.4 Differences between modules and interfaces .................................................273

10.2 Interface declarations ....................................................................................................274
10.2.1 Source code declaration order ........................................................................276
10.2.2 Global and local interface definitions ............................................................276

10.3 Using interfaces as module ports...................................................................................277
10.3.1 Explicitly named interface ports ....................................................................277
10.3.2 Generic interface ports ...................................................................................278
10.3.3 Synthesis guidelines .......................................................................................278

10.4 Instantiating and connecting interfaces .........................................................................278
10.5 Referencing signals within an interface ........................................................................279
10.6 Interface modports.........................................................................................................281



xiii

10.6.1 Specifying which modport view to use ..........................................................282
10.6.2 Using modports to define different sets of connections.................................286

10.7 Using tasks and functions in interfaces .........................................................................288
10.7.1 Interface methods ...........................................................................................289
10.7.2 Importing interface methods ..........................................................................289
10.7.3 Synthesis guidelines for interface methods....................................................292
10.7.4 Exporting tasks and functions ........................................................................293

10.8 Using procedural blocks in interfaces ...........................................................................296
10.9 Reconfigurable interfaces..............................................................................................296
10.10 Verification with interfaces ...........................................................................................298
10.11 Summary .......................................................................................................................299

Chapter 11: A Complete Design Modeled with SystemVerilog..........................301
11.1 SystemVerilog ATM example.......................................................................................301
11.2 Data abstraction.............................................................................................................302
11.3 Interface encapsulation..................................................................................................305
11.4 Design top level: squat ..................................................................................................308
11.5 Receivers and transmitters.............................................................................................315

11.5.1 Receiver state machine...................................................................................315
11.5.2 Transmitter state machine ..............................................................................318

11.6 Testbench.......................................................................................................................321
11.7 Summary .......................................................................................................................327

Chapter 12: Behavioral and Transaction Level Modeling .................................329
12.1 Behavioral modeling .....................................................................................................330
12.2 What is a transaction?....................................................................................................330
12.3 Transaction level modeling in SystemVerilog ..............................................................332

12.3.1 Memory subsystem example..........................................................................333
12.4 Transaction level models via interfaces ........................................................................335
12.5 Bus arbitration ...............................................................................................................337
12.6 Transactors, adapters, and bus functional models .........................................................341

12.6.1 Master adapter as module...............................................................................341
12.6.2 Adapter in an interface ...................................................................................348

12.7 More complex transactions ...........................................................................................353
12.8 Summary .......................................................................................................................354

Appendix A: The SystemVerilog Formal Definition (BNF) ...............................355

Appendix B: Verilog and SystemVerilog Reserved Keywords...........................395

Appendix C: A History of SUPERLOG, the Beginning of SystemVerilog .......401

Index ........................................................................................................................415



About the Authors

Stuart Sutherland provides expert instruction on using SystemVerilog and Verilog.
He has been involved in defining the Verilog language since the beginning of IEEE
standardization work in 1993, and is a member of both the IEEE Verilog standards
committee (where he has served as the chair and co-chair of the Verilog PLI task
force), and the IEEE SystemVerilog standards committee (where he has served as the
editor for the SystemVerilog Language Reference Manual). Stuart has more than 20
years of experience in hardware design, and over 17 years of experience with Verilog.
He is the founder of Sutherland HDL Inc., which specializes in providing expert HDL
training services. He holds a Bachelors degree in Computer Science, with an empha-
sis in Electronic Engineering Technology. He has also authored “The Verilog PLI
Handbook” and “Verilog-2001: A Guide to the New Features of the Verilog HDL”.

Simon Davidmann has been involved with HDLs since 1978. He was a member of
the HILO team at Brunel University in the UK. In 1984 he became an ASIC designer
and embedded software developer of real time professional musical instruments for
Simmons Percussion. In 1988, he became involved with Verilog as the first European
employee of Gateway Design Automation. He founded Chronologic Simulation in
Europe, the European office of Virtual Chips (inSilicon), and then the European oper-
ations of Ambit Design. In 1998, Mr. Davidmann co-founded Co-Design Automation,
and was co-creator of SUPERLOG. As CEO of Co-Design, he was instrumental in
transitioning SUPERLOG into Accellera as the beginning of SystemVerilog. Mr.
Davidmann is a member of the Accellera SystemVerilog and IEEE 1364 Verilog com-
mittees. He is a consultant to, and board member of, several technology and EDA
companies, and is Visiting Professor of Digital Systems at Queen Mary, University of
London. In 2005 Mr. Davidmann founded Imperas, Inc where he is President & CEO.

Peter Flake was a co-founder and Chief Technical Officer at Co-Design Automation
and was the main architect of the SUPERLOG language. With the acquisition of Co-
Design by Synopsys in 2002, he became a Scientist at Synopsys. His EDA career
spans more than 30 years: he was the language architect and project leader of the
HILO development effort while at Brunel University in Uxbridge, U.K., and at Gen-
Rad. HILO was the first commercial HDL-based simulation, fault simulation and tim-
ing analysis system of the early/mid 1980s. In 2005 he became Chief Scientist at
Imperas.  He holds a Master of Arts degree from Cambridge University in the U.K.
and has made many conference presentations on the subject of HDLs.



List of Examples

This book contains a number of examples that illustrate the proper usage of System-
Verilog constructs. A summary of the major code examples is listed in this section. In
addition to these examples, each chapter contains many code fragments that illustrate
specific features of SystemVerilog. The source code for these full examples, as well
as many of the smaller code snippets, can be downloaded from http://www.suther-
land-hdl.com. Navigate the links to “SystemVerilog Book Examples”.

Page xxv of the Preface provides more details on the code examples in this book.

Chapter 1: Introduction to SystemVerilog

Chapter 2: SystemVerilog Declaration Spaces
Example 2-1: A package definition .........................................................................................9
Example 2-2: Explicit package references using the :: scope resolution operator ................10
Example 2-3: Importing specific package items into a module .............................................11
Example 2-4: Using a package wildcard import ....................................................................13
Example 2-5: External declarations in the compilation-unit scope (not synthesizable) ........15
Example 2-6: Package with conditional compilation (file name: definitions.pkg) ...............21
Example 2-7: A design file that includes the conditionally-compiled package file ..............23
Example 2-8: A testbench file that includes the conditionally-compiled package file .........23
Example 2-9: Mixed declarations of time units and precision (not synthesizable) ...............34

Chapter 3: SystemVerilog Literal Values and Built-in Data Types
Example 3-1: Relaxed usage of variables ..............................................................................53
Example 3-2: Illegal use of variables ....................................................................................54
Example 3-3: Applying reset at simulation time zero with 2-state types ..............................65

Chapter 4: SystemVerilog User-Defined and Enumerated Types
Example 4-1: Directly referencing typedef definitions from a package ................................77
Example 4-2: Importing package typedef definitions into $unit ...........................................78
Example 4-3: State machine modeled with Verilog ‘define and parameter constants ..........79
Example 4-4: State machine modeled with enumerated types ..............................................81
Example 4-5: Using special methods to iterate through enumerated type lists .....................91
Example 4-6: Printing enumerated types by value and by name ...........................................92



xviii

Chapter 5: SystemVerilog Arrays, Structures and Unions
Example 5-1: Using structures and unions ..........................................................................112
Example 5-2: Using arrays of structures to model an instruction register ...........................129

Chapter 6: SystemVerilog Procedural Blocks, Tasks and Functions
Example 6-1: A state machine modeled with always procedural blocks .........................145
Example 6-2: A state machine modeled with always_comb procedural blocks .............147
Example 6-3: Latched input pulse using an always_latch procedural block ...............151

Chapter 7: SystemVerilog Procedural Statements
Example 7-1: Using SystemVerilog assignment operators .................................................175
Example 7-2: Code snippet with unnamed nested begin...end blocks ............................192
Example 7-3: Code snippet with named begin and named end blocks ...........................193

Chapter 8: Modeling Finite State Machines with SystemVerilog
Example 8-1: A finite state machine modeled with enumerated types (poor style) ............208
Example 8-2: Specifying one-hot encoding with enumerated types ...................................210
Example 8-3: One-hot encoding with reversed case statement style ...................................212
Example 8-4: Code snippet with illegal assignments to enumerated types .........................216

Chapter 9: SystemVerilog Design Hierarchy
Example 9-1: Nested module declarations ..........................................................................228
Example 9-2: Hierarchy trees with nested modules ............................................................231
Example 9-3: Simple netlist using Verilog’s named port connections ................................235
Example 9-4: Simple netlist using SystemVerilog’s .name port connections ...................239
Example 9-5: Simple netlist using SystemVerilog’s .* port connections ..........................243
Example 9-6: Netlist using SystemVerilog’s .* port connections without aliases ............248
Example 9-7: Netlist using SystemVerilog’s .* connections along with net aliases .........249
Example 9-8: Passing structures and arrays through module ports .....................................252
Example 9-9: Passing a reference to an array through a module ref port ............................255
Example 9-10: Polymorphic adder using parameterized variable types ................................261

Chapter 10: SystemVerilog Interfaces
Example 10-1: Verilog module interconnections for a simple design ...................................264
Example 10-2: SystemVerilog module interconnections using interfaces ............................270
Example 10-3: The interface definition for main_bus, with external inputs .....................274
Example 10-4: Using interfaces with .* connections to simplify complex netlists ............275
Example 10-5: Referencing signals within an interface ........................................................280
Example 10-6: Selecting which modport to use at the module instance ...............................283
Example 10-7: Selecting which modport to use at the module definition .............................284



xix

Example 10-8: A simple design using an interface with modports .......................................287
Example 10-9: Using modports to select alternate methods within an interface ...................291
Example 10-10:Exporting a function from a module through an interface modport .............294
Example 10-11:Exporting a function from a module into an interface ..................................294
Example 10-12:Using parameters in an interface ...................................................................297

Chapter 11: A Complete Design Modeled with SystemVerilog
Example 11-1: Utopia ATM interface, modeled as a SystemVerilog interface ....................306
Example 11-2: Cell rewriting and forwarding configuration ................................................307
Example 11-3: ATM squat top-level module ........................................................................309
Example 11-4: Utopia ATM receiver ....................................................................................315
Example 11-5: Utopia ATM transmitter ................................................................................318
Example 11-6: UtopiaMethod interface for encapsulating test methods ...............................321
Example 11-7: CPUMethod interface for encapsulating test methods ..................................322
Example 11-8: Utopia ATM testbench ..................................................................................323

Chapter 12: Behavioral and Transaction Level Modeling
Example 12-1: Simple memory subsystem with read and write tasks ..................................333
Example 12-2: Two memory subsystems connected by an interface ....................................335
Example 12-3: TLM model with bus arbitration using semaphores .....................................338
Example 12-4: Adapter modeled as a module .......................................................................341
Example 12-5: Simplified Intel Multibus with multiple masters and slaves .........................342
Example 12-6: Simple Multibus TLM example with master adapter as a module ...............343
Example 12-7: Simple Multibus TLM example with master adapter as an interface ...........348



Foreword

by Phil Moorby
The creator of the Verilog language

When Verilog was created in the mid-1980s, the typical design size was of the order
of five to ten thousand gates, the typical design creation method was that of using
graphical schematic entry tools, and simulation was beginning to be an essential gate
level verification tool. Verilog addressed the problems of the day, but also included
capabilities that enabled a new generation of EDA technology to evolve, namely syn-
thesis from RTL. Verilog thus became the mainstay language of IC designers.

Throughout the 1990s, the Verilog language continued to evolve with technology, and
the IEEE ratified new extensions to the standard in 2001. Most of the new capabilities
in the 2001 standard that users were eagerly waiting for were relatively minor feature
refinements as found in other HDLs, such as multidimensional arrays, automatic vari-
ables and the generate statement. Today many EDA tools support these Verilog-2001
enhancements, and thus provide users with access to these new capabilities.

SystemVerilog is a significant new enhancement to Verilog and includes major exten-
sions into abstract design, testbench, formal, and C-based APIs. SystemVerilog also
defines new layers in the Verilog simulation strata. These extensions provide signifi-
cant new capabilities to the designer, verification engineer and architect, allowing bet-
ter teamwork and co-ordination between different project members. As was the case
with the original Verilog, teams who adopt SystemVerilog based tools will be more
productive and produce better quality designs in shorter periods.

A strong guiding requirement for SystemVerilog is that it should be a true superset of
Verilog, and as new tools become available, I believe all Verilog users, and many
users of other HDLs, will naturally adopt it.

When I developed the original Verilog LRM and simulator, I had an expectation of
maybe a 10-15 year life-span, and during this time I have kept involved with its evo-
lution. When Co-Design Automation was formed by two of the authors, Peter Flake



xxii

and Simon Davidmann, to develop SUPERLOG and evolve Verilog, I was invited to
join its Technical Advisory Board and, later, I joined the company and chaired its
SUPERLOG Working Group. More recently, SUPERLOG was adopted by Accellera
and has become the basis of SystemVerilog. I did not expect Verilog to be as success-
ful as it has been and, with the extensions in SystemVerilog, I believe that it will now
become the dominant HDL and provide significant benefits to the current and future
generation of hardware designers, architects and verification engineers, as they
endeavor to create smaller, better, faster, cheaper products.

If you are a designer or architect building digital systems, or a verification engineer
searching for bugs in these designs, then SystemVerilog will provide you with signif-
icant benefits, and this book is a great place to start to learn SystemVerilog and the
future of Hardware Design and Verification Languages.

Phil Moorby,
New England, 2003



Preface

SystemVerilog, officially the IEEE Std 1800-2005™ standard, is a set of extensions
to the IEEE Std 1364-2005™ Verilog Standard (commonly referred to as “Verilog-
2005”). These extensions provide new and powerful language constructs for model-
ing and verifying the behavior of designs that are ever increasing in size and complex-
ity. The SystemVerilog extensions to Verilog can be generalized to two primary
categories:

• Enhancements primarily addressing the needs of hardware modeling, both in terms
of overall efficiency and abstraction levels.

• Verification enhancements and assertions for writing efficient, race-free test-
benches for very large, complex designs.

Accordingly, the discussion of SystemVerilog is divided into two books. This book,
SystemVerilog for Design, addresses the first category, using SystemVerilog for mod-
eling hardware designs at the RTL and system levels of abstraction. Most of the
examples in this book can be realized in hardware, and are synthesizable. A compan-
ion book, SystemVerilog for Verification1, covers the second purpose of SystemVer-
ilog, that of verifying correct functionality of large, complex designs. 

Target audience

This book is intended to help users of the Verilog language understand the capabilities
of the SystemVerilog enhancements to Verilog. The book presents SystemVerilog in
the context of examples, with an emphasis on correct usage of SystemVerilog con-
structs. These examples include a mix of standard Verilog code along with System-
Verilog the enhancements. The explanations in the book focus on these
SystemVerilog enhancements, with an assumption that the reader will understand the
Verilog portions of the examples. 

Additional references on SystemVerilog and Verilog are listed on page xxvii.

1.  Spear, Chris “SystemVerilog for Verification”, Norwell, MA: Springer 2006, 0-387-27036-1.

This book assumes the reader is already familiar with the Verilog Hardware
Description Language.

NOTE



xxiv

Topics covered

This book focusses on the portion of SystemVerilog that is intended for representing
hardware designs in a manner that is both simulatable and synthesizable. 

Chapter 1 presents a brief overview of SystemVerilog and the key enhancements that
it adds to the Verilog language.

Chapter 2 discusses the enhancements SystemVerilog provides on where design data
can be declared. Packages, $unit, shared variables and other important topics regard-
ing declarations are covered.

Chapter 3 goes into detail on the many new data types SystemVerilog adds to Ver-
ilog. The chapter covers the intended and proper usage of these new data types.

Chapter 4 presents user-defined data types, a powerful enhancement to Verilog. The
topics include how to create new data type definitions using typedef and defining
enumerated type variables.

Chapter 5 looks at using structures and unions in hardware models. The chapter also
presents a number of enhancements to arrays, together with suggestions as to how
they can be used as abstract, yet synthesizable, hardware modeling constructs.

Chapter 6 presents the specialized procedural blocks, coding blocks and enhanced
task and function definitions in SystemVerilog, and how these enhancements will
help create models that are correct by design.

Chapter 7 shows how to use the enhancements to Verilog operators and procedural
statements to code accurate and deterministic hardware models, using fewer lines of
code compared to standard Verilog.

Chapter 8 provides guidelines on how to use enumerated types and specialized pro-
cedural blocks for modeling Finite State Machine (FSM) designs. This chapter also
presents a number of guidelines on modeling hardware using 2-state logic.

Chapter 9 examines the enhancements to design hierarchy that SystemVerilog pro-
vides. Significant constructs are presented, including nested module declarations and
simplified module instance declarations.

Chapter 10 discusses the powerful interface construct that SystemVerilog adds to
Verilog. Interfaces greatly simplify the representation of complex busses and enable
the creation of more intelligent, easier to use IP (intellectual property) models.



xxv

Chapter 11 ties together the concepts from all the previous chapters by applying
them to a much more extensive example. The example shows a complete model of an
ATM switch design, modeled in SystemVerilog. 

Chapter 12 provides another complete example of using SystemVerilog. This chapter
covers the usage of SystemVerilog to represent models at a much higher level of
abstraction, using transactions.

Appendix A lists the formal syntax of SystemVerilog using the Backus-Naur Form
(BNF). The SystemVerilog BNF includes the full Verilog-2005 BNF, with the Sys-
temVerilog extensions integrated into the BNF.

Appendix B lists the set of reserved keywords in the Verilog and SystemVerilog stan-
dards. The appendix also shows how to mix Verilog models and SystemVerilog mod-
els in the same design, and maintain compatibility between the different keyword
lists.

Appendix C presents an informative history of hardware description languages and
Verilog. It covers the development of the SUPERLOG language, which became the
basis for much of the synthesizable modeling constructs in SystemVerilog.

About the examples in this book

The examples in this book are intended to illustrate specific SystemVerilog constructs
in a realistic but brief context. To maintain that focus, many of the examples are rela-
tively small, and often do not reflect the full context of a complete model. However,
the examples serve to show the proper usage of SystemVerilog constructs. To show
the power of SystemVerilog in a more complete context, Chapter 11 contains the full
source code of a more extensive example.

The examples contained in the book use the convention of showing all Verilog and
SystemVerilog keywords in bold, as illustrated below:

Example: SystemVerilog code sample

module uart (output logic [7:0] data,
output logic data_rdy,
input serial_in);

enum {WAITE, LOAD, READY} State, NextState;
logic [2:0] bit_cnt;
logic cntr_rst, shift_en;



xxvi

always_ff @(posedge clock, negedge resetN) begin: shifter
if (!resetN)
data <= 8'h0; //reset (active low)

else if (shift_en)
data <= {serial_in, data[7:1]}; //shift right

end: shifter
endmodule

Longer examples in this book list the code between double horizontal lines, as shown
above. There are also many shorter examples in each chapter that are embedded in the
body of the text, without the use of horizontal lines to set them apart. For both styles
of examples, the full source code is not always included in the book. This was done in
order to focus on specific aspects of SystemVerilog constructs without excessive clut-
ter from surrounding code.

Obtaining copies of the examples

The complete code for all the examples listed in this book are available for personal,
non-commercial use. They can be downloaded from http://www.sutherland-hdl.com.
Navigate the links to “SystemVerilog Book Examples”.

Example testing

Most examples in this book have been tested using the Synopsys VCS® simulator,
version 2005.06-SP1, and the Mentor Graphics Questa™ simulator, version 6.2.
Most models in this book are synthesizable, and have been tested using the Synopsys
DC Compiler™ synthesis compiler, version 2005.12.1

1.  All company names and product names mentioned in this book are the trademark or registered
trademark names of their respective companies.

The examples do not distinguish standard Verilog constructs and keywords from
SystemVerilog constructs and keywords. It is expected that the reader is already
familiar with the Verilog HDL, and will recognize standard Verilog versus the new
constructs and keywords added with SystemVerilog.

NOTE



xxvii

Other sources of information

This book only explains the SystemVerilog enhancements for modeling hardware
designs. The book does not go into detail on the SystemVerilog enhancements for ver-
ification, and does not cover the Verilog standard. Some other resources which can
serve as excellent companions to this book are:

SystemVerilog for Verification—A Guide to Learning the Testbench Language Fea-
tures by Chris Spear.

Copyright 2006, Springer, Norwalk, Massachusetts. ISBN 0-387-27036-1.

A companion to this book, with a focus on verification methodology using the
SystemVerilog assertion and testbench enhancements to Verilog. This book pre-
sents the numerous verification constructs in SystemVerilog, which are not cov-
ered in this book. Together, the two books provide a comprehensive look at the
extensive set of extensions that SystemVerilog adds to the Verilog language. For
more information, refer to the publisher’s web site: www.springer.com/sgw/cda/
frontpage/0,11855,4-40109-22-107949012-0,00.html.

IEEE Std 1800-2005, SystemVerilog Language Reference Manual LRM)—IEEE
Standard for SystemVerilog: Unified Hardware Design, Specification and Verification
Language.

Copyright 2005, IEEE, Inc., New York, NY. ISBN 0-7381-4811-3. Electronic
PDF form, (also available in soft cover).

This is the official SystemVerilog standard. The book is a syntax and semantics
reference, not a tutorial for learning SystemVerilog. For information on ordering,
visit the web site: http://shop.ieee.org/store and search for SystemVerilog.

IEEE Std 1364-2005, Verilog Language Reference Manual LRM)—IEEE Standard
for Verilog Hardware Description Language.

Copyright 2005, IEEE, Inc., New York, NY. ISBN 0-7381-4851-2. Electronic
PDF form, (also available in soft cover).

This is the official Verilog HDL and PLI standard. The book is a syntax and
semantics reference, not a tutorial for learning Verilog. For information on order-
ing, visit the web site: http://shop.ieee.org/store and search for Verilog.

1364.1-2002 IEEE Standard for Verilog Register Transfer Level Synthesis 2002—
Standard syntax and semantics for Verilog HDL-based RTL synthesis.



xxviii

Copyright 2002, IEEE, Inc., New York, NY. ISBN 0-7381-3501-1. Softcover, 106
pages (also available as a downloadable PDF file).

This is the official synthesizable subset of the Verilog language. For information on
ordering, visit the web site: http://shop.ieee.org/store and search for Verilog.

Writing Testbenches Using SystemVerilog by Janick Bergeron 

Copyright 2006, Springer, Norwell Massachusetts. 
ISBN: 0-387-29221-7. Hardcover, 412 pages.

Provides an explanation of the many testbench extensions that SystemVerilog
adds for verification, and how to use those extensions for efficient verification.
For more information, refer to the publisher’s web site: www.springer.com/sgw/
cda/frontpage/0,11855,4-40109-22-104242164-0,00.html.

The Verification Methodology Manual for SystemVerilog (VMM) by Janick Berg-
eron, Eduard Cerny, Alan Hunter, Andrew Nightingale 

Copyright 2005, Springer, Norwell Massachusetts. 
ISBN: 0-387-25538-9. Hardcover, 510 pages.

A methodology book on how to use SystemVerilog for advanced verification tech-
niques. This is an advanced-level book; It is not a tutorial for learning SystemVer-
ilog. For more information, refer to the publisher’s web site: www.springer.com/
sgw/cda/frontpage/0,11855,4-40109-22-52495600-0,00.html.

A Practical Guide for SystemVerilog Assertions, by Srikanth Vijayaraghavan, and
Meyyappan Ramanathan

Copyright 2005, Springer, Norwell Massachusetts. 
ISBN: 0-387-26049-8. Hardcover, 334 pages.

Specifically covers the SystemVerilog Assertions portion of the SystemVerilog
standard. For more information, refer to the publisher’s web site:
www.springer.com/sgw/cda/frontpage/0,11855,4-40109-22-50493024-0,00.html.

SystemVerilog Assertions Handbook, Ben Cohen, Srinivasan Venkataramanan,
Ajeetha Kumari 

Copyright 2004, VhdlCohen, Palos Verdes Peninsula, California. 
ISBN: 0-9705394-7-9. Softcover, 330 pages.

Presents Assertion-Based Verification techniques using the SystemVerilog Asser-
tions portion of the SystemVerilog standard. For more information, refer to the
publisher’s web site: www.abv-sva.org/#svah.



xxix

Assertions-Based Design, Second Edition, Harry Foster, Adam Krolnik, and David
Lacey 

Copyright 2004, Springer, Norwell Massachusetts.
ISBN: 1-4020-8027-1. Hardcover, 414 pages.

Presents how assertions are used in the design and verification process, and illus-
trates the usage of OVL, PSL and SystemVerilog assertions. For more informa-
tion, refer to the publisher’s web site: www.springer.com/sgw/cda/frontpage/
0,11855,4-102-22-33837980-0,00.html.

The Verilog Hardware Description Language, 5th Edition by Donald E. Thomas
and Philip R. Moorby.

Copyright 2002, Kluwer Academic Publishers, Norwell MA. 
ISBN: 1-4020-7089-6. Hardcover, 408 pages.

A complete book on Verilog, covering RTL modeling, behavioral modeling and
gate level modeling. The book has more detail on the gate, switch and strength
level aspects of Verilog than many other books. For more information, refer to the
web site www.wkap.nl/prod/b/1-4020-7089-6.

Verilog Quickstart, A Practical Guide to Simulation and Synthesis, 3rd Edition by
James M. Lee.

Copyright 2002, Kluwer Academic Publishers, Norwell MA. 
ISBN: 0-7923-7672-2. Hardcover, 384 pages.

An excellent book for learning the Verilog HDL. The book teaches the basics of
Verilog modeling, without getting bogged down with the more obscure aspects of
the Verilog language. For more information, refer to the web site www.wkap.nl/
prod/b/0-7923-7672-2.

Verilog 2001: A Guide to the New Features of the Verilog Hardware Description
Language by Stuart Sutherland.

Copyright 2002, Kluwer Academic Publishers, Norwell MA. 
ISBN: 0-7923-7568-8. Hardcover, 136 pages.

An overview of the many enhancements added as part of the IEEE 1364-2001
standard. For more information, refer to the web site www.wkap.nl/book.htm/0-
7923-7568-8.



xxx

Acknowledgements

The authors would like to express their gratitude to all those who have helped with
this book. A number of SystemVerilog experts have taken the time to review all or
part of the text and examples, and provided invaluable feedback on how to make the
book useful and accurate. 

We would like to specifically thank those that provided invaluable feedback by
reviewing this book. These reviewers of the first edition include (listed alphabeti-
cally) Clifford E. Cummings., Tom Fitzpatrick, Dave Kelf, James Kenney, Mat-
thew Hall, Monique L'Huillier, Phil Moorby, Lee Moore, Karen L. Pieper, Dave
Rich, LeeAnn Sutherland and David W. Smith. The updates made for the second
edition were reviewed by Shalom Bresticker and LeeAnn Sutherland.

We also want to acknowledge the significant contribution of Lee Moore, who con-
verted the Verification Guild ATM model shown in Chapter 11 from behavioral Ver-
ilog into synthesizable SystemVerilog. The authors also express their appreciation to
Janick Bergeron, moderator of the Verification Guild on-line newsletter, for granting
permission to use this ATM switch example.



Chapter 1
Introduction to SystemVerilog

E 1-0: 
PLE 1-0:

RE 1-0.

his chapter provides an overview of SystemVerilog. The topics
presented in this chapter include: 

• The origins of SystemVerilog

• Technical donations that went into SystemVerilog

• Highlights of key SystemVerilog features

1.1  SystemVerilog origins

SystemVerilog is a standard set of extensions to the IEEE 1364-
2005 Verilog Standard (commonly referred to as “Verilog-2005”).
The SystemVerilog extensions to the Verilog HDL that are
described in this book are targeted at design and writing synthesiz-
able models. These extensions integrate many of the features of the
SUPERLOG and C languages. SystemVerilog also contains many
extensions for the verification of large designs, integrating features
from the SUPERLOG, VERA C, C++, and VHDL languages, along
with OVA and PSL assertions. These verification assertions are in a
companion book, SystemVerilog for Verification1.

1.  Spear, Chris “SystemVerilog for Verification”, Norwell, MA: Springer 2006, 0-387-27036-1.

T

SystemVerilog
extends Verilog



2 SystemVerilog for Design

This integrated whole created by SystemVerilog greatly exceeds the
sum of its individual components, creating a new type of engineer-
ing language, a Hardware Description and Verification Language
or HDVL. Using a single, unified language enables engineers to
model large, complex designs, and verify that these designs are
functionally correct.

The Accellera standards organization

The specification of the SystemVerilog enhancements to Verilog
began with a standards group under the auspices of the Accellera
Standards Organization, rather than directly by the IEEE. Accel-
lera is a non-profit organization with the goal of supporting the
development and use of Electronic Design Automation (EDA) lan-
guages. Accellera is the combined VHDL International and Open
Verilog International organizations. Accellera helps sponsor the
IEEE 1076 VHDL and IEEE 1364 Verilog standards groups. In
addition, Accellera sponsors a number of committees doing
research on future languages. SystemVerilog is the result of one of
those Accellera committees. Accellera itself receives its funding
from member companies. These companies comprise several major
EDA software vendors and several major electronic design corpora-
tions. More information on Accellera, its members, and its current
projects can be found at www.accellera.org.

Accellera based the SystemVerilog enhancements to Verilog on
proven technologies. Various companies have donated technology
to Accellera, which has then been carefully reviewed and integrated
into SystemVerilog. A major benefit of using donations of technol-
ogies is that the SystemVerilog enhancements have already been
proven to work and accomplish the objective of modeling and veri-
fying much larger designs.

1.1.1  Generations of the SystemVerilog standard

A major portion of SystemVerilog was released as an Accellera
standard in June of 2002 under the title of SystemVerilog 3.0. This
initial release of the SystemVerilog standard allowed EDA compa-
nies to begin adding the SystemVerilog extensions to existing simu-
lators, synthesis compilers and other engineering tools. The focus
of this first release of the SystemVerilog standard was to extend the
synthesizable constructs of Verilog, and to enable modeling hard-

SystemVerilog
started as an

Accellera
standard

SystemVerilog
is based on

proven
technology

Accellera
SystemVerilog

3.0 extended
modeling
capability



Chapter 1: Introduction to SystemVerilog 3

ware at a higher level of abstraction. These are the constructs that
are addressed in this book.

SystemVerilog began with a version number of 3.0 to show that
SystemVerilog is the third major generation of the Verilog lan-
guage. Verilog-1995 is the first generation, which represents the
standardization of the original Verilog language defined by Phil
Moorby in the early 1980s. Verilog-2001 is the second major gener-
ation of Verilog, and SystemVerilog is the third major generation.
Appendix C of this book contains more details on the history of
hardware descriptions languages, and the evolution of Verilog that
led up to SystemVerilog.

A major update to the SystemVerilog set of extensions was released
in May of 2003. This release was referred to as SystemVerilog 3.1,
and added a substantial number of verification capabilities to Sys-
temVerilog. These testbench enhancements are covered in the com-
panion book, SystemVerilog for Verification1.

Accellera continued to refine the SystemVerilog 3.1 standard by
working closely with major Electronic Design Automation (EDA)
companies to ensure that the SystemVerilog specification could be
implemented as intended. A few additional modeling and verifica-
tion constructs were also defined. In May of 2004, a final Accellera
SystemVerilog draft was ratified by Accellera, and called System-
Verilog 3.1a.

In June of 2004, right after SystemVerilog 3.1a was ratified, Accel-
lera donated the SystemVerilog standard to the IEEE Standards
Association (IEEE-SA), which oversees the Verilog 1364 standard.
Accellera worked with the IEEE to form a new standards request, to
review and standardize the SystemVerilog extensions to Verilog.
The project number assigned to SystemVerilog was P1800 (the “P”
in IEEE standards numbers stands for “proposed”, and is dropped
once the IEEE has officially approved of the standard). 

The IEEE-SA formed a P1800 Working Group to review the Sys-
temVerilog 3.1a documentation and prepare it for full IEEE stan-
dardization. The working group formed several focused
committees, which met on a very aggressive schedule for the next
several months. The P1800 Working Group completed its work in

1.  Spear, Chris “SystemVerilog for Verification”, Norwell, MA: Springer 2006, 0-387-27036-1.

SystemVerilog
is the third

generation of
Verilog

Accellera
SystemVerilog

3.1 extends
verification

capability

Accellera
SystemVerilog

3.1a was
donated to the

IEEE

SystemVerilog
3.1a was

donated to the
IEEE

IEEE 1800-2005
is the official

SystemVerilog
standard



4 SystemVerilog for Design

March of 2005, and released a ballot draft of the P1800 standard for
voting on by corporate members of the IEEE-SA. The balloting and
final IEEE approval process were completed in October 2005, and,
in November of 2005, the official IEEE 1800-2005 standard was
released to the public. See page xxvii of the Preface for information
on obtaining the IEEE 1800-2005 SystemVerilog Reference Man-
ual (LRM).

Prior to the donation of SystemVerilog 3.1a to the IEEE, the IEEE-
SA had already begun work on the next revision of the IEEE 1364
Verilog standard. At the encouragement of Accellera, the IEEE-SA
organization decided not to immediately add the SystemVerilog
extensions to work already in progress for extending Verilog 1364.
Instead, it was decided to keep the SystemVerilog extensions as a
separate document. To ensure that the reference manual for the base
Verilog language and the reference manual for the SystemVerilog
extensions to Verilog remained synchronized, the IEEE-SA dis-
solved the 1364 Working Group and made the 1364 Verilog refer-
ence manual part of the responsibility of the 1800 SystemVerilog
Working Group. The 1800 Working Group formed a subcommittee
to update the 1364 Verilog standard in parallel with the specifica-
tion of the P1800 SystemVerilog reference manual. For the most
part, the work done on the 1364 revisions was limited to errata cor-
rections and clarifications. Most extensions to Verilog were speci-
fied in the P1800 standard. The 1800 SystemVerilog Working
Group released a ballot draft for an updated Verilog P1364 standard
at the same time as the ballot draft for the new P1800 SystemVer-
ilog standard. Both standards were approved at the same time. The
1364-2005 Verilog Language Reference Manual is the official base
language for SystemVerilog 1800-2005.

1.1.2  Donations to SystemVerilog

The primary technology donations that make up SystemVerilog
include:

• The SUPERLOG Extended Synthesizable Subset (SUPERLOG
ESS), from Co-Design Automation

• The OpenVERA™ verification language from Synopsys

• PSL assertions (which began as a donation of Sugar assertions
from IBM)

• OpenVERA Assertions (OVA) from Synopsys

IEEE 1364-2005
is the base

language for
SystemVerilog

1800-2005

SystemVerilog
comes from

several
donations



Chapter 1: Introduction to SystemVerilog 5

• The DirectC and coverage Application Programming Interfaces
(APIs) from Synopsys

• Separate compilation and $readmem extensions from Mentor
Graphics

• Tagged unions and high-level language features from BlueSpec

In 2001, Co-Design Automation (which was acquired by Synopsys
in 2002) donated to Accellera the SUPERLOG Extended Synthe-
sizable Subset in June of 2001. This donation makes up the major-
ity of the hardware modeling enhancements in SystemVerilog.
Accellera then organized the Verilog++ committee, which was later
renamed the SystemVerilog committee, to review this donation, and
create a standard set of enhancements for the Verilog HDL. Appen-
dix C contains a more complete history of the SUPERLOG lan-
guage.

In 2002, Synopsys donated OpenVERA testbench, OpenVERA
Assertions (OVA), and DirectC to Accellera, as a complement to
the SUPERLOG ESS donation. These donations significantly
extend the verification capabilities of the Verilog language. 

The Accellera SystemVerilog committee also specified additional
design and verification enhancements to the Verilog language that
were not part of these core donations.

Two major goals of the SystemVerilog committee within Accellera
were to maintain full backward compatibility with the existing Ver-
ilog HDL, and to maintain the general look and feel of the Verilog
HDL.

1.2  Key SystemVerilog enhancements for hardware design

The following list highlights some of the more significant enhance-
ments SystemVerilog adds to the Verilog HDL for the design and
verification of hardware: This list is not intended to be all inclusive
of every enhancement to Verilog that is in SystemVerilog. This list
just highlights a few key features that aid in writing synthesizable
hardware models.

• Interfaces to encapsulate communication and protocol checking
within a design

SUPERLOG
was donated by

Co-Design

OpenVERA and
DirectC were

donated by
Synopsys

SystemVerilog
is backward

compatible with
Verilog


