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Foreword

by Phil Moorby
The creator of the Verilog language

When Verilog was created in the mid-1980s, the typical design size was of the order
of five to ten thousand gates, the typical design creation method was that of using
graphical schematic entry tools, and simulation was beginning to be an essential gate
level verification tool. Verilog addressed the problems of the day, but also included
capabilities that enabled a new generation of EDA technology to evolve, namely syn-
thesis from RTL. Verilog thus became the mainstay language of IC designers.

Throughout the 1990s, the Verilog language continued to evolve with technology, and
the IEEE ratified new extensions to the standard in 2001. Most of the new capabilities
in the 2001 standard that users were eagerly waiting for were relatively minor feature
refinements as found in other HDLs, such as multidimensional arrays, automatic vari-
ables and the generate statement. Today many EDA tools support these Verilog-2001
enhancements, and thus provide users with access to these new capabilities.

SystemVerilog is a significant new enhancement to Verilog and includes major exten-
sions into abstract design, testbench, formal, and C-based APIs. SystemVerilog also
defines new layers in the Verilog simulation strata. These extensions provide signifi-
cant new capabilities to the designer, verification engineer and architect, allowing bet-
ter teamwork and co-ordination between different project members. As was the case
with the original Verilog, teams who adopt SystemVerilog based tools will be more
productive and produce better quality designs in shorter periods.

A strong guiding requirement for SystemVerilog is that it should be a true superset of
Verilog, and as new tools become available, I believe all Verilog users, and many
users of other HDLs, will naturally adopt it.

When I developed the original Verilog LRM and simulator, I had an expectation of
maybe a 10-15 year life-span, and during this time I have kept involved with its evo-
lution. When Co-Design Automation was formed by two of the authors, Peter Flake



and Simon Davidmann, to develop SUPERLOG and evolve Verilog, I was invited to
join its Technical Advisory Board and, later, I joined the company and chaired its
SUPERLOG Working Group. More recently, SUPERLOG was adopted by Accellera
and has become the basis of SystemVerilog. I did not expect Verilog to be as success-
ful as it has been and, with the extensions in SystemVerilog, I believe that it will now
become the dominant HDL and provide significant benefits to the current and future
generation of hardware designers, architects and verification engineers, as they
endeavor to create smaller, better, faster, cheaper products.

If you are a designer or architect building digital systems, or a verification engineer
searching for bugs in these designs, then SystemVerilog will provide you with signif-
icant benefits, and this book is a great place to start to learn SystemVerilog and the
future of Hardware Design and Verification Languages.

Phil Moorby,
New England, 2003
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Preface

System Verilog, officially the IEEE Std 1800-2005™ standard, is a set of extensions
to the IEEE Std 1364-2005™ Verilog Standard (commonly referred to as “Verilog-
2005”). These extensions provide new and powerful language constructs for model-
ing and verifying the behavior of designs that are ever increasing in size and complex-
ity. The SystemVerilog extensions to Verilog can be generalized to two primary
categories:

* Enhancements primarily addressing the needs of hardware modeling, both in terms
of overall efficiency and abstraction levels.

* Verification enhancements and assertions for writing efficient, race-free test-
benches for very large, complex designs.

Accordingly, the discussion of SystemVerilog is divided into two books. This book,
SystemVerilog for Design, addresses the first category, using SystemVerilog for mod-
eling hardware designs at the RTL and system levels of abstraction. Most of the
examples in this book can be realized in hardware, and are synthesizable. A compan-
ion book, SystemVerilog for Veriﬁcationl, covers the second purpose of SystemVer-
ilog, that of verifying correct functionality of large, complex designs.

Target audience

@ This book assumes the reader is already familiar with the Verilog Hardware
Description Language.

This book is intended to help users of the Verilog language understand the capabilities
of the SystemVerilog enhancements to Verilog. The book presents SystemVerilog in
the context of examples, with an emphasis on correct usage of SystemVerilog con-
structs. These examples include a mix of standard Verilog code along with System-
Verilog the enhancements. The explanations in the book focus on these
SystemVerilog enhancements, with an assumption that the reader will understand the
Verilog portions of the examples.

Additional references on SystemVerilog and Verilog are listed on page xxvii.

1. Spear, Chris “SystemVerilog for Verification”, Norwell, MA: Springer 2006, 0-387-27036-1.



Topics covered

This book focusses on the portion of SystemVerilog that is intended for representing
hardware designs in a manner that is both simulatable and synthesizable.

Chapter 1 presents a brief overview of SystemVerilog and the key enhancements that
it adds to the Verilog language.

Chapter 2 discusses the enhancements SystemVerilog provides on where design data
can be declared. Packages, $unit, shared variables and other important topics regard-
ing declarations are covered.

Chapter 3 goes into detail on the many new data types SystemVerilog adds to Ver-
ilog. The chapter covers the intended and proper usage of these new data types.

Chapter 4 presents user-defined data types, a powerful enhancement to Verilog. The
topics include how to create new data type definitions using typedef and defining
enumerated type variables.

Chapter 5 looks at using structures and unions in hardware models. The chapter also
presents a number of enhancements to arrays, together with suggestions as to how
they can be used as abstract, yet synthesizable, hardware modeling constructs.

Chapter 6 presents the specialized procedural blocks, coding blocks and enhanced
task and function definitions in SystemVerilog, and how these enhancements will
help create models that are correct by design.

Chapter 7 shows how to use the enhancements to Verilog operators and procedural
statements to code accurate and deterministic hardware models, using fewer lines of
code compared to standard Verilog.

Chapter 8 provides guidelines on how to use enumerated types and specialized pro-
cedural blocks for modeling Finite State Machine (FSM) designs. This chapter also
presents a number of guidelines on modeling hardware using 2-state logic.

Chapter 9 examines the enhancements to design hierarchy that SystemVerilog pro-
vides. Significant constructs are presented, including nested module declarations and
simplified module instance declarations.

Chapter 10 discusses the powerful interface construct that SystemVerilog adds to

Verilog. Interfaces greatly simplify the representation of complex busses and enable
the creation of more intelligent, easier to use IP (intellectual property) models.
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Chapter 11 ties together the concepts from all the previous chapters by applying
them to a much more extensive example. The example shows a complete model of an
ATM switch design, modeled in SystemVerilog.

Chapter 12 provides another complete example of using SystemVerilog. This chapter
covers the usage of SystemVerilog to represent models at a much higher level of
abstraction, using transactions.

Appendix A lists the formal syntax of SystemVerilog using the Backus-Naur Form
(BNF). The SystemVerilog BNF includes the full Verilog-2005 BNF, with the Sys-
temVerilog extensions integrated into the BNF.

Appendix B lists the set of reserved keywords in the Verilog and SystemVerilog stan-
dards. The appendix also shows how to mix Verilog models and SystemVerilog mod-
els in the same design, and maintain compatibility between the different keyword
lists.

Appendix C presents an informative history of hardware description languages and
Verilog. It covers the development of the SUPERLOG language, which became the
basis for much of the synthesizable modeling constructs in SystemVerilog.

About the examples in this book

The examples in this book are intended to illustrate specific SystemVerilog constructs
in a realistic but brief context. To maintain that focus, many of the examples are rela-
tively small, and often do not reflect the full context of a complete model. However,
the examples serve to show the proper usage of SystemVerilog constructs. To show
the power of SystemVerilog in a more complete context, Chapter 11 contains the full
source code of a more extensive example.

The examples contained in the book use the convention of showing all Verilog and
SystemVerilog keywords in bold, as illustrated below:

Example: SystemVerilog code sample

module uart (output logic [7:0] data,
output logic data_ rdy,
input serial in);

enum {WAITE, LOAD, READY} State, NextState;

logic [2:0] bit cnt;
logic cntr rst, shift en;
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always_ff (@ (posedge clock, negedge resetN) begin: shifter
if (!resetN)
data <= 8'h0; //reset (active low)
else if (shift en)
data <= {serial in, datal7:1]}; //shift right
end: shifter
endmodule

Longer examples in this book list the code between double horizontal lines, as shown
above. There are also many shorter examples in each chapter that are embedded in the
body of the text, without the use of horizontal lines to set them apart. For both styles
of examples, the full source code is not always included in the book. This was done in
order to focus on specific aspects of SystemVerilog constructs without excessive clut-
ter from surrounding code.

@ The examples do not distinguish standard Verilog constructs and keywords from
SystemVerilog constructs and keywords. It is expected that the reader is already
familiar with the Verilog HDL, and will recognize standard Verilog versus the new
constructs and keywords added with SystemVerilog.

Obtaining copies of the examples

The complete code for all the examples listed in this book are available for personal,
non-commercial use. They can be downloaded from http://www.sutherland-hdl.com.
Navigate the links to “SystemVerilog Book Examples”.

Example testing

Most examples in this book have been tested using the Synopsys ves® simulator,
version 2005.06-SP1, and the Mentor Graphics Questa™ simulator, version 6.2.
Most models in this book are synthesizable, and have been tested using the Synopsys
DC Compiler™ synthesis compiler, version 2005. 12.1

1. All company names and product names mentioned in this book are the trademark or registered
trademark names of their respective companies.
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Other sources of information

This book only explains the SystemVerilog enhancements for modeling hardware
designs. The book does not go into detail on the SystemVerilog enhancements for ver-
ification, and does not cover the Verilog standard. Some other resources which can
serve as excellent companions to this book are:

SystemVerilog for Verification—A Guide to Learning the Testbench Language Fea-
tures by Chris Spear.

Copyright 2006, Springer, Norwalk, Massachusetts. ISBN 0-387-27036-1.

A companion to this book, with a focus on verification methodology using the
SystemVerilog assertion and testbench enhancements to Verilog. This book pre-
sents the numerous verification constructs in SystemVerilog, which are not cov-
ered in this book. Together, the two books provide a comprehensive look at the
extensive set of extensions that SystemVerilog adds to the Verilog language. For
more information, refer to the publisher’s web site: www.springer.com/sgw/cda/
frontpage/0,11855,4-40109-22-107949012-0,00.html.

IEEE Std 1800-2005, SystemVerilog Language Reference Manual LRM)—IEEE
Standard for SystemVerilog: Unified Hardware Design, Specification and Verification
Language.

Copyright 2005, IEEE, Inc., New York, NY. ISBN 0-7381-4811-3. Electronic
PDF form, (also available in soft cover).

This is the official SystemVerilog standard. The book is a syntax and semantics
reference, not a tutorial for learning SystemVerilog. For information on ordering,
visit the web site: attp://shop.ieee.org/store and search for SystemVerilog.

IEEE Std 1364-2005, Verilog Language Reference Manual LRM)—IEEE Standard
for Verilog Hardware Description Language.

Copyright 2005, IEEE, Inc., New York, NY. ISBN 0-7381-4851-2. Electronic
PDF form, (also available in soft cover).

This is the official Verilog HDL and PLI standard. The book is a syntax and
semantics reference, not a tutorial for learning Verilog. For information on order-
ing, visit the web site: http://shop.ieee.org/store and search for Verilog.

1364.1-2002 IEEE Standard for Verilog Register Transfer Level Synthesis 2002—
Standard syntax and semantics for Verilog HDL-based RTL synthesis.
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Copyright 2002, IEEE, Inc., New York, NY. ISBN 0-7381-3501-1. Softcover, 106
pages (also available as a downloadable PDF file).

This is the official synthesizable subset of the Verilog language. For information on
ordering, visit the web site: Attp://shop.ieee.org/store and search for Verilog.

Writing Testbenches Using SystemVerilog by Janick Bergeron

Copyright 2006, Springer, Norwell Massachusetts.
ISBN: 0-387-29221-7. Hardcover, 412 pages.

Provides an explanation of the many testbench extensions that SystemVerilog
adds for verification, and how to use those extensions for efficient verification.
For more information, refer to the publisher’s web site: www.springer.com/sgw/
cda/frontpage/0,11855,4-40109-22-104242164-0,00.html.

The Verification Methodology Manual for SystemVerilog (VMM) by Janick Berg-
eron, Eduard Cerny, Alan Hunter, Andrew Nightingale

Copyright 2005, Springer, Norwell Massachusetts.
ISBN: 0-387-25538-9. Hardcover, 510 pages.

A methodology book on how to use SystemVerilog for advanced verification tech-
niques. This is an advanced-level book; It is not a tutorial for learning SystemVer-
ilog. For more information, refer to the publisher’s web site: www.springer.com/
sgw/cda/frontpage/0,11855,4-40109-22-52495600-0,00.html.

A Practical Guide for SystemVerilog Assertions, by Srikanth Vijayaraghavan, and
Meyyappan Ramanathan

Copyright 2005, Springer, Norwell Massachusetts.
ISBN: 0-387-26049-8. Hardcover, 334 pages.

Specifically covers the SystemVerilog Assertions portion of the SystemVerilog
standard. For more information, refer to the publisher’s web site:
www.springer.com/sgw/cda/frontpage/0,11855,4-40109-22-50493024-0,00.html.

SystemVerilog Assertions Handbook, Ben Cohen, Srinivasan Venkataramanan,
Ajeetha Kumari

Copyright 2004, VhdlCohen, Palos Verdes Peninsula, California.
ISBN: 0-9705394-7-9. Softcover, 330 pages.

Presents Assertion-Based Verification techniques using the SystemVerilog Asser-
tions portion of the SystemVerilog standard. For more information, refer to the
publisher’s web site: www.abv-sva.org/#svah.
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Assertions-Based Design, Second Edition, Harry Foster, Adam Krolnik, and David
Lacey

Copyright 2004, Springer, Norwell Massachusetts.
ISBN: 1-4020-8027-1. Hardcover, 414 pages.

Presents how assertions are used in the design and verification process, and illus-
trates the usage of OVL, PSL and SystemVerilog assertions. For more informa-
tion, refer to the publisher’s web site: www.springer.com/sgw/cda/frontpage/
0,11855,4-102-22-33837980-0,00.html.

The Verilog Hardware Description Language, 5th Edition by Donald E. Thomas
and Philip R. Moorby.

Copyright 2002, Kluwer Academic Publishers, Norwell MA.
ISBN: 1-4020-7089-6. Hardcover, 408 pages.

A complete book on Verilog, covering RTL modeling, behavioral modeling and
gate level modeling. The book has more detail on the gate, switch and strength
level aspects of Verilog than many other books. For more information, refer to the
web site www.wkap.nl/prod/b/1-4020-7089-6.

Verilog Quickstart, A Practical Guide to Simulation and Synthesis, 3rd Edition by
James M. Lee.

Copyright 2002, Kluwer Academic Publishers, Norwell MA.
ISBN: 0-7923-7672-2. Hardcover, 384 pages.

An excellent book for learning the Verilog HDL. The book teaches the basics of
Verilog modeling, without getting bogged down with the more obscure aspects of
the Verilog language. For more information, refer to the web site www.wkap.nl/
prod/b/0-7923-7672-2.

Verilog 2001: A Guide to the New Features of the Verilog Hardware Description
Language by Stuart Sutherland.

Copyright 2002, Kluwer Academic Publishers, Norwell MA.
ISBN: 0-7923-7568-8. Hardcover, 136 pages.

An overview of the many enhancements added as part of the IEEE 1364-2001
standard. For more information, refer to the web site www.wkap.nl/book.htm/0-
7923-7568-8.

XXix



Acknowledgements

The authors would like to express their gratitude to all those who have helped with
this book. A number of SystemVerilog experts have taken the time to review all or
part of the text and examples, and provided invaluable feedback on how to make the
book useful and accurate.

We would like to specifically thank those that provided invaluable feedback by
reviewing this book. These reviewers of the first edition include (listed alphabeti-
cally) Clifford E. Cummings., Tom Fitzpatrick, Dave Kelf, James Kenney, Mat-
thew Hall, Monique L'Huillier, Phil Moorby, Lee Moore, Karen L. Pieper, Dave
Rich, LeeAnn Sutherland and David W. Smith. The updates made for the second
edition were reviewed by Shalom Bresticker and LeeAnn Sutherland.

We also want to acknowledge the significant contribution of Lee Moore, who con-
verted the Verification Guild ATM model shown in Chapter 11 from behavioral Ver-
ilog into synthesizable SystemVerilog. The authors also express their appreciation to
Janick Bergeron, moderator of the Verification Guild on-line newsletter, for granting
permission to use this ATM switch example.

XXX



Chapter 1
Introduction to SystemVerilog

his chapter provides an overview of System Verilog. The topics
presented in this chapter include:

* The origins of SystemVerilog
* Technical donations that went into System Verilog

 Highlights of key SystemVerilog features

1.1 SystemVerilog origins

SystemVerilog SystemVerilog is a standard set of extensions to the IEEE 1364-
extends Verilog 2005 Verilog Standard (commonly referred to as “Verilog-2005").
The SystemVerilog extensions to the Verilog HDL that are
described in this book are targeted at design and writing synthesiz-
able models. These extensions integrate many of the features of the
SUPERLOG and C languages. SystemVerilog also contains many
extensions for the verification of large designs, integrating features
from the SUPERLOG, VERA C, C++, and VHDL languages, along
with OVA and PSL assertions. These verification assertions are in a
companion book, SystemVerilog for Veriﬁcationl.

1. Spear, Chris “SystemVerilog for Verification”, Norwell, MA: Springer 2006, 0-387-27036-1.
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This integrated whole created by SystemVerilog greatly exceeds the
sum of its individual components, creating a new type of engineer-
ing language, a Hardware Description and Verification Language
or HDVL. Using a single, unified language enables engineers to
model large, complex designs, and verify that these designs are
functionally correct.

The Accellera standards organization

The specification of the SystemVerilog enhancements to Verilog
began with a standards group under the auspices of the Accellera
Standards Organization, rather than directly by the IEEE. Accel-
lera is a non-profit organization with the goal of supporting the
development and use of Electronic Design Automation (EDA) lan-
guages. Accellera is the combined VHDL International and Open
Verilog International organizations. Accellera helps sponsor the
IEEE 1076 VHDL and IEEE 1364 Verilog standards groups. In
addition, Accellera sponsors a number of committees doing
research on future languages. SystemVerilog is the result of one of
those Accellera committees. Accellera itself receives its funding
from member companies. These companies comprise several major
EDA software vendors and several major electronic design corpora-
tions. More information on Accellera, its members, and its current
projects can be found at www.accellera.org.

Accellera based the SystemVerilog enhancements to Verilog on
proven technologies. Various companies have donated technology
to Accellera, which has then been carefully reviewed and integrated
into SystemVerilog. A major benefit of using donations of technol-
ogies is that the SystemVerilog enhancements have already been
proven to work and accomplish the objective of modeling and veri-
fying much larger designs.

Generations of the SystemVerilog standard

A major portion of SystemVerilog was released as an Accellera
standard in June of 2002 under the title of SystemVerilog 3.0. This
initial release of the SystemVerilog standard allowed EDA compa-
nies to begin adding the SystemVerilog extensions to existing simu-
lators, synthesis compilers and other engineering tools. The focus
of this first release of the SystemVerilog standard was to extend the
synthesizable constructs of Verilog, and to enable modeling hard-



Chapter 1: Introduction to SystemVerilog 3

SystemVerilog
is the third
generation of
Verilog

Accellera
SystemVerilog
3.1 extends
verification
capability

Accellera
SystemVerilog
3.1a was
donated to the
IEEE

SystemVerilog
3.1a was
donated to the
IEEE

IEEE 1800-2005
is the official
SystemVerilog
standard

ware at a higher level of abstraction. These are the constructs that
are addressed in this book.

SystemVerilog began with a version number of 3.0 to show that
SystemVerilog is the third major generation of the Verilog lan-
guage. Verilog-1995 is the first generation, which represents the
standardization of the original Verilog language defined by Phil
Moorby in the early 1980s. Verilog-2001 is the second major gener-
ation of Verilog, and SystemVerilog is the third major generation.
Appendix C of this book contains more details on the history of
hardware descriptions languages, and the evolution of Verilog that
led up to SystemVerilog.

A major update to the SystemVerilog set of extensions was released
in May of 2003. This release was referred to as SystemVerilog 3.1,
and added a substantial number of verification capabilities to Sys-
temVerilog. These testbench enhancements are covered in the com-
panion book, SystemVerilog for Veriﬁcationl.

Accellera continued to refine the SystemVerilog 3.1 standard by
working closely with major Electronic Design Automation (EDA)
companies to ensure that the SystemVerilog specification could be
implemented as intended. A few additional modeling and verifica-
tion constructs were also defined. In May of 2004, a final Accellera
SystemVerilog draft was ratified by Accellera, and called System-
Verilog 3.1a.

In June of 2004, right after SystemVerilog 3.1a was ratified, Accel-
lera donated the SystemVerilog standard to the IEEE Standards
Association (IEEE-SA), which oversees the Verilog 1364 standard.
Accellera worked with the IEEE to form a new standards request, to
review and standardize the SystemVerilog extensions to Verilog.
The project number assigned to SystemVerilog was P1800 (the “P”
in IEEE standards numbers stands for “proposed”, and is dropped
once the IEEE has officially approved of the standard).

The IEEE-SA formed a P1800 Working Group to review the Sys-
temVerilog 3.1a documentation and prepare it for full IEEE stan-
dardization. The working group formed several focused
committees, which met on a very aggressive schedule for the next
several months. The P1800 Working Group completed its work in

1. Spear, Chris “SystemVerilog for Verification”, Norwell, MA: Springer 2006, 0-387-27036-1.



SystemVerilog for Design

IEEE 1364-2005
is the base
language for
SystemVerilog
1800-2005

1.1.2

SystemVerilog
comes from
several
donations

March of 2005, and released a ballot draft of the P1800 standard for
voting on by corporate members of the IEEE-SA. The balloting and
final IEEE approval process were completed in October 2005, and,
in November of 2005, the official IEEE 1800-2005 standard was
released to the public. See page xxvii of the Preface for information
on obtaining the IEEE 1800-2005 SystemVerilog Reference Man-
ual (LRM).

Prior to the donation of SystemVerilog 3.1a to the IEEE, the IEEE-
SA had already begun work on the next revision of the IEEE 1364
Verilog standard. At the encouragement of Accellera, the IEEE-SA
organization decided not to immediately add the SystemVerilog
extensions to work already in progress for extending Verilog 1364.
Instead, it was decided to keep the SystemVerilog extensions as a
separate document. To ensure that the reference manual for the base
Verilog language and the reference manual for the SystemVerilog
extensions to Verilog remained synchronized, the IEEE-SA dis-
solved the 1364 Working Group and made the 1364 Verilog refer-
ence manual part of the responsibility of the 1800 SystemVerilog
Working Group. The 1800 Working Group formed a subcommittee
to update the 1364 Verilog standard in parallel with the specifica-
tion of the P1800 SystemVerilog reference manual. For the most
part, the work done on the 1364 revisions was limited to errata cor-
rections and clarifications. Most extensions to Verilog were speci-
fied in the P1800 standard. The 1800 SystemVerilog Working
Group released a ballot draft for an updated Verilog P1364 standard
at the same time as the ballot draft for the new P1800 SystemVer-
ilog standard. Both standards were approved at the same time. The
1364-2005 Verilog Language Reference Manual is the official base
language for SystemVerilog 1800-2005.

Donations to SystemVerilog

The primary technology donations that make up SystemVerilog
include:

* The SUPERLOG Extended Synthesizable Subset (SUPERLOG
ESS), from Co-Design Automation

* The OpenVERA™ verification language from Synopsys

+ PSL assertions (which began as a donation of Sugar assertions
from IBM)

* OpenVERA Assertions (OVA) from Synopsys
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* The DirectC and coverage Application Programming Interfaces
(APIs) from Synopsys

 Separate compilation and $readmem extensions from Mentor
Graphics

» Tagged unions and high-level language features from BlueSpec

In 2001, Co-Design Automation (which was acquired by Synopsys
in 2002) donated to Accellera the SUPERLOG Extended Synthe-
sizable Subset in June of 2001. This donation makes up the major-
ity of the hardware modeling enhancements in SystemVerilog.
Accellera then organized the Verilog++ committee, which was later
renamed the SystemVerilog committee, to review this donation, and
create a standard set of enhancements for the Verilog HDL. Appen-
dix C contains a more complete history of the SUPERLOG lan-
guage.

In 2002, Synopsys donated OpenVERA testbench, OpenVERA
Assertions (OVA), and DirectC to Accellera, as a complement to
the SUPERLOG ESS donation. These donations significantly
extend the verification capabilities of the Verilog language.

The Accellera SystemVerilog committee also specified additional
design and verification enhancements to the Verilog language that
were not part of these core donations.

Two major goals of the SystemVerilog committee within Accellera
were to maintain full backward compatibility with the existing Ver-
ilog HDL, and to maintain the general look and feel of the Verilog
HDL.

1.2 Key SystemVerilog enhancements for hardware design

The following list highlights some of the more significant enhance-
ments SystemVerilog adds to the Verilog HDL for the design and
verification of hardware: This list is not intended to be all inclusive
of every enhancement to Verilog that is in SystemVerilog. This list
just highlights a few key features that aid in writing synthesizable
hardware models.

* Interfaces to encapsulate communication and protocol checking
within a design



