SystemVerilog
For Design

Second Edition

A Guide to Using SystemVerilog
for Hardware Design and Modeling

SystemVerilog
For Design

Second Edition

A Guide to Using SystemVerilog
for Hardware Design and Modeling

by

Stuart Sutherland
Simon Davidmann
Peter Flake

Foreword by Phil Moorby

@ Springer

Stuart Sutherland
Sutherland DHL, Inc.
22805 SW 92nd Place
Tualatin, OR 97062
USA

Simon Davidmann

The Old Vicerage

Priest End

Thame, Oxfordshire 0X9 3AB
United Kingdom

Peter Flake

Imperas, Ltd.

Imperas Buildings, North Weston
Thame, Oxfordshire 0X9 2HA
United Kingdom

SystemVerilog for Design, Second Edition
A Guide to Using SystemVerilog for Hardware Design and Modeling

Library of Congress Control Number: 2006928944

ISBN-10: 0-387-33399-1 e-ISBN-10: 0-387-36495-1
ISBN-13: 9780387333991 e-ISBN-13: 9780387364957

Printed on acid-free paper.

© 2006 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America.
98765432

springer.com

Dedications

To my wonderful wife, LeeAnn, and my children, Ammon, Tamara, Hannah, Seth and
Samuel — thank you for all your patience during the many long hours and late nights
while writing this book.

Stuart Sutherland
Portland, Oregon

To all of the staff of Co-Design and the many EDA colleagues that worked with me
over the years — thank you for helping to evolve Verilog and make its extension and
evolution a reality. And to Penny, Emma and Charles — thank you for allowing me
the time to indulge in language design (and in cars and guitars...).

Simon Davidmann
Santa Clara, California

To my wife Monique, for supporting me when I was not working, and when I was
working too much.

Peter Flake
Thame, UK

1able of Contents

Foreword xxi
Preface
Target audience...
TOPICS COVETRA ...ttt ettt ettt bttt ettt st et b et es e st e st st et ebeneeenenes
About the examples in this DOOK.........cccoeiiiiiiiiiiiiiee s XXV
Obtaining copies Of the EXAMPIESceceririerierieierieriere ettt eenes XXVi
EXAMPIE tESTING. ...c.vevetieiieiieiieteitetet ettt ettt ettt ettt et et e be b ebeeaeeseeseenteneensensesensessens XXVi
Other sources of INfOrMAatioNcoeeuiriiirieiiiiceere e XX Vil
ACKNOWIEAZEIMENLS ...ttt sttt ettt ettt s bbbt ebe et ene XXX
Chapter 1: Introduction to SystemVerilog 1
1.1 SyStemMVErilog OTIZINScuerviiieiieiietietieteiteetetet ettt ettt ettt ste e tebestessessestessessesseeseens 1
1.1.1 Generations of the SystemVerilog standard..............cocccoevenrinicniniincnnncnne. 2
1.1.2 Donations t0 SYStEMVETIlOgcceecverierierierieriiiieiieeieteieiesieseee e eeseaesenseeenes 4
1.2 Key SystemVerilog enhancements for hardware design............ccccecerereieieinenencnceene 5
1.3 SUITHMATY .ottt sttt ettt sttt st sb e bt e bt be et e b et eneas 6
Chapter 2: SystemVerilog Declaration Spaces 7
2.1 PACKAZES .ouvivieiieiieieieee ettt et ettt et a et et ente st eneenes 8
2.1.1 Package definitionscecvecuerierierieriesieseseseee et et te st be e es e eae e esaessesnenes 9
2.1.2 Referencing package CONLENLScceruirriririeienierienierieriesieeiteeee e 10
2.1.3 Synthesis UIEIINEScceeeuiruirieiiiiicieseseeseeee ettt 14
2.2 $unit compilation-unit declarations.cccueerieirieieienieieieiee e 14
2.2.1 Coding guidelines...........cccoecervrvevenuennene .17
2.2.2 SystemVerilog identifier search rulescceovevierieniererenierieieeseeeeeenes 17
2.2.3 SoUICE COAC OTARTeeeuiiiiiiiieiiieeet ettt 17
2.2.4 Coding guidelines for importing packages into $unit...........cccoceeeevireeinennnne 19
2.2.5 Synthesis UIAEINESccoiriririiiiiiieesesereeeeetete e 25
2.3 Declarations in unnamed statement bIOCKScceouerieririnininininieieeeeeseseeee 26
2.3.1 Local variables in unnamed BlOCKScccoeririnieininieiniiiinecncececceeee 27
2.4 Simulation time units and PreCISIONccveerrieriertirrireetieieteeetertetessestesiessessessesseeneens 28
2.4.1 Verilog’s timescale dir€CtiVe........coueoiriirieirieieiirieieeet e 28
2.4.2 Time values With time UNILScceeruerierereriininieieieteteie e 30

2.4.3 Scope-level time unit and PreciSIONc..cceoveirueerenierinieeneninieneeenereeneenens 31

2.5

Chapter 3: SystemVerilog Literal Values and Built-in Data Types.........cccceeueunee 37
3.1 Enhanced literal value assignments.coeerveirieirinieinreieineenee et 38
3.2 ‘define eNhanCEeMENLSc.cvuiiiiirieiirieieiee ettt st 39
3.2.1 Macro argument substitution Within StriNgs..........ccereeeeerierierierierienesesennens 39
3.2.2 Constructing identifier names from macros............ccoceeveereeeiesinenereieeeeene 41
3.3 SystemVerilog variables..........coiverieierieninenerenee e 42
3.3.1 Object types and data YPES......ceeveruerriririierierienierierte ettt 42
3.3.2 SystemVerilog 4-state Variables..........ccecereriererienieieieierieiese s 43
3.3.3 SystemVerilog 2-state variables..........ccevererirerienieieieieresesie et 44
3.3.4 Explicit and implicit variable and net data typescccvevveieieiecieriecreieiennen 47
3.3.5 Synthesis GUIAEIINEScooveuiiuiieiieieieee e 48
3.4 Using 2-state types in RTL MOdELScceeirueiiirieiieiee s 48
3.4.1 2-state type CharacteriStiCsceverrirriririeieieierierie sttt ettt see e eae e 49
3.4.2 2-state types versus 2-state SIMUIAtion..........cceevvereerieriererenieieieeese e 49
3.4.3 Using 2-state types with case Statementsceceeceeeervereenienieneneeeeresieneennes 51
3.5 Relaxation Of tyPe TUIES. ...c.coueieuirieeiieieee et 52
3.6 Signed and unsigned MOAITIETScoeririeieriiniirieriereeeeeee e 55
3.7 Static and automMAtic VAIiablesccceeierieriererieriinieeiiei ettt 56
3.7.1 Static and automatic variable initialiZationc.eceverereriererieeereenierieene 59
3.7.2 Synthesis guidelines for automatic variablesccccevererererieienierieneenene. 60
3.7.3 Guidelines for using static and automatic variables............cccceevvererererreeenen. 61
3.8 Deterministic variable initialiZationcccceerieerieireniieeceeee s 61
3.8.1 Initialization deterMINISIIcc.eeuteuieierienienientenieeieeit ettt 61
3.8.2 Initializing sequential logic asynchronous inputsc.ccecceveeveevenencnennnne. 65

3.9 TYPE CASHING ...ovviiiiiiiieierectetceeietete ettt
3.9.1 Static (compile time) casting

3.9.2 DyNamiC CaStING.......ccvevverierierrerierteriesieeteeeeeeeeesesestensessessessessesseaseessessessessenses
3.9.3 Synthesis guidelines

3.10 COMSLANLS ..ottt ettt ettt et et see st st sbe st e bttt eb e e st este st et e besbesbenbesbeebeeneeueeueeneaeneens

311 SUIMIMATY .eeniiitieiieiieiieit ettt ettt sttt be ettt es bt e e s e st et e besbenb e besbe et e sbeebesbeeneenneens

Chapter 4: SystemVerilog User-Defined and Enumerated Types

4.1 USEI-AefiNEd LY PES...eeueeuieuienieieierierteete ettt ettt ettt ettt ettt testesaesbesaesbesbeeseeseeneeneenee
4.1.1 Local typedef definitions..........ccvevierierereeieieieieiesreee e tee e see e e eenennens
4.1.2 Shared typedef definitions..........ccecereirinieiiiieieee e
4.1.3 Naming convention for user-defined typescccceeereririreireneineeeeeee

4.2 ENUMETALEA LYPES ..eouvemeeiiiiiiitieiieteetieitete et et sttt eb et eat et et e besbesbesbesbesbesbeeseeneens
4.2.1 Enumerated type label SEqUENCES.........eeverririeieieieiieiieeeeteeeeiee et

viii

43

Chapter 5: SystemVerilog Arrays, Structures and Unions 95

5.1 SHIUCKUIES ..ot s 96
S5.1.1 Structure declarations...........coeeeeerieirieieirieiereiee ettt 97
5.1.2 Assigning values t0 STIUCTUIESeiueuieuirieirieieiireeiieie ettt 98
5.1.3 Packed and unpacked structures.... ..101
5.1.4 Passing structures through ports..........cccevevereeieieiieiieiereresereseeeeeeieene 104
5.1.5 Passing structures as arguments to tasks and functionsc..ccceceveennennnn 105
5.1.6 Synthesis guidelines

5.2 UIONS woviiiieiiiiieieet ettt ettt sttt e
5.2.1 Unpacked UNIONSc.oeueieuiieieieietieei ettt eeaeae
5.2.2 TagEEd UNIONS ...oovetiiiriiiiieiieiieitetetete ettt ettt ettt see e ene
5.2.3 Packed UNIOMS.......ooveiiriiiiieitiet ettt ettt e
5.2.4 Synthesis guidelines
5.2.5 An example of using structures and UNIONSccevverveereeierierieriesenieneneens 111

5.3 ATTAYS ittt ettt h e bbbt sttt be e 113
5.3.1 UNPAacked aITAYS......coueeuiruiriieiieiieieieienieste sttt ettt s 113
5.3.2 PaCKed QITAYSeoveriieiieiieiieieeeee et et 116
5.3.3 Using packed and unpacked arrays 118
5.3.4 [Initializing arrays at declaration............ceccevverierueeeeieieieieieseiesesese e 119
5.3.5 AsSigning vallues t0 ITAYScceecverieierierierierieeeerieieiesessessesessessessesseeseeneens 121
5.3.6 COPYING AITAYS ...eveveverenereninieeeiesteeeeeiene e eeeseenesaeneene 123
5.3.7 Copying arrays and structures using bit-stream casting...........ccccecerverererenne 124
5.3.8 AITAYS OF QITAYS .c..eouieuienieiieieieieeteeteet ettt sttt neen 125
5.3.9 Using user-defined types With arrayscccocceeeverieinenecnenecncrecnennaenns 126
5.3.10 Passing arrays through ports and to tasks and functions............cceceeeveeveeennne 127
5.3.11 Arrays of structures and UNIONS...........ecververuerierierenrieieieiesiesiessesseseseesseeeens 128
5.3.12 Arrays in structures and UNIONScceueirerieuerieieerieieieee e 128
5.3.13 Synthesis UIAEINEScc.eeieirieriiieiieeeeeeeie et 128
5.3.14 An example Of USING AITAYS.....c.cerieierieriererieniinieeieeteeieeiteite ettt s ene 129

5.4 The foreach array l0OPIng CONSLIUCE........eeveierierierieriertireettetieieieietesiesiesee e seeeeeeneene 130

5.5 Array querying system functions132

5.6 The S$bits “sizeof” system function 134
5.7 Dynamic arrays, associative arrays, sparse arrays and Stringscoceeceeerereeereennn 135
5.8 SUIMIMATY ..oviiiiiiieiietetee ettt sttt ettt et s et et et s besbe e bt ebeebe et ennas 136
Chapter 6: SystemVerilog Procedural Blocks, Tasks and Functions................ 137
6.1 Verilog general purpose always procedural DIOCKccoeceeiririenieerierierieieieriesienns 138
6.2 SystemVerilog specialized procedural BlOCKS.........c.ooeiiiiriiiiiiiiineceeeeeeee 142
6.2.1 Combinational logic procedural BIOCKSccoeireirineiiiieieeeeeee 142
6.2.2 Latched logic procedural DIOCKSccceocereriiriirinieieieieserese e 150
6.2.3 Sequential logic procedural DIOCKScccceeirieieieieieieeeseee e 152
6.2.4 Synthesis UIACINESc.eeirieieieieieeiee ettt 152
6.3 Enhancements to tasks and fUnCtioNSc.cecvuerieerieininieiiee e 153
6.3.1 Implicit task and function statement grouping...........ceceeereeereeereneereneenens 153
6.3.2 Returning function valuesccoceeereieerecnnnne. ...153
6.3.3 Returning before the end of tasks and functions 154
6.3.4 VOId fUNCHONSoveniiiiiiiitiicicietec ettt 155
6.3.5 Passing task/function arguments by name ...156
6.3.6 Enhanced function formal argumentsc.cccvererereneinennincececene 157
6.3.7 Functions with no formal arguments...............cccoecuevierenenenenienenenenenenee 158
6.3.8 Default formal argument direction and typeccceceeeeieiereneneneneeieene 158
6.3.9 Default formal argument Values...........cccoceeireiririeiinecinieeneeeceeeeeeenene 159
6.3.10 Arrays, structures and unions as formal argumentsccocceeeeereereeneennnne 160
6.3.11 Passing argument values by reference instead of COPY......covevevvririrerennnne 161
6.3.12 Named task and function endscccoeverireireinienee e 165
6.3.13 Empty tasks and fUnCtionscoerererenenineninieieieeeee e 166
6.4 SUIMIMATY ...oveiiiiiiiieietestet ettt ettt sttt e b et s e s et et et e sb e et esbesbeebesbeebeenan 166
Chapter 7: SystemVerilog Procedural Statements 169
Tl INEW OPCIALOTS ...cueteiteiietiente et eiteette st et e et etees e eatestte s bt enbeesseensesatesbeesaeenbeensesnseennenanennee 170
7.1.1 Increment and decrement OPEIatOrSceceeveeeeereerieieierierieseseeereseeseeesneneens 170
7.1.2 Assignment Operators..........cecceceeeennene 173
7.1.3 Equality operators with don’t care wildcards...........ccoceoeveeereireniienecenen 176
7.1.4 Set membership operator — INSIAEcoererierirerieieieererere e
7.2 Operand enhancements...........ccccerververeerereereennennns
7.2.1 Operations on 2-state and 4-state types
T.2.2 TYPE CASHING .veuvierierieeieiieiieieertetestetestestesteeseeseeseeseeseessessessessessessessassassassesseans
723 SIZE CASLINZ..c.veoteeuieiieiieiieiiet ettt ettt ettt b ettt ettt sae st sbe e i
724 SIN CASIINEZ ...ttt ettt ettt ettt e b sbeebe e ene
7.3 Enhanced fOr LOOPScoeiiriiriiiiiieeiteetee ettt ettt
7.3.1 Local variables within for loop declarations..............cccceeveeieviesienenieneeeenns 183

7.3.2 Multiple for loop assignments............cceerververeerrenereneennns

7.3.3 Hierarchically referencing variables declared in for loops

7.3.4 Synthesis GUIACIINEScooveuiiiiiiiieieieee e
7.4 Bottom testing do...While 100Dccueveriririiiiieieieeee e
7.4.1 Synthesis UIACINEScoevieieierieieiecee et
7.5 The foreach array 100ping CONSIIUCE.........eeueirrierieriirtiee ettt see e
7.6 New jump statements — break, CONtiNUE, TELUIMNccverrerreeeeeeieeeieriesiesieseeseeeeennes
7.6.1 The continue StAtCMENTcccveeveeiieireeieseereeseeseeste et eereeaeeteseesaeseaesenenns
7.6.2 The break StatemMeEntcceecveiierieriieie ettt ae e e
7.6.3 The return StatemMENt.........cccuevuieiiieeiieieeie ettt ettt be e eeeeesaaesaee e

7.6.4 Synthesis guidelines
7.7 Enhanced DIOCK NAMEScoieiriiieieieieieetesicete ettt ettt st saesbesae e s
7.8 Statement 1aDelS.........ccoiuiiiiirieiiee s
7.9 Enhanced case statements

7.9.1 Unique case dECISIONSeeueeuieuieieieienienieniesieeieeteeteeie ettt seesaeene

7.9.2 Priority case StAtCMENTS.........ccoerueuirueuiruerierinteirieteeetee et ereseetesneseaenaenens

7.9.3 Unique and priority versus parallel case and full case..........cccccevververueruennnne
7.10 Enhanced if...elS€ AECISIONS........eceruieieieieieiecteete ettt ettt st see e eneeneas

T 11 SUMIMATY «.eoniiiiiiieieeeieeee ettt ettt bbb bbb s bt b e bt e bt sbe e bt e bt e bt et et enaeneben

Chapter 8: Modeling Finite State Machines with SystemVerilog...................... 207
8.1 Modeling state machines with enumerated tyPes.........cceeeeieierierienienenereseeeeeeieens 208
8.1.1 Representing state encoding with enumerated typescceevevverveverrerennnne. 210
8.1.2 Reversed case statements with enumerated types.........cccoeeeeereireencnennnes 211
8.1.3 Enumerated types and unique case Statements.cccceeveeeeeieereeeeneneencans 213
8.1.4 Specifying unused state values...........c.ccccceueee.
8.1.5 Assigning state values to enumerated type variables.........c.ccccoceveciriccnenne. 216
8.1.6 Performing operations on enumerated type variables...........c..cccoecereneuennene. 218
8.2 Using 2-state types in FSM models
8.2.1 Resetting FSMs with 2-state and enumerated types

8.3 SUMIMATY ..ottt sttt eb ettt sttt be b bt
Chapter 9: SystemVerilog Design Hierarchy 223
9.1 MOAUIE PrOtOLYPES. ...eeueeuierieuienieiieieieiete ettt ettt et ettt e e e e tesaestesbessesseese st eneeneeneensensas 224
9.1.1 Prototype and actual definitionccocevereriieieieieieieeeeee e 225
9.1.2 Avoiding port declaration redundancycccoceevecereoireneineeeneseene 225
9.2 Named ending StAtSIMENLS.coueuirieueiteieteieertee ettt ettt ese s eeeeeseeas 226
9.2.1 Named module ends.......c.ccoeruiriririnieieieeieeee et 226
9.2.2 Named code block endsc.coeoeririeiniiiiineinicinerece e 226

xi

9.3 Nested (local) module declarations........
9.3.1 Nested module name visibility

9.3.2 Instantiating nested MOAUIESccooeiriiieiieiiieeeee e
9.3.3 Nested module name Search rulescocevererieieieienieieneseseseseeeeeeene
9.4 Simplified netlists of Module INSLANCES.........ccveevieieieieieieieieeee e
9.4.1 Implicit .namMe POrt CONNECLIONSc.eerreierieriereerreerierienieiesesieseeseesseseeseeeeens
9.4.2 Implicit .* POTIt CONNECLION ...eevvevrieierieierierieetieieeieeteeetesresre e seeeeeeseeseesaeneens
0.5 INEEAASINEZ ...cueveietiietitee ettt ettt ettt b et b et s b et et e st e b e e eseeneneeaeeean
9.5.1 ALIAS TUIES.c..eveiiiiieiieicee ettt st
9.5.2 Implicit net declarationscecveeerierierenenieneeeeeee e

9.5.3 Using aliases with .name and .*....

9.6 Passing values through module Portscccceeieieieiriieieieieeee e
9.6.1 All types can be passed through ports...........cccoeevrereinennineeneneeene
9.6.2 Module port restrictions in SystemVerilog....

9.7 RELEIEINCE POTLS ...ttt bbbttt ettt aens
9.7.1 Reference ports as shared variablescccoeeivineinineineninenceneieenne
9.7.2 Synthesis GUIAEINESccecvrieieieieieeiee ettt ae e

9.8 Enhanced port deClarationsc.cceceerieierieriesiesieeieeee ettt ettt see e ene e
9.8.1 Verilog-1995 port declarationscoecveeereerieieenieiriereeseeeese e
9.8.2 Verilog-2001 port declarationsccccoerererereeieieienienenese e
9.8.3 SystemVerilog port declarationscccueveeriererererenieieieeiesesese e

9.9 ParameteriZed LYPES.......coeuruerieuirieiirienieientciteietete ettt ettt sttt

0.10 SUIMIMATY ..ottt ettt et et e et e st e st e st e b e esaesstesseeseenneeneesnnenens

Chapter 10: SystemVerilog Interfaces
10.1 INterface COMCEPLS.....eoueruieuieiiiieiiteteteeteet ettt st
10.1.1 Disadvantages of Verilog’s module portscceeeeruerirenieeinenineseieeenene
10.1.2 Advantages of SystemVerilog interfaces....

10.1.3 SystemVerilog interface CONLENLScceceveereririeierienierienieseeeeeeeeeneeeennas
10.1.4 Differences between modules and interfaces............c.oceeveevvieeiecieeniieineennn, 273
10.2 Interface declarationsc..cccoeeveeuvennen.

10.2.1 Source code declaration order

10.2.2 Global and local interface definitionscccccveveerinierecninercinnercennereens 276
10.3 Using interfaces as Module POITS..........cceruereriririeieieieieie sttt 277
10.3.1 Explicitly named interface POrtscceeveeierierienieneseeeeeeteieneese e seeeeenees 277
10.3.2 Generic INErface POTLSccvevviruierieieiieieieieie st eeteeiesteeeeee et eteaeseseeseessesnens 278
10.3.3 Synthesis UIAELINEScceoueuirieiriiieiiieireeeee e 278
10.4 Instantiating and connecting INtETTACESccuevuerereririeieierierereeeee e 278
10.5 Referencing signals within an interfaceecueveevererenenenienereeseeeceeereiee 279
10.6 INterface MOAPOTLS.coueruirtiriiriirtieiieteteit ettt ettt ettt sb et sbesbesaeeaeenes 281

Xii

10.6.1 Specifying which modport View to US€.........ccevererrereene
10.6.2 Using modports to define different sets of connections

10.7 Using tasks and functions in interfacesccoeeereieireieenieieee e
10.7.1 Interface Methodscocveieiiiierieeseeeee e
10.7.2 Importing interface Methodscceceeieieiieiieniinee e
10.7.3 Synthesis guidelines for interface methods...........ccecvevvevierienienenenireeeeineen
10.7.4 Exporting tasks and fUnCtionscceeveeieieierierierieneneseseseeeseeeeeeeenennens
10.8 Using procedural blocks in interfacesceiruerieirieiiencceieeeee e
10.9 Reconfigurable iNterfaCEScuieiiiiieieieieieee et
10.10 Verification With INtEITACESc.eevverieriiriertieieeeeiieteeteee et

10.11 Summary

Chapter 11: A Complete Design Modeled with SystemVerilog..............ccuceu.... 301
11.1 SystemVerilog ATM eXamPIe.......c.cccerueirieiriieiieieieeeiee ettt eene s 301
11.2 Data abstraction..........ccc.cee.e...

11.3 Interface encapsulation

11.4 Design top level: squat

11.5 Receivers and transmitters.............. ...315

11.5.1 Receiver State MACKINE........ccceevereirieieieieiestete ettt ettt et et et ssesseereseeens 315

11.5.2 Transmitter state MACKINEccvevvievieeiieieeiecteeeee e 318
11,6 TESIDENCH.....eiuieeieiiiieiet ettt ettt ettt b bt se e aeessesaeseessenssenes 321
11,7 SUIMIMATY ..ottt ettt ettt b e s bt b eae e st e st enb e st enteneesbenbesbeeneaee 327
Chapter 12: Behavioral and Transaction Level Modeling 329
12.1 Behavioral MOEINGcccecveieriiriiriieiieieeeieieiee ettt eee e e e ssesaessessesseeseeneennas 330
12.2 What iS @ tranSaCtIONT.........ecuevierierierieeieereereeie e eteereeaesaeaesessessesseeseeseeseeseessessessessessanses 330
12.3 Transaction level modeling in SystemVerilogcccoeoireriineineiinieeneceeeee 332

12.3.1 Memory Subsystem eXample..........ccevueruerieriirerininieienientenie e eenee 333
12.4 Transaction level models Via INterfacescoevverierierierierineeieieteie e 335
12.5 BUS QIDIrAtION ...ttt ettt st sttt e seeneene st neenes 337
12.6 Transactors, adapters, and bus functional models............ccccevveririiriercienenenececeeeeeee 341

12.6.1 Master adapter as module

12.6.2 Adapter in an INEETTACEcouevueruereirieieieteteree et
12.7 More COMPIEX traANSACTIONSecveeueeuieuieieieieiertesteetesteeteettestesteeestestessessessesbeeseeseeneeneas

12.8 Summary

Appendix A: The SystemVerilog Formal Definition (BNF) 355
Appendix B: Verilog and SystemVerilog Reserved Keywords 395
Appendix C: A History of SUPERLOG, the Beginning of SystemVerilog 401
Index 415

xiii

About the Authors

Stuart Sutherland provides expert instruction on using SystemVerilog and Verilog.
He has been involved in defining the Verilog language since the beginning of IEEE
standardization work in 1993, and is a member of both the IEEE Verilog standards
committee (where he has served as the chair and co-chair of the Verilog PLI task
force), and the IEEE SystemVerilog standards committee (where he has served as the
editor for the SystemVerilog Language Reference Manual). Stuart has more than 20
years of experience in hardware design, and over 17 years of experience with Verilog.
He is the founder of Sutherland HDL Inc., which specializes in providing expert HDL
training services. He holds a Bachelors degree in Computer Science, with an empha-
sis in Electronic Engineering Technology. He has also authored “The Verilog PLI
Handbook™” and “Verilog-2001: A Guide to the New Features of the Verilog HDL” .

Simon Davidmann has been involved with HDLs since 1978. He was a member of
the HILO team at Brunel University in the UK. In 1984 he became an ASIC designer
and embedded software developer of real time professional musical instruments for
Simmons Percussion. In 1988, he became involved with Verilog as the first European
employee of Gateway Design Automation. He founded Chronologic Simulation in
Europe, the European office of Virtual Chips (inSilicon), and then the European oper-
ations of Ambit Design. In 1998, Mr. Davidmann co-founded Co-Design Automation,
and was co-creator of SUPERLOG. As CEO of Co-Design, he was instrumental in
transitioning SUPERLOG into Accellera as the beginning of SystemVerilog. Mr.
Davidmann is a member of the Accellera SystemVerilog and IEEE 1364 Verilog com-
mittees. He is a consultant to, and board member of, several technology and EDA
companies, and is Visiting Professor of Digital Systems at Queen Mary, University of
London. In 2005 Mr. Davidmann founded Imperas, Inc where he is President & CEO.

Peter Flake was a co-founder and Chief Technical Officer at Co-Design Automation
and was the main architect of the SUPERLOG language. With the acquisition of Co-
Design by Synopsys in 2002, he became a Scientist at Synopsys. His EDA career
spans more than 30 years: he was the language architect and project leader of the
HILO development effort while at Brunel University in Uxbridge, U.K., and at Gen-
Rad. HILO was the first commercial HDL-based simulation, fault simulation and tim-
ing analysis system of the early/mid 1980s. In 2005 he became Chief Scientist at
Imperas. He holds a Master of Arts degree from Cambridge University in the U.K.
and has made many conference presentations on the subject of HDLs.

List of Examples

This book contains a number of examples that illustrate the proper usage of System-
Verilog constructs. A summary of the major code examples is listed in this section. In
addition to these examples, each chapter contains many code fragments that illustrate
specific features of SystemVerilog. The source code for these full examples, as well
as many of the smaller code snippets, can be downloaded from h#tp:/www.suther-
land-hdl.com. Navigate the links to “SystemVerilog Book Examples”.

Page xxv of the Preface provides more details on the code examples in this book.

Chapter 1: Introduction to SystemVerilog

Chapter 2: SystemVerilog Declaration Spaces

Example 2-1: A package definitioncocooioieiiiiiiineeee e 9
Example 2-2: Explicit package references using the :: scope resolution operator 10
Example 2-3: Importing specific package items into @ modulec.coceeveeveinineinennnnene. 11
Example 2-4: Using a package wildcard importcceveirinieirienineneceeceeecee e 13
Example 2-5: External declarations in the compilation-unit scope (not synthesizable) 15
Example 2-6: Package with conditional compilation (file name: definitions.pkg) 21
Example 2-7: A design file that includes the conditionally-compiled package file 23
Example 2-8: A testbench file that includes the conditionally-compiled package file 23
Example 2-9: Mixed declarations of time units and precision (not synthesizable) 34

Chapter 3: SystemVerilog Literal Values and Built-in Data Types

Example 3-1: Relaxed usage of variables ..o 53
Example 3-2: Tllegal use of Variablescccoceviiirieieieieieiecetcee ettt eae e eenns 54
Example 3-3: Applying reset at simulation time zero with 2-state typesccceceveereene. 65

Chapter 4: SystemVerilog User-Defined and Enumerated Types

Example 4-1: Directly referencing typedef definitions from a packagecccoecevvererennenne 77
Example 4-2: Importing package typedef definitions into $unitccoceveveneeinvenncinnnnn. 78
Example 4-3: State machine modeled with Verilog ‘define and parameter constants 79
Example 4-4: State machine modeled with enumerated typescceeveeieieceecienienereneeene 81
Example 4-5: Using special methods to iterate through enumerated type listsc..cccee..e. 91

Example 4-6: Printing enumerated types by value and by name

Chapter 5: SystemVerilog Arrays, Structures and Unions

Example 5-1: Using structures and unions

Example 5-2: Using arrays of structures to model an instruction registerc.cccceueuee. 129

Chapter 6: SystemVerilog Procedural Blocks, Tasks and Functions

Example 6-1: A state machine modeled with always procedural blocksccccccevuennene 145
Example 6-2: A state machine modeled with always_comb procedural blocks 147
Example 6-3: Latched input pulse using an always_latch procedural block 151

Chapter 7: SystemVerilog Procedural Statements
Example 7-1: Using SystemVerilog assignment Operatorscccoeeeeververeeereerenuennnes

Example 7-2: Code snippet with unnamed nested begin...end blocks

Example 7-3: Code snippet with named begin and named end blocks

Chapter 8: Modeling Finite State Machines with SystemVerilog

Example 8-1: A finite state machine modeled with enumerated types (poor style) 208
Example 8-2: Specifying one-hot encoding with enumerated types 210
Example 8-3: One-hot encoding with reversed case statement style 212
Example 8-4: Code snippet with illegal assignments to enumerated typesccccceeuenee 216
Chapter 9: SystemVerilog Design Hierarchy

Example 9-1: Nested module declarationsceceeveeeveiieiieienienieniesenesese e eeeeeneas 228
Example 9-2: Hierarchy trees with nested modulescocooevirieiieninineieneeceeee 231
Example 9-3: Simple netlist using Verilog’s named port connectionscccceeevveruennnne. 235
Example 9-4: Simple netlist using SystemVerilog’s .name port connections 239
Example 9-5: Simple netlist using SystemVerilog’s .* port connectionsc.cccceueueeee. 243
Example 9-6: Netlist using SystemVerilog’s .* port connections without aliases 248
Example 9-7: Netlist using SystemVerilog’s .* connections along with net aliases 249

Example 9-8: Passing structures and arrays through module ports

Example 9-9: Passing a reference to an array through a module ref portcccceceeeneee. 255

Example 9-10: Polymorphic adder using parameterized variable typesc.cccoeeerernenene. 261

Chapter 10: SystemVerilog Interfaces
Example 10-1: Verilog module interconnections for a simple designcccevcevereeeeneenee.

Example 10-2: SystemVerilog module interconnections using interfaces

Example 10-3: The interface definition formain bus, with external inputs
Example 10-4: Using interfaces with . * connections to simplify complex netlists 275
Example 10-5: Referencing signals within an interfacec.cccoeovvenecnincincncicncennenn.

Example 10-6: Selecting which modport to use at the module instanceccccoeerueneee.

Example 10-7: Selecting which modport to use at the module definition

xviil

Example 10-8: A simple design using an interface with modports287

Example 10-9: Using modports to select alternate methods within an interface 291
Example 10-10:Exporting a function from a module through an interface modport 294
Example 10-11:Exporting a function from a module into an interfacec.ccoceceveenennnnee 294
Example 10-12:Using parameters in an interfacecoceoeirenierienineneeereceeseeeenes 297

Chapter 11: A Complete Design Modeled with SystemVerilog

Example 11-1: Utopia ATM interface, modeled as a SystemVerilog interface 306
Example 11-2: Cell rewriting and forwarding configurationc.cccceeereneiinecincncnenne 307
Example 11-3: ATM squat top-level modulec..cccoeoiiniiiniinineiniiececeeee 309

Example 11-4: Utopia ATM TECEIVET ..cevvrierierieieriesiieteeteeeieeessessessessessessessesssesseseessessensenses
Example 11-5: Utopia ATM transmitter

Example 11-6: UtopiaMethod interface for encapsulating test methodsc.ccccoceeveenneenn 321
Example 11-7: CPUMethod interface for encapsulating test methodsc.cccceveveriienennene 322
Example 11-8: Utopia ATM teStbenchccoviririiieiieieiieeeee e 323

Chapter 12: Behavioral and Transaction Level Modeling
Example 12-1: Simple memory subsystem with read and write tasks
Example 12-2: Two memory subsystems connected by an interface

Example 12-3: TLM model with bus arbitration using semaphoresceceeeevevevennene.

Example 12-4: Adapter modeled as @ moduleoccoeieieieieieiieieieieee e

Example 12-5: Simplified Intel Multibus with multiple masters and slavesc.cccceuenee.

Example 12-6: Simple Multibus TLM example with master adapter as a module
Example 12-7: Simple Multibus TLM example with master adapter as an interface 348

XiX

Foreword

by Phil Moorby
The creator of the Verilog language

When Verilog was created in the mid-1980s, the typical design size was of the order
of five to ten thousand gates, the typical design creation method was that of using
graphical schematic entry tools, and simulation was beginning to be an essential gate
level verification tool. Verilog addressed the problems of the day, but also included
capabilities that enabled a new generation of EDA technology to evolve, namely syn-
thesis from RTL. Verilog thus became the mainstay language of IC designers.

Throughout the 1990s, the Verilog language continued to evolve with technology, and
the IEEE ratified new extensions to the standard in 2001. Most of the new capabilities
in the 2001 standard that users were eagerly waiting for were relatively minor feature
refinements as found in other HDLs, such as multidimensional arrays, automatic vari-
ables and the generate statement. Today many EDA tools support these Verilog-2001
enhancements, and thus provide users with access to these new capabilities.

SystemVerilog is a significant new enhancement to Verilog and includes major exten-
sions into abstract design, testbench, formal, and C-based APIs. SystemVerilog also
defines new layers in the Verilog simulation strata. These extensions provide signifi-
cant new capabilities to the designer, verification engineer and architect, allowing bet-
ter teamwork and co-ordination between different project members. As was the case
with the original Verilog, teams who adopt SystemVerilog based tools will be more
productive and produce better quality designs in shorter periods.

A strong guiding requirement for SystemVerilog is that it should be a true superset of
Verilog, and as new tools become available, I believe all Verilog users, and many
users of other HDLs, will naturally adopt it.

When I developed the original Verilog LRM and simulator, I had an expectation of
maybe a 10-15 year life-span, and during this time I have kept involved with its evo-
lution. When Co-Design Automation was formed by two of the authors, Peter Flake

and Simon Davidmann, to develop SUPERLOG and evolve Verilog, I was invited to
join its Technical Advisory Board and, later, I joined the company and chaired its
SUPERLOG Working Group. More recently, SUPERLOG was adopted by Accellera
and has become the basis of SystemVerilog. I did not expect Verilog to be as success-
ful as it has been and, with the extensions in SystemVerilog, I believe that it will now
become the dominant HDL and provide significant benefits to the current and future
generation of hardware designers, architects and verification engineers, as they
endeavor to create smaller, better, faster, cheaper products.

If you are a designer or architect building digital systems, or a verification engineer
searching for bugs in these designs, then SystemVerilog will provide you with signif-
icant benefits, and this book is a great place to start to learn SystemVerilog and the
future of Hardware Design and Verification Languages.

Phil Moorby,
New England, 2003

xxii

Preface

System Verilog, officially the IEEE Std 1800-2005™ standard, is a set of extensions
to the IEEE Std 1364-2005™ Verilog Standard (commonly referred to as “Verilog-
2005”). These extensions provide new and powerful language constructs for model-
ing and verifying the behavior of designs that are ever increasing in size and complex-
ity. The SystemVerilog extensions to Verilog can be generalized to two primary
categories:

* Enhancements primarily addressing the needs of hardware modeling, both in terms
of overall efficiency and abstraction levels.

* Verification enhancements and assertions for writing efficient, race-free test-
benches for very large, complex designs.

Accordingly, the discussion of SystemVerilog is divided into two books. This book,
SystemVerilog for Design, addresses the first category, using SystemVerilog for mod-
eling hardware designs at the RTL and system levels of abstraction. Most of the
examples in this book can be realized in hardware, and are synthesizable. A compan-
ion book, SystemVerilog for Veriﬁcationl, covers the second purpose of SystemVer-
ilog, that of verifying correct functionality of large, complex designs.

Target audience

@ This book assumes the reader is already familiar with the Verilog Hardware
Description Language.

This book is intended to help users of the Verilog language understand the capabilities
of the SystemVerilog enhancements to Verilog. The book presents SystemVerilog in
the context of examples, with an emphasis on correct usage of SystemVerilog con-
structs. These examples include a mix of standard Verilog code along with System-
Verilog the enhancements. The explanations in the book focus on these
SystemVerilog enhancements, with an assumption that the reader will understand the
Verilog portions of the examples.

Additional references on SystemVerilog and Verilog are listed on page xxvii.

1. Spear, Chris “SystemVerilog for Verification”, Norwell, MA: Springer 2006, 0-387-27036-1.

Topics covered

This book focusses on the portion of SystemVerilog that is intended for representing
hardware designs in a manner that is both simulatable and synthesizable.

Chapter 1 presents a brief overview of SystemVerilog and the key enhancements that
it adds to the Verilog language.

Chapter 2 discusses the enhancements SystemVerilog provides on where design data
can be declared. Packages, $unit, shared variables and other important topics regard-
ing declarations are covered.

Chapter 3 goes into detail on the many new data types SystemVerilog adds to Ver-
ilog. The chapter covers the intended and proper usage of these new data types.

Chapter 4 presents user-defined data types, a powerful enhancement to Verilog. The
topics include how to create new data type definitions using typedef and defining
enumerated type variables.

Chapter 5 looks at using structures and unions in hardware models. The chapter also
presents a number of enhancements to arrays, together with suggestions as to how
they can be used as abstract, yet synthesizable, hardware modeling constructs.

Chapter 6 presents the specialized procedural blocks, coding blocks and enhanced
task and function definitions in SystemVerilog, and how these enhancements will
help create models that are correct by design.

Chapter 7 shows how to use the enhancements to Verilog operators and procedural
statements to code accurate and deterministic hardware models, using fewer lines of
code compared to standard Verilog.

Chapter 8 provides guidelines on how to use enumerated types and specialized pro-
cedural blocks for modeling Finite State Machine (FSM) designs. This chapter also
presents a number of guidelines on modeling hardware using 2-state logic.

Chapter 9 examines the enhancements to design hierarchy that SystemVerilog pro-
vides. Significant constructs are presented, including nested module declarations and
simplified module instance declarations.

Chapter 10 discusses the powerful interface construct that SystemVerilog adds to

Verilog. Interfaces greatly simplify the representation of complex busses and enable
the creation of more intelligent, easier to use IP (intellectual property) models.

XXiv

Chapter 11 ties together the concepts from all the previous chapters by applying
them to a much more extensive example. The example shows a complete model of an
ATM switch design, modeled in SystemVerilog.

Chapter 12 provides another complete example of using SystemVerilog. This chapter
covers the usage of SystemVerilog to represent models at a much higher level of
abstraction, using transactions.

Appendix A lists the formal syntax of SystemVerilog using the Backus-Naur Form
(BNF). The SystemVerilog BNF includes the full Verilog-2005 BNF, with the Sys-
temVerilog extensions integrated into the BNF.

Appendix B lists the set of reserved keywords in the Verilog and SystemVerilog stan-
dards. The appendix also shows how to mix Verilog models and SystemVerilog mod-
els in the same design, and maintain compatibility between the different keyword
lists.

Appendix C presents an informative history of hardware description languages and
Verilog. It covers the development of the SUPERLOG language, which became the
basis for much of the synthesizable modeling constructs in SystemVerilog.

About the examples in this book

The examples in this book are intended to illustrate specific SystemVerilog constructs
in a realistic but brief context. To maintain that focus, many of the examples are rela-
tively small, and often do not reflect the full context of a complete model. However,
the examples serve to show the proper usage of SystemVerilog constructs. To show
the power of SystemVerilog in a more complete context, Chapter 11 contains the full
source code of a more extensive example.

The examples contained in the book use the convention of showing all Verilog and
SystemVerilog keywords in bold, as illustrated below:

Example: SystemVerilog code sample

module uart (output logic [7:0] data,
output logic data_ rdy,
input serial in);

enum {WAITE, LOAD, READY} State, NextState;

logic [2:0] bit cnt;
logic cntr rst, shift en;

XXV

always_ff (@ (posedge clock, negedge resetN) begin: shifter
if (!resetN)
data <= 8'h0; //reset (active low)
else if (shift en)
data <= {serial in, datal7:1]}; //shift right
end: shifter
endmodule

Longer examples in this book list the code between double horizontal lines, as shown
above. There are also many shorter examples in each chapter that are embedded in the
body of the text, without the use of horizontal lines to set them apart. For both styles
of examples, the full source code is not always included in the book. This was done in
order to focus on specific aspects of SystemVerilog constructs without excessive clut-
ter from surrounding code.

@ The examples do not distinguish standard Verilog constructs and keywords from
SystemVerilog constructs and keywords. It is expected that the reader is already
familiar with the Verilog HDL, and will recognize standard Verilog versus the new
constructs and keywords added with SystemVerilog.

Obtaining copies of the examples

The complete code for all the examples listed in this book are available for personal,
non-commercial use. They can be downloaded from http://www.sutherland-hdl.com.
Navigate the links to “SystemVerilog Book Examples”.

Example testing

Most examples in this book have been tested using the Synopsys ves® simulator,
version 2005.06-SP1, and the Mentor Graphics Questa™ simulator, version 6.2.
Most models in this book are synthesizable, and have been tested using the Synopsys
DC Compiler™ synthesis compiler, version 2005. 12.1

1. All company names and product names mentioned in this book are the trademark or registered
trademark names of their respective companies.

XXVi

Other sources of information

This book only explains the SystemVerilog enhancements for modeling hardware
designs. The book does not go into detail on the SystemVerilog enhancements for ver-
ification, and does not cover the Verilog standard. Some other resources which can
serve as excellent companions to this book are:

SystemVerilog for Verification—A Guide to Learning the Testbench Language Fea-
tures by Chris Spear.

Copyright 2006, Springer, Norwalk, Massachusetts. ISBN 0-387-27036-1.

A companion to this book, with a focus on verification methodology using the
SystemVerilog assertion and testbench enhancements to Verilog. This book pre-
sents the numerous verification constructs in SystemVerilog, which are not cov-
ered in this book. Together, the two books provide a comprehensive look at the
extensive set of extensions that SystemVerilog adds to the Verilog language. For
more information, refer to the publisher’s web site: www.springer.com/sgw/cda/
frontpage/0,11855,4-40109-22-107949012-0,00.html.

IEEE Std 1800-2005, SystemVerilog Language Reference Manual LRM)—IEEE
Standard for SystemVerilog: Unified Hardware Design, Specification and Verification
Language.

Copyright 2005, IEEE, Inc., New York, NY. ISBN 0-7381-4811-3. Electronic
PDF form, (also available in soft cover).

This is the official SystemVerilog standard. The book is a syntax and semantics
reference, not a tutorial for learning SystemVerilog. For information on ordering,
visit the web site: attp://shop.ieee.org/store and search for SystemVerilog.

IEEE Std 1364-2005, Verilog Language Reference Manual LRM)—IEEE Standard
for Verilog Hardware Description Language.

Copyright 2005, IEEE, Inc., New York, NY. ISBN 0-7381-4851-2. Electronic
PDF form, (also available in soft cover).

This is the official Verilog HDL and PLI standard. The book is a syntax and
semantics reference, not a tutorial for learning Verilog. For information on order-
ing, visit the web site: http://shop.ieee.org/store and search for Verilog.

1364.1-2002 IEEE Standard for Verilog Register Transfer Level Synthesis 2002—
Standard syntax and semantics for Verilog HDL-based RTL synthesis.

XX Vil

Copyright 2002, IEEE, Inc., New York, NY. ISBN 0-7381-3501-1. Softcover, 106
pages (also available as a downloadable PDF file).

This is the official synthesizable subset of the Verilog language. For information on
ordering, visit the web site: Attp://shop.ieee.org/store and search for Verilog.

Writing Testbenches Using SystemVerilog by Janick Bergeron

Copyright 2006, Springer, Norwell Massachusetts.
ISBN: 0-387-29221-7. Hardcover, 412 pages.

Provides an explanation of the many testbench extensions that SystemVerilog
adds for verification, and how to use those extensions for efficient verification.
For more information, refer to the publisher’s web site: www.springer.com/sgw/
cda/frontpage/0,11855,4-40109-22-104242164-0,00.html.

The Verification Methodology Manual for SystemVerilog (VMM) by Janick Berg-
eron, Eduard Cerny, Alan Hunter, Andrew Nightingale

Copyright 2005, Springer, Norwell Massachusetts.
ISBN: 0-387-25538-9. Hardcover, 510 pages.

A methodology book on how to use SystemVerilog for advanced verification tech-
niques. This is an advanced-level book; It is not a tutorial for learning SystemVer-
ilog. For more information, refer to the publisher’s web site: www.springer.com/
sgw/cda/frontpage/0,11855,4-40109-22-52495600-0,00.html.

A Practical Guide for SystemVerilog Assertions, by Srikanth Vijayaraghavan, and
Meyyappan Ramanathan

Copyright 2005, Springer, Norwell Massachusetts.
ISBN: 0-387-26049-8. Hardcover, 334 pages.

Specifically covers the SystemVerilog Assertions portion of the SystemVerilog
standard. For more information, refer to the publisher’s web site:
www.springer.com/sgw/cda/frontpage/0,11855,4-40109-22-50493024-0,00.html.

SystemVerilog Assertions Handbook, Ben Cohen, Srinivasan Venkataramanan,
Ajeetha Kumari

Copyright 2004, VhdlCohen, Palos Verdes Peninsula, California.
ISBN: 0-9705394-7-9. Softcover, 330 pages.

Presents Assertion-Based Verification techniques using the SystemVerilog Asser-
tions portion of the SystemVerilog standard. For more information, refer to the
publisher’s web site: www.abv-sva.org/#svah.

XXViil

Assertions-Based Design, Second Edition, Harry Foster, Adam Krolnik, and David
Lacey

Copyright 2004, Springer, Norwell Massachusetts.
ISBN: 1-4020-8027-1. Hardcover, 414 pages.

Presents how assertions are used in the design and verification process, and illus-
trates the usage of OVL, PSL and SystemVerilog assertions. For more informa-
tion, refer to the publisher’s web site: www.springer.com/sgw/cda/frontpage/
0,11855,4-102-22-33837980-0,00.html.

The Verilog Hardware Description Language, 5th Edition by Donald E. Thomas
and Philip R. Moorby.

Copyright 2002, Kluwer Academic Publishers, Norwell MA.
ISBN: 1-4020-7089-6. Hardcover, 408 pages.

A complete book on Verilog, covering RTL modeling, behavioral modeling and
gate level modeling. The book has more detail on the gate, switch and strength
level aspects of Verilog than many other books. For more information, refer to the
web site www.wkap.nl/prod/b/1-4020-7089-6.

Verilog Quickstart, A Practical Guide to Simulation and Synthesis, 3rd Edition by
James M. Lee.

Copyright 2002, Kluwer Academic Publishers, Norwell MA.
ISBN: 0-7923-7672-2. Hardcover, 384 pages.

An excellent book for learning the Verilog HDL. The book teaches the basics of
Verilog modeling, without getting bogged down with the more obscure aspects of
the Verilog language. For more information, refer to the web site www.wkap.nl/
prod/b/0-7923-7672-2.

Verilog 2001: A Guide to the New Features of the Verilog Hardware Description
Language by Stuart Sutherland.

Copyright 2002, Kluwer Academic Publishers, Norwell MA.
ISBN: 0-7923-7568-8. Hardcover, 136 pages.

An overview of the many enhancements added as part of the IEEE 1364-2001
standard. For more information, refer to the web site www.wkap.nl/book.htm/0-
7923-7568-8.

XXix

Acknowledgements

The authors would like to express their gratitude to all those who have helped with
this book. A number of SystemVerilog experts have taken the time to review all or
part of the text and examples, and provided invaluable feedback on how to make the
book useful and accurate.

We would like to specifically thank those that provided invaluable feedback by
reviewing this book. These reviewers of the first edition include (listed alphabeti-
cally) Clifford E. Cummings., Tom Fitzpatrick, Dave Kelf, James Kenney, Mat-
thew Hall, Monique L'Huillier, Phil Moorby, Lee Moore, Karen L. Pieper, Dave
Rich, LeeAnn Sutherland and David W. Smith. The updates made for the second
edition were reviewed by Shalom Bresticker and LeeAnn Sutherland.

We also want to acknowledge the significant contribution of Lee Moore, who con-
verted the Verification Guild ATM model shown in Chapter 11 from behavioral Ver-
ilog into synthesizable SystemVerilog. The authors also express their appreciation to
Janick Bergeron, moderator of the Verification Guild on-line newsletter, for granting
permission to use this ATM switch example.

XXX

Chapter 1
Introduction to SystemVerilog

his chapter provides an overview of System Verilog. The topics
presented in this chapter include:

* The origins of SystemVerilog
* Technical donations that went into System Verilog

 Highlights of key SystemVerilog features

1.1 SystemVerilog origins

SystemVerilog SystemVerilog is a standard set of extensions to the IEEE 1364-
extends Verilog 2005 Verilog Standard (commonly referred to as “Verilog-2005").
The SystemVerilog extensions to the Verilog HDL that are
described in this book are targeted at design and writing synthesiz-
able models. These extensions integrate many of the features of the
SUPERLOG and C languages. SystemVerilog also contains many
extensions for the verification of large designs, integrating features
from the SUPERLOG, VERA C, C++, and VHDL languages, along
with OVA and PSL assertions. These verification assertions are in a
companion book, SystemVerilog for Veriﬁcationl.

1. Spear, Chris “SystemVerilog for Verification”, Norwell, MA: Springer 2006, 0-387-27036-1.

SystemVerilog for Design

SystemVerilog
started as an
Accellera
standard

SystemVerilog
is based on
proven
technology

1.11

Accellera
SystemVerilog
3.0 extended
modeling
capability

This integrated whole created by SystemVerilog greatly exceeds the
sum of its individual components, creating a new type of engineer-
ing language, a Hardware Description and Verification Language
or HDVL. Using a single, unified language enables engineers to
model large, complex designs, and verify that these designs are
functionally correct.

The Accellera standards organization

The specification of the SystemVerilog enhancements to Verilog
began with a standards group under the auspices of the Accellera
Standards Organization, rather than directly by the IEEE. Accel-
lera is a non-profit organization with the goal of supporting the
development and use of Electronic Design Automation (EDA) lan-
guages. Accellera is the combined VHDL International and Open
Verilog International organizations. Accellera helps sponsor the
IEEE 1076 VHDL and IEEE 1364 Verilog standards groups. In
addition, Accellera sponsors a number of committees doing
research on future languages. SystemVerilog is the result of one of
those Accellera committees. Accellera itself receives its funding
from member companies. These companies comprise several major
EDA software vendors and several major electronic design corpora-
tions. More information on Accellera, its members, and its current
projects can be found at www.accellera.org.

Accellera based the SystemVerilog enhancements to Verilog on
proven technologies. Various companies have donated technology
to Accellera, which has then been carefully reviewed and integrated
into SystemVerilog. A major benefit of using donations of technol-
ogies is that the SystemVerilog enhancements have already been
proven to work and accomplish the objective of modeling and veri-
fying much larger designs.

Generations of the SystemVerilog standard

A major portion of SystemVerilog was released as an Accellera
standard in June of 2002 under the title of SystemVerilog 3.0. This
initial release of the SystemVerilog standard allowed EDA compa-
nies to begin adding the SystemVerilog extensions to existing simu-
lators, synthesis compilers and other engineering tools. The focus
of this first release of the SystemVerilog standard was to extend the
synthesizable constructs of Verilog, and to enable modeling hard-

Chapter 1: Introduction to SystemVerilog 3

SystemVerilog
is the third
generation of
Verilog

Accellera
SystemVerilog
3.1 extends
verification
capability

Accellera
SystemVerilog
3.1a was
donated to the
IEEE

SystemVerilog
3.1a was
donated to the
IEEE

IEEE 1800-2005
is the official
SystemVerilog
standard

ware at a higher level of abstraction. These are the constructs that
are addressed in this book.

SystemVerilog began with a version number of 3.0 to show that
SystemVerilog is the third major generation of the Verilog lan-
guage. Verilog-1995 is the first generation, which represents the
standardization of the original Verilog language defined by Phil
Moorby in the early 1980s. Verilog-2001 is the second major gener-
ation of Verilog, and SystemVerilog is the third major generation.
Appendix C of this book contains more details on the history of
hardware descriptions languages, and the evolution of Verilog that
led up to SystemVerilog.

A major update to the SystemVerilog set of extensions was released
in May of 2003. This release was referred to as SystemVerilog 3.1,
and added a substantial number of verification capabilities to Sys-
temVerilog. These testbench enhancements are covered in the com-
panion book, SystemVerilog for Veriﬁcationl.

Accellera continued to refine the SystemVerilog 3.1 standard by
working closely with major Electronic Design Automation (EDA)
companies to ensure that the SystemVerilog specification could be
implemented as intended. A few additional modeling and verifica-
tion constructs were also defined. In May of 2004, a final Accellera
SystemVerilog draft was ratified by Accellera, and called System-
Verilog 3.1a.

In June of 2004, right after SystemVerilog 3.1a was ratified, Accel-
lera donated the SystemVerilog standard to the IEEE Standards
Association (IEEE-SA), which oversees the Verilog 1364 standard.
Accellera worked with the IEEE to form a new standards request, to
review and standardize the SystemVerilog extensions to Verilog.
The project number assigned to SystemVerilog was P1800 (the “P”
in IEEE standards numbers stands for “proposed”, and is dropped
once the IEEE has officially approved of the standard).

The IEEE-SA formed a P1800 Working Group to review the Sys-
temVerilog 3.1a documentation and prepare it for full IEEE stan-
dardization. The working group formed several focused
committees, which met on a very aggressive schedule for the next
several months. The P1800 Working Group completed its work in

1. Spear, Chris “SystemVerilog for Verification”, Norwell, MA: Springer 2006, 0-387-27036-1.

SystemVerilog for Design

IEEE 1364-2005
is the base
language for
SystemVerilog
1800-2005

1.1.2

SystemVerilog
comes from
several
donations

March of 2005, and released a ballot draft of the P1800 standard for
voting on by corporate members of the IEEE-SA. The balloting and
final IEEE approval process were completed in October 2005, and,
in November of 2005, the official IEEE 1800-2005 standard was
released to the public. See page xxvii of the Preface for information
on obtaining the IEEE 1800-2005 SystemVerilog Reference Man-
ual (LRM).

Prior to the donation of SystemVerilog 3.1a to the IEEE, the IEEE-
SA had already begun work on the next revision of the IEEE 1364
Verilog standard. At the encouragement of Accellera, the IEEE-SA
organization decided not to immediately add the SystemVerilog
extensions to work already in progress for extending Verilog 1364.
Instead, it was decided to keep the SystemVerilog extensions as a
separate document. To ensure that the reference manual for the base
Verilog language and the reference manual for the SystemVerilog
extensions to Verilog remained synchronized, the IEEE-SA dis-
solved the 1364 Working Group and made the 1364 Verilog refer-
ence manual part of the responsibility of the 1800 SystemVerilog
Working Group. The 1800 Working Group formed a subcommittee
to update the 1364 Verilog standard in parallel with the specifica-
tion of the P1800 SystemVerilog reference manual. For the most
part, the work done on the 1364 revisions was limited to errata cor-
rections and clarifications. Most extensions to Verilog were speci-
fied in the P1800 standard. The 1800 SystemVerilog Working
Group released a ballot draft for an updated Verilog P1364 standard
at the same time as the ballot draft for the new P1800 SystemVer-
ilog standard. Both standards were approved at the same time. The
1364-2005 Verilog Language Reference Manual is the official base
language for SystemVerilog 1800-2005.

Donations to SystemVerilog

The primary technology donations that make up SystemVerilog
include:

* The SUPERLOG Extended Synthesizable Subset (SUPERLOG
ESS), from Co-Design Automation

* The OpenVERA™ verification language from Synopsys

+ PSL assertions (which began as a donation of Sugar assertions
from IBM)

* OpenVERA Assertions (OVA) from Synopsys

Chapter 1: Introduction to SystemVerilog 5

SUPERLOG
was donated by
Co-Design

OpenVERA and
DirectC were
donated by
Synopsys

SystemVerilog
is backward
compatible with
Verilog

* The DirectC and coverage Application Programming Interfaces
(APIs) from Synopsys

 Separate compilation and $readmem extensions from Mentor
Graphics

» Tagged unions and high-level language features from BlueSpec

In 2001, Co-Design Automation (which was acquired by Synopsys
in 2002) donated to Accellera the SUPERLOG Extended Synthe-
sizable Subset in June of 2001. This donation makes up the major-
ity of the hardware modeling enhancements in SystemVerilog.
Accellera then organized the Verilog++ committee, which was later
renamed the SystemVerilog committee, to review this donation, and
create a standard set of enhancements for the Verilog HDL. Appen-
dix C contains a more complete history of the SUPERLOG lan-
guage.

In 2002, Synopsys donated OpenVERA testbench, OpenVERA
Assertions (OVA), and DirectC to Accellera, as a complement to
the SUPERLOG ESS donation. These donations significantly
extend the verification capabilities of the Verilog language.

The Accellera SystemVerilog committee also specified additional
design and verification enhancements to the Verilog language that
were not part of these core donations.

Two major goals of the SystemVerilog committee within Accellera
were to maintain full backward compatibility with the existing Ver-
ilog HDL, and to maintain the general look and feel of the Verilog
HDL.

1.2 Key SystemVerilog enhancements for hardware design

The following list highlights some of the more significant enhance-
ments SystemVerilog adds to the Verilog HDL for the design and
verification of hardware: This list is not intended to be all inclusive
of every enhancement to Verilog that is in SystemVerilog. This list
just highlights a few key features that aid in writing synthesizable
hardware models.

* Interfaces to encapsulate communication and protocol checking
within a design

