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Preface

A large international conference on Advances in Engineering Technologies and
Physical Science was held in London, UK, 4–6 July 2018, under the World
Congress on Engineering 2018 (WCE 2018). The WCE 2018 is organized by the
International Association of Engineers (IAENG); the Congress details are available
at http://www.iaeng.org/WCE2018. IAENG is a nonprofit international association
for engineers and computer scientists, which was founded originally in 1968. The
World Congress on Engineering serves as good platforms for the engineering
community to meet with each other and to exchange ideas. The conferences
have also struck a balance between theoretical and application developments. The
conference committees have been formed with over 300 committee members who
are mainly research center heads, faculty deans, department heads, professors,
and research scientists from over 30 countries. The congress is truly a global
international event with a high level of participation from many countries. The
response to the Congress has been excellent. There have been more than 500
manuscript submissions for the WCE 2018. All submitted papers have gone through
the peer-review process, and the overall acceptance rate is 51%.

This volume contains 26 revised and extended research articles written by promi-
nent researchers participating in the conference. Topics covered include mechanical
engineering, engineering mathematics, computer science, knowledge engineering,
electrical engineering, wireless networks, and industrial applications. The book
offers the state of the art of tremendous advances in engineering technologies and
physical science and applications and also serves as an excellent reference work for
researchers and graduate students working on engineering technologies and physical
science and applications.

Hong Kong, Hong Kong Sio-Iong Ao
Huddersfield, UK Len Gelman
Daegu, Republic of Korea Haeng Kon Kim
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Chapter 1
A New Mathematical Model for a
Membrane MEMS Device

Luisa Fattorusso and Mario Versaci

Abstract The membrane MEMSs represent a good design solution for the industry
requirements about the construction of micro-dimensional devices, because easily
constructible and extremely versatile. In this domain, the experience of the authors
in the modeling of membrane MEMS devices has matured. In this chapter, they
present a formalization of stationary 1D-membrane MEMS in which the electric
field magnitude, |E|, is proportional to the curvature of the membrane, C, obtaining
a semilinear elliptic model. Next, techniques based on fixed point Theorems provide
results of existence, while an approach based on the joint use of Poincaré’s
inequality and Gronwall’s Lemma establish conditions of uniqueness. Finally, some
numerical tests complete the work.

Keywords Boundary elliptic problems · Existence and uniqueness for solution ·
Green function · Membrane MEMS devices · Schauder-Tychonoff theorem

1.1 Introduction to the Problem

In the last decade, MEMSs engineering has acquired an important role in the design
of actuators and sensors that often require the use of micro-dimensional devices.
This is essentially due to the fact that the MEMSs are a valid link between the
physical nature of the problem and the machine language. While, on the one hand,
Scientific Research tries to achieve results in the analytical-numerical modeling
of such devices, on the other hand, Industry requires the development of models,
based on the observed reality [3, 13, 20], with reduced computational load and
easily implemented with a clear reduction of costs. Because of the high variety of
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Fig. 1.1 A simplified scheme of the device

application fields of MEMS, the Scientific Community is actively engaged in the
study of coupled systems, including magneto-mechanical systems, thermo-elastic
systems of biomedical interest [2, 15, 16] and, last but not least, systems related to
wave propagation [4, 19, 22].

Although the mathematical models developed have a high degree of sophisti-
cation, they do not often allow the obtainment of explicit solutions, so that one is
satisfied with numerical solutions [1, 11, 12, 18, 23]. Nevertheless, the risk of obtain-
ing, numerically, ghost solutions is high, so the need to obtain analytical conditions
of existence and uniqueness of the solution is evident especially in presence of
nonlinear singularities [5–8]. One of the most accredited a dimensionalized models
concerns a MEMS device that is composed of two metal plates: one of which is
fixed and the other deformable but clumped to its extremes (see, Fig. 1.1). When, a
voltage V is applied, the deformable plate deflects towards the fixed one [5, 7, 8]
obtaining the following analytical model:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ωΔ2v =
(
�
∫

Ω
|∇v|2dy + ς

)
Δv + λ1g1(y)

(

(1 − v)ϑ
(

1 + α
∫

Ω
dy

(1−v)ϑ−1

)−1
)

v(y) = 0, y ∈ ∂Ω

0 < v(y) < 1, y ∈ Ω

(1.1)
where the dielectric properties of the material of the deformable plate are taken into
account by the bounded function g1, while λ1 is proportional to V . In addition, the
positive parameters ω, �, ς, α are related to the electric and mechanic properties of
the material and, finally, ϑ could take into account different electrostatic potentials.

Obviously, a useful simplification of model (1.1) can be considered if both the
inertial and non-local effects are neglected. In other terms, if ϑ = 2, ω = 1, � =
ς = 0, and α = 0, model (1.1) becomes:
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⎧
⎪⎪⎨

⎪⎪⎩

Δ2v(y) = λ1g1(y)([1 − v(y)]2)−1

0 < v(y) < 1 in Ω,

v(y) = 0 on ∂Ω.

(1.2)

In this chapter, starting from (1.2), we discuss the 1D elliptical semi-linear model in
which the bottom plate is replaced by a thin membrane attached to the edge whose
formulation is:

{
v′′ = −g2(y)λ1((1 − v(y)2)−1 in Ω = [−A,A]
v = 0 on ∂Ω

(1.3)

where λ1 is proportional to V and then is also proportional to |E|. In addition, since
E, for each point of the membrane, is orthogonal to the tangent of the membrane
itself, in this chapter we consider |E| is considered proportional to the curvature C
of the membrane and, in addition, as following specified, the singularity 1− v(y) is
not present [10] by introducing a safety distance.

The chapter is organized as follows. Starting from Sect. 1.2 in which some
preliminary results about the membrane MEMS are illustrated, Sect. 1.3 describes
the approach whose achieved model is expressed in the Dirichlet’s form by means
of its integral formulation. In addition, if the safety distance τ , that is the gap of the
top of the membrane profile from the upper plate, is taken into account, interesting
conditions of existence and uniqueness of the solution is presented in Sects. 1.4
and 1.5 respectively. At the end of the chapter, some numerical tests validate the
goodness of the proposed approach (Sect. 1.6).

1.2 Electrostatic 1D Membrane MEMS Model: Backgrounds

Let us start the treatment by means of a known 1D membrane MEMS model in its
dimensionless formulation. In particular, in R

3, we consider a system of Cartesian
axes O ′y′η′ζ ′ where an electrostatic-elastic device, whose length is 2A, constituted
by two parallel metallic plates (one fixed and the other one elastic but fixed at its
edges) lies. The plates are located at a mutual distance h and the axis ζ ′ is orthogonal
to their length. A voltage V is applied on the plates in order that V = 0 corresponds
to the fixed plates so that V is related to the elastic one. Then, φ, the electrostatic
potential, satisfies Δφ = 0 (Laplace’s equation) between the plates such that φ = V

on the elastic plate, and φ = 0 on the fixed one [10]. In such conditions, labeling by
w′ the deflection of the elastic plate satisfies the following equation [20]:

− ϑΔ⊥w′ +DΔ2⊥w′ = −0.5ε0|∇φ|2 (1.4)
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where Δ⊥ represents the laplacian operator with respect to y′ and η′; ϑ and D

take into account the mechanical tension and the flexural rigidity of the deformable
plate, respectively. As usual, εo indicates the dielectric permittivity of free space.
Since (1.4) represents a macroscopical formulation of the electrostatic problem, in
order to apply it to a MEMS device, we need to take into account a set of scaling
factors, that is Φ = φ/V , u = w′/h, y = y′/2A, ζ = ζ ′/h and η = η′/2A.
Denoting, then, with δ = D/((2A)2ϑ) and ε = h/(2A) the relative importance of
tension/rigidity and the aspect ration of the system respectively, Eq. (1.4) is writable
as the following system of nonlinear coupled partial differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

ε2Δ⊥Φ +Φζζ = 0

−Δ⊥u+ δΔ2⊥u = −λ2(ε2|∇⊥Φ|2 + (Φζ )
2)

Φ = 1 onelasticplate; Φ = 0 onfixedplate

(1.5)

in which Φζ and Φζζ represent the first and second order partial derivative of Φ
with respect to ζ respectively. In addition,

λ1 = λ2 = ε0V
2(2A)2(2h3ϑ)−1 = ρV 2 (1.6)

represents the ratio of a reference electrostatic force to a reference elastic force and

� = ε0(2A)
2(2h3ϑ)−1 (1.7)

considers the electro-mechanical properties of the membrane material. However, in
dimensionless conditions, laboratory experiences have shown that:

�1 = ε0(2ϑ)
−1 > 1012. (1.8)

In addition, taking into account that the considered formulation of the MEMS
device is 1D (that is, thickness and width are negligible with respect to its length),
system (1.5) is simplified when ε → 0 so that the first equation of (1.5) becomes
∂2Φ
∂ζ 2 = 0 giving the well-know solution Φ = ζ

u
that, substituted into the second

of (1.5), gives us:

−Δ⊥u+ δΔ2⊥u = −λ2u−2 (1.9)

which represents a non-linear equation decoupled from the equation containing the
potential. Because our interest is focused on membrane MEMS devices, we replace
the deformable plate by a deformable membrane fixed along the edge of a crisp and
indeformable plate acting as a support deducing that (1.9) is still valid (even if, in
this case, the numerical values of the electro-mechanical parameters are different).
If then, we consider performant materials with negligible flexural rigidity D → 0
(that is, δ = 0), (1.9) is simplified as follows [9, 10, 20]:
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{
v′′ = −λ2(1 − v)−2 in Ω = [−A1, A1]
v(−A1) = v(−0.5) = v(A1) = v(0.5) = 0

(1.10)

which represents, a semi-linear model in stationary deflection conditions, in which
the orientation of ζ is reversed and the membrane, in the rest condition, is located
on the plane ζ = 0. Note that, in (1.10), u = 1 + v and A1 is dimensionless.

1.3 The Core of the Approach: |E| in Terms of Curvature of
the Membrane

Since in (1.10), by the (1.6), λ2 is proportional to V 2, it makes sense rewrite (1.10)
(see, [9]) as follows:

{
−v′′ = �1|E|2 in Ω = [−A1, A1]
v(−A1) = v(A1) = 0

(1.11)

in which |E|2 is the square of the electrical field magnitude. As mentioned in the
introduction, the main idea of the proposed approach, starting from the fact that che
E, for each point of the membrane, is always normal to the tangent of the membrane
itself, |E| is expressed proportional to the curvature C of the membrane. So that, we
can write |E| as:

|E(y)| = μ(y, v(y), λ)C(y, v(y)) (1.12)

where μ, the coefficient of proportionality, after studies on an hemispherical
benchmark [21], takes the following form:

μ(y, u(y), λ) = λ(1 − u(y)− τ)−1 (1.13)

where μ(y, u(y), λ) ∈ C0([−A1, A1]×[0, 1)×[λ,Λ]) in which λ
2

is the minimum
voltage to apply to the device to win the inertia of the membrane and Λ2 is the
maximum admissible voltage; τ is a critical distance evaluated as λ(εt )−1 (where
εt is the dielectric strength of the material constituting the membrane such that, if
εt → ∞, model (1.10) is restored). The choice to involve τ in (1.13) derives from
the fact that, in the hypothesis of maximum deflection, the membrane must not touch
the upper plate of the device. Mathematically, to consider τ translates into avoiding
singularity in (1.13). By these premises, (1.11) is rewritten as follows:

{
−v′′(y) = �1μ

2(y, v(y), λ)C2(y, v(y)) = �1λ
2C2(y, v(y))(1−v(y)−τ)−2 in Ω

v(−A1) = v(A1) = 0; 0 < v(y) < 1 − τ,

(1.14)
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and explaining C by its 1D formulation [14],

C(y, v(y)) = |v′′(y)|(1 + |v′(y)|2)−3/2, (1.15)

and taking into account that v(y) > 0, from (1.14), we can write:

v′′(y)+ �1μ
2(y, v(y), λ)|v′′(y)|2(1 + (v′(y))2)−3 = 0. (1.16)

In addition, since v′′(y) = 0 would provide a linear deflection of the membrane
(v(y) = mx + b with m arbitrary constant), impossible when |E| �= 0, it makes
sense write:

1 + �1μ
2(y, v(y), λ)(v′′(y))(1 + (v′(y))2)−3 = 0. (1.17)

Definitely (1.14) assumes the following final form:

⎧
⎪⎪⎨

⎪⎪⎩

v′′(y) = −(1 + (v′(y))2)3(�1μ
2(y, v(y), λ))−1 in Ω

v(−A1) = v(A1) = 0

0 < v(y) < 1 − τ

(1.18)

that can be considered as a particular case of the following problem [10]:

⎧
⎪⎪⎨

⎪⎪⎩

v′′(y)+ f (x, v(y), v′(y)) = 0 in Ω = [A1,−A1]
v(−A1) = v(A1) = 0

0 < v(y) < 1 − τ 1 − τ ∈ C2(Ω),

(1.19)

expressed in Dirichlet’s form, where f ∈ C0(Ω × R× R), so that

f (y, v(y), v′(y)) = (1 + (v′(y))2)3(�1μ
2(y, v(y), λ))−1, (1.20)

and the problem (1.19) assumes the following structure:

⎧
⎪⎪⎨

⎪⎪⎩

v′′ = −(1 + (v′(y))2)3)(�1μ
2(y, v(y), λ)−1 =

= −(1 + (v′(y))2)3(1 − v(y)− τ)2(�1λ
2)−1 in Ω

v(−A1) = v(A1) = 0; 0 < v < 1 − τ

(1.21)

in which v ∈ C2(Ω), μ = μ(y, v(y), λ) ∈ C0(Ω × [0, 1], [λ,Λ]) and μ = λ(1 −
v(y)−τ)−1. Finally, the fact that v ∈ C2(Ω) is imperative because, experimentally,
both the slopes and curvatures of the membrane vary continually.
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1.4 An Interesting Result of Existence

We need to define two functional spaces.

Definition 1 Let us consider Ω = [−A1, A1]. In it, we define S and S1 two
functional spaces as follows [10]:

S = {C2
0(Ω) : 0 < v(y) < 1 − τ, |v′(y)| < M < +∞} (1.22)

S1 = {C1
0(Ω) : 0 < v(y) < 1 − τ, |v′(y)| < M < +∞} (1.23)

Then, (1.19) admits an integral formulation by means of a suitable Green’s function
Ξ(y, s) [14]. In other words, if

v(y) =
∫ A1

−A1

Ξ(y, s)f (s, v(s), v′(s))ds, 0 < v < 1 − τ (1.24)

and

v′(y) =
∫ A1

−A1

Ξx(y, s)f (s, v(s), v
′(s))ds (1.25)

then (1.21) becomes

v(y) =
∫ A1

−A1

Ξ(y, s)(1 + (v′(s))2)3)(�1μ
2(s, v(s), λ))−1ds. (1.26)

To prove the existence of the solution of the problem (1.21), we demonstrate the
existence of the solution for the equation

Π(v) = ω, (1.27)

with v ∈ S1, exploiting a procedure based on Schauder-Tychonoff fixed point
Theorem, from S to S with the operator Π :

Π(v(y)) =
∫ A1

−A1

Ξ(y, s)((1 + (v′(s))2)3(�1μ
2(s, v(s), λ)−1ds; (1.28)

then, we can write

Π ′(v(y)) =
∫ A1

−A1

Ξy(y, s)((1 + (v′(s))2)3(�1μ
2(s, v(s), λ))−1ds. (1.29)
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For our aims, we use the following Green’s function [14, 17]:

Ξ(y, s) =
{
(s + A1)(A1 − y)(2A1)

−1 −A1 ≤ s ≤ y

(A1 − s)(y + A1)(2A1)
−1 y ≤ s ≤ A1

(1.30)

from which

Ξy(y, s) =
{
−(s + A1)(2A1)

−1 −A1 ≤ s ≤ y

(A1 − s)(2A1)
−1 y ≤ s ≤ A1.

(1.31)

By (1.30) and (1.31) we deduce the following properties: (1) Ξ(y, s) is non-negative
and continuous; max(Ξ(y, s)) = Ξ(y = s, s = 0) = A1/2 so that

0 ≤ Ξ(y, s) ≤ 0.5A1 ∀y, s ∈ Ω; (1.32)

(2)
∫ A1
−A1

Ξ(y, s)ds = 0.5(A1 − y)(y + A1) ≤ 0.5(A2
1) and

∣
∣
∣
∫ A1
−A1

Ξx(y, s)ds

∣
∣
∣ ≤

≤ ∫ A1
−A1

|Ξx(y, s)|ds ≤ A1; (3) finally, ∀y, s ∈ (Ω ×Ω)

Ξx(y, s) ≤ 0.5; (1.33)

useful for the proof of the existence of the solution to the problem (1.21). For this
purpose, we premise the following [10]:

Lemma 1 Π(v) defined in (1.28) is an operator from S to S.

Proof Let us consider:

||Π(v(y))||C2(Ω) = supy∈Ω |Π(v(y))|+
+supy∈Ω |Π ′(v(y))| + supy∈Ω |Π ′′(v(y))| < +∞.

(1.34)

Owing the structure of Ξ(y, s), we infer that Π(v) ≥ 0 and Π(v(−A1)) =
Π(v(A1)) = 0. In addition, from the (1.13) and considering that |E| for deforming
the membrane must win its inertia, it follows that μ(y, v(y), λ) > 1. Indicating
by λ > 0 the minimum V necessary to win that inertia, we can write λ < λ <

sup{λ} < +∞ from which 1/λ2 < +∞. Then, exploiting condition (1.32), it
follows:
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0 ≤ |Π(v(y))| ≤ supy∈Ω |Π(v(y))| = supy∈Ω
∣
∣
∣

∫

Ω

Ξ(y, s)(�1μ
2)−1(1 + (v′(s))2)3)ds

∣
∣
∣ ≤

≤ (�1λ
2)−1supy∈Ω

∣
∣
∣

∫ y

−A1

(2A1)
−1(s + A1)(A1 − y)(1 + (v′(s))2)3(1 − τ − v(s))2ds

∣
∣
∣+

+(�1λ
2)−1supy∈Ω

∣
∣
∣

∫ A1

y

(2A1)
−1(A1 − s)(y + A1)(1 + (v′(s))2)3(1 − τ − v(s))2ds

∣
∣
∣ =

= (1 − τ)(�1λ
2)−1

{

supy∈Ω
∣
∣
∣

∫ y

−A1

(2A1)
−1(s + A1)(A1 − y)(1 + (v′(s))2)3ds+

+
∫ A1

y

(2A1)
−1(A1 − s)(y + A1)(1 + (v′(s))2)3ds

∣
∣
∣

}

≤

≤ 4(1 − τ)(�1λ
2)−1(1 +M6)supy∈Ω

{ ∫ y

−A1

(2A1)
−1(s + A1)(A1 − y)ds+

+
∫ A1

y

(2A1)
−1(A1 − s)(y + A1)ds

}
≤ 4(1 − τ)(�1λ

2)−1(1 +M6)A2
1 < +∞.

(1.35)

In addition:

supy∈Ω |Π ′(v(y))| = supy∈Ω
∣
∣
∣

∫

Ω

Ξx(y, s)(�1μ
2)−1(1 + (v′(s))2)3)ds

∣
∣
∣ =

= (�1λ
2)−1supy∈Ω

∣
∣
∣

∫ x

−A1

−(2A1)
−1(s + A1)(1 + (v′(s))2)3

(1 − τ − v(s))2ds +
∫ A1

x

−(2A1)
−1(A1 − s)(1 + (v′(s))2)3(1 − τ − v(s))2ds

∣
∣
∣ ≤

≤ 4(1 − τ)(�1λ
2)−1(1 +M6)supy∈Ω

∣
∣
∣

∫ x

−A1

−(2A1)
−1(s + A1)ds+

∫ A1

x

(2A1)
−1(A1 − s)ds

∣
∣
∣ ≤ 4(1 − τ)(�1λ

2)−1(1 +M6)A1 < +∞.

(1.36)

To evaluate supy∈Ω |Π ′′(v(y))|, taking into account (1.29), (1.31), (1.33) and
considering that |v′| ≤ M and |1/μ2| < 1, we write:
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supy∈Ω |Π ′′(v(y))| = supy∈Ω
∣
∣
∣
∣
d

dy

∫

Ω

Ξx(y, s)(�1μ
2)−1(1 + (v′(s))2)3ds

∣
∣
∣
∣ =

≤ (2�1λ
2)−1

[

supy∈Ω
∣
∣
∣
∣
d

dy

∫ y

−A1

(1 + (v′(s))2)3)ds

∣
∣
∣
∣+

+supy∈Ω
∣
∣
∣
∣
d

dy

∫ A1

y

(1 + (v′(s))2)3)ds

∣
∣
∣
∣

]

= (2�1λ
2)−1

[
2supy∈Ω(1 + (v′(s)2)3

]
≤

≤ (2�1λ
2)−12(1 +M2)3 = (�1λ

2)−1(1 +M2)3 < +∞;
(1.37)

from which, substituting (1.35), (1.36) and (1.37) into (1.34), we can write:

||Π(v(y))||C2(Ω) ≤ 4(1 − τ)(�1λ
2)−1(1 +M6)A2

1+ (1.38)

+4(1 − τ)(�1λ
2)−1(1 +M6)A1 + (�1λ

2)−1(1 +M2)3 < +∞.

To verify that Π(u) ∈ S, from the (1.35), we must to assume:

4(1 − τ)(�1λ
2)−1(1 + M6)A2

1 < 1 − τ, (1.39)

then

1 +M6 < (4A2
1)
−1�1λ2 ⇒ M < [(4A2

1)
−1�1λ2 − 1]1/6; (1.40)

since both (1.36) and (1.40) are verified, we can consider the following system:

{
1 +M6 < M(4(1 − τ)A1)

−1�1λ2

1 +M6 < (4A2
1)
−1�1λ2.

(1.41)

We observe that, if in (1.41), by absurd, we write:

(4A2
1)
−1�1λ2 < M(4(1 − τ)A1)

−1�1λ2, (1.42)

then, the inequality M > 1−τ
A1

= 2(1 − τ) is verified so that, since M = ζ
y

and

M ′ = ζ ′
y′ , by means of suitable scaling procedure, it is right to write as follows (see,

Sect. 1.2):

M = ζ

y
= ζ ′

h

2A

y′
= H ′ 2A

h
> 2(1 − τ ′). (1.43)
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We know that 1− τ = 1−τ ′
h

then, considering (1.43), M ′ > 1−τ ′
A

and, if A→ 0, we

infer that 1−τ ′
A

→ +∞ so that M ′ = sup|v′| = +∞ achieving an absurd. Then, it
follows that:

(4A2
1)
−1�1λ

2
> M(4(1 − τ)A1)

−1�1λ
2

(1.44)

deducing that system (1.41) is equivalent to the following inequality

1 +M6 < (4(1 − τ)A1)
−1M�1λ

2
(1.45)

to verify that Π(v) : S → S.

It is interesting to note that Lemma 1 provides the condition (1.45) that
demonstrates the dependence of M on �1; in other words, M depends on the
electromechanical properties of the material constituting the membrane. Finally,
applying the previous Lemma 1, we prove the existence of at least a solution for
the problem (1.21).

Theorem 1 Problem (1.21) admits at least one solution in the functional space S.

Proof Always considering Ω = [−A1, A1], taking into account Lemma 1 and,
in addition, the verification of both the compact immersions C2

0(Ω) ↪→ C1
0(Ω)

and S1 ↪→ S, by application of the fixed-point Theorem (Schauder-Tychonoff), it
follows that, in the functional space S1, v = Π(s) admits at least a fixed point
(v = Π(v)). In other terms, problem (1.21) admits at least a solution.

1.5 On the Uniqueness of the Solution

In this section we prove that problem (1.21) admits unique solution. Additionally,
as below specified, the uniqueness does not depend on the material properties of the
membrane. In the proof of Theorem 2 this property is justified. In addition, give use
important supplementary knowledge.

Theorem 2 ∀M > 0, the uniqueness of the solution v is ensured for problem (1.21).
Moreover, v ∈ C∞(Ω) and it is symmetric with respect to the origin and

∀y ∈ Ω, |v′(y)| ≤ |v′(A1)| = |v′(−A1)|. (1.46)

Proof First, let us prove the inequality (1.46). Considering problem (1.21), we
observe that v"(y) ≤ 0 where y ∈ Ω (concavity downwards) and therefore, from
its equation, we can write:

v"(y)([1 + (v′(y))2]3)−1 = −(�1λ2)−1[1 − τ − v(y)]2; (1.47)



12 L. Fattorusso and M. Versaci

that, multiplying both member by v′(y), we write:

v"(y) v′(y)([1 + (v′(y))2]3)−1 = −(�1λ2)−1[1 − τ − v(y)]2 v′(y) =
= −(�1λ2)−1(1 − τ)2v′(y)+

+(�1λ2)−1(1 − τ)
d

dy
[v(y)]2 − (3�1λ2)−1 d

dy
[v(y)]3.

(1.48)

Observing again that

v"(y) v′(y)([1 + (v′(y))2]2)−1 = −1

4

d

dy
(1 + [v′(y)]3)2)−1 (1.49)

and integrating (1.48), we can write:

− 1

4
(1 + [v′(A1)]2)2)−1 + 1

4
(1 + [v′(−A1)]2)2)−1 = 0, (1.50)

from which, the inequality |v′(−A1)| = |v′(A1)| holds. Moreover, integrating
equality (1.48) from −A1 to t , taking into account that v(−A1) = 0, it is right
to write:

−1

4
(1 + [v′(t)]2)2)−1 + 1

4
(1 + [v′(−A1)]2)2)−1 = −(�1λ

2
)−1(1 − τ)2v′(t)+

+(�1λ
2
)−1(1 − τ)

d

dt
[v(t)]2 − (3�1λ

2
)−1 d

dt
[v(t)]3.

(1.51)
Therefore, ∀t ∈ [−A1, A1], we achieve:

−(�1λ
2
)−1(1 − τ)2v(t)+ (�1λ

2
)−1(1 − τ)[v(t)]2 − (3�1λ

2
)−1[v(t)]3 =

= (�1λ
2
)−1v(t)

{

(1 − τ)[v(t)− (1 − τ)] − 1

3
[v(t)]2

}

< 0

from which:

− 1

4
(1 + [v′(t)]2)3)−1 + 1

4
(1 + [v′(−A1)]2)3)−1 < 0 (1.52)

so that, we obtain ∀t ∈ Ω |v′(t)| < |v′(−A1)|. With the aim of proving that
problem (1.21) admits unique solution, by absurd, we suppose that in S1 there are
two different solutions: v1 and v2. By integration, from problem (1.21) and ∀t ∈ Ω ,
we can write:

v′1(t) ≤ M − (�1λ
2
)−1
∫ t

−A1

[1 + (v′1(y))2]3[1 − τ − v1(y)]2dy
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v′2(t) ≤ M − (�1λ
2
)−1
∫ t

−A1

[1 + (v′2(y))2]3[1 − τ − v2(y)]2dy.

After, subtracting on both members, always ∀t ∈ Ω , we obtain :

v′1(t)− v′2(t) = (�1λ
2
)−1
∫ t

−A1

{[1 + (v′2(y)2]3[1 − τ − v2(y)]2−

−[1 + (v′1(y))2]3[1 − τ − v1(y)]2}dy.
(1.53)

To evaluate the term inside the integral, we make the following functions, labeled
by F and g, as follows:

F(w, v) = [1 + w2]3(1 − τ − v)2,

g(t) = F(wt , vt ) = F(tw1 + (1 − t)w2, tv1 + (1 − t)v2)
(1.54)

so that:

g′(t) = Fw(wt , vt )(w1 − w2)+ Fv(wt , vt )(v1 − v2)

and

g(1) = F(w1, v1), g(0) = F(w2, v2) (1.55)

g(1)− g(0) = g′(y), y ∈ (0, 1).

Simple calculations lead to the following writing:

Fw(wy, vy) = 6[1 + w2
y]2wy(1 − τ − vy)

2 =
= 6{1 + [yw1 + (1 − y)w2]2}2[yw1 + (1 − y)w2](1 − τ − vy)

2 ≤
≤ 6{y[1 + w2

1]2 + (1 − y)[1 + w2
2]2}[yw1 + (1 − y)w2](1 − τ − vy)

2.

Then, taking into account that w1 ≤ M, w2 ≤ M, vy ≤ 1, the following
inequality holds:

∣
∣Fw(wy, vy)

∣
∣ ≤ 24(1 +M2)2M. (1.56)

Therefore, it is easy to get the following inequality:

∣
∣Fv(wy, vy)

∣
∣ = | − 2[1 + (wy)

2]3(1 − τ − vy)| ≤
≤ 2|y(1 + w2

1)
3 + (1 − y)(1 + w2

2)
3| ≤ 4(1 +M2)3
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and, applying the Poincaré’s inequality and (1.53), it make sense the following chain
of inequalities

|v′1(t)− v′2(t)| ≤ 24(�1λ
2
)−1(1 +M2)2M

∫ t

−A1

|v′1(y)− v′2(y)|dy+

+4(�1λ
2
)−1(1 +M2)3

∫ t

−A1

|v1(y)− v2(y)|dy ≤

≤ 24(�1λ
2
)−1(1 +M2)2M

∫ t

−A1

|v′1(y)− v′2(y)|dy+

8A1(�1λ
2
)−1(1 +M2)3

∫ t

−A1

|v′1(y)− v′2(y)|dy =

≤ c(M, λ,A1, �1)

∫ t

−A1

|v′1(y)− v′2(y)|dy.

From which, exploiting the Gronwall’s Lemma [14], we infer:

∀t ∈ Ω, |v′1(t)− v′2(t)| ≤ 0 (1.57)

and then

∀t ∈ Ω, v′1(t)− v′2(t) = 0 (1.58)

so that v1 − v2 = constant . In addition, owing

v1(−A1) = v2(−A1) = v1(A1) = v2(A1) = 0, (1.59)

then v1 = v2 that is the thesis of the Theorem.
To prove the symmetry of v (with respect to the origin), we start to consider

a solution v of the problem (1.21). Setting, ∀t ∈ Ω , u(t) = v(−t) we construct
another solution (called u). In fact

u′(t) = −v′(−t), (1.60)

u"(t) = v"(−t), (1.61)

substituting both (1.60) and (1.61) in the equation of problem (1.21) we have

u"(−t) = −(�1λ
2
)−1([1 + (u′(−t))2]3)(1 − τ − u(−t))

and exploiting that u′(−A1) = −v′(A1) = v′(−A1) ≤ M since the uniqueness of
the solution has been proved (then v(t) = u(t)), ∀t ∈ Ω we deduce that u(t) =
u(−t) over Ω .
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Finally, for proving that v ∈ C∞(Ω) we observe that v ∈ C2(Ω); then the
member on the right of the equation belongs to C1(Ω). So, exploiting the induction
approach, v ∈ C∞(Ω), as expected.

1.6 Some Numerical Tests

As previously proved, system (1.41) is reducible to the inequality (1.45). To confirm
that this reduction is correct also from the numerical point of view, some tests
have been implemented exploiting MatLab® (Release 2017a). Particularly, setting
in (1.40) λ = 1 and A1 = 0.5 (this is correct from the orders of amplitude point of
view), H is smaller than a quantity whose O(1012). Then, it makes sense to write:

{
1 +M6 < (M�1λ

2
)(4(1 − τ)A1)

−1 < (1021012λ
2
)(2(1 − τ))−1

1 +M6 < (�1λ
2
)(4A2

1)
−1 < 1012λ

2
.

(1.62)

Moreover, owing 1 − τ < 1 and, in addition that

(�1λ
2
)(4A2

1)
−1 < (M�1λ

2
)(4(1 − τ)A1)

−1 (1.63)

holds, (1.41) is equivalent to (1.45). Then, (1.62) can be reformulated in the
following manner:

{
f1(M) = (M1012λ

2
)(2(1 − τ))−1 − (M6 + 1) > 0

f2(M) = 1012λ
2
(1 − τ)− (M6 + 1) > 0

(1.64)

in which both f1(M) and f2(M) have been defined for the aim. Observing that
(1.64) must be verified, exploiting the numerical Newton-Raphson’s approach with
the default tolerance, firstly we found both the zero values. In the follow, they have
been considered as sup of the set of the value of M verifying (1.64). The obtained
results, shown in both Fig. 1.2a, b, prove, in dimensionless conditions, the agreement
of the analytical and numerical results . As an example, for λ = 1.02 and select
a suitable range of values of M (in which the numerical procedure is applicable)
for both f1(M) and f2(M) (considering [220, 240] and [80, 100]) we obtain their
zeros (M∗

1 and M∗
2 , respectively). Then, in order to guarantee the existence of

the solution of the problem, we are obliged to choose sup|M| = min(M∗
1 ,M

∗
2 )

so that sup|M| = min(M∗
1 ,M

∗
2 )numerical = 98.2. Value 98.2 corresponds, in

dimensionless conditions, just a little higher to 87 degrees.
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Fig. 1.2 Comparison between numerical and analytical results: (a) M∗
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Chapter 2
Study of Changes of the Individual
Parameter of Resources in the Modelling
of Renewable Systems

Oleksandr Karelin, Anna Tarasenko, Oleksandr Barabash,
Manuel Gonzalez-Hernandez, and Joselito Medina-Marin

Abstract Applying the principles of modelling of renewable resource systems
proposed in previous works and the theory of functional operators with shift, we
have obtained mathematical models that take into account the reciprocal influences
between resources of the systems. If previously special attention has been paid to the
study of the density distribution of the group parameters by individual parameters
then now we present a study on the dynamics of the individual parameters of
resources. A mathematical model for the study of the function of the individual
parameter is elaborated. Balance relations are no longer integral equations, but
differential equations. Based on these models, possibilities to formulate economic
ecological problems that use renewable resource systems are opened.
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2.1 Introduction

In works [1, 2] principles of modelling were proposed and applied to the study of
systems with one renewable resource. Cyclic models, where the initial state of the
system coincides with the final state, were considered. The balance relation has the
form

ν(x) = D(x)v[β(x)] + P(x, ν(x))+ g(x),

where v(x) is the initial density of the elements of the system. Here, we take
the process of natural mortality and the processes of changes of the individual
parameter x into account with the coefficient D(x) and the shift β(x). The process
of reproduction is represented by the term P(x, v(x)), the process of artificial entry
of elements into the system and extraction from the system are accounted for by
the term g(x). Conditions for the existence and uniqueness of the solution are
formulated.

In works [3, 4] we have continued the study of systems whose state depends on
time and whose resources are renewable, using functional operators with shift. We
made generalizations to systems with two resources. For functional operators with
shift, inverse operators in weighted Holder spaces were constructed. In modelling,
interactions and reciprocal influence between these two resources were taken into
account. We applied our results on invertibility of the operators to the study of
balance equations. The balance relation has the form

v(x) = D(x)v[β(x)] + Pv(x)+ Rw(x)+ g(x),

w(x) = C(y)w[γ (y)] + Pw(y)+ Rv(y)+ q(y),

where v(x) and w(y) represent initial densities of the distribution of the group
parameters by the individual parameters and for the resources λ1 and λ2. The terms
Pv(x), Pw(y) are responsible for the reproduction and the terms Rw(x), Rv(y) are
responsible for the mutual influence and contain integrals with degenerate kernels:

Pv(x) =
n∑

i=1

Pipi(x) P1 =
∫ υ1

υ0

v(x)dx, P2 =
∫ υ2

δ1

v(x)dx, . . . ,Pn =
∫ υn

υn−1

v(x)dx,

Pw(y) =
m∑

i=1

Qiqi (y) Q1 =
∫ μ1

μ0

w(y)dy, Q2 =
∫ μ2

μ1

w(y)dy, . . . ,Qm =
∫ μm

μm−1

w(y)dy,

0 = υ0 < υ1 < . . . < υn = xmax, 0 = μ0 < μ1 < . . . < μm = ymax;

Rv(x) =
k∑

i=1

Ri ri (x) R1 =
∫ ϑ1

ϑ0

v(x)dx, R2 =
∫ ϑ2

ϑ1

v(x)dx, . . . ,Rk =
∫ ϑk

ϑk−1

v(x)dx,
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Rω(y) =
l∑

i=1

Siqi (y) S1 =
∫ ξ1

ξ0

w(y)dy, S2 =
∫ ξ2

ξ1

w(y)dy, . . . ,Sl =
∫ ξl

ξl−1

w(y)dy,

0 = ϑ0 < ϑ1 < . . . < ϑk = xmax, 0 = ξ0 < ξ1 < . . . < ξl = ymax.

For the solution of the balance integral equation with degenerate kernels and
inverse operators, a modified Fredholm method [5, 6] for equations of second type
is proposed. The equilibrium state of the system is found.

In these works, special attention was paid to the study of the density distribution
of the group parameter by individual parameters. In [7], we presented a study on
the dynamics of the individual parameters of resources. We carry out a detailed
investigation of the graphics of the function of change of the individual parameter
(weight) with time (cycles). We show the necessity of introducing the age parameter
for elements of the system into consideration. We introduce an age parameter for
elements of the system.

This paper is a continuation and expansion of article [7]. In Sect. 2.2 a cyclic
model of a system with a set of renewable resources is presented. It is a generalisa-
tion from two resources to a finite number of resources. In Sect. 2.3 a mathematical
model for study of the function of the changes of the individual parameter is
proposed. This significantly expands the ability to analyse individual parameters
of resources. Based on these models, possibilities to formulate economic ecological
problems that involve renewable resource systems are opened.

A great number of works has been dedicated to systems with renewable resources
[8, 9].

The core of the mathematical apparatus used for the study of such systems
consists of differential equations in which the sought for function is dependent on
time [10, 11].

Our approach presupposes discretization of the processes with respect to time.
We move away from tracking the changes in the system continuously to tracking
the changes at fixed time points. This discretization and the identification of the
individual parameter and the group parameter lead us to functional equations with
shift.

2.2 Cyclic Model of a System with a Set of Renewable
Resources

Let S be a system with r resources λ1, λ2, . . . , λr and let T be a time interval. The
choice of T is related to periodic processes taking place in the system and to human
interferences.

Let these resources have individual parameters with scales

x1
min = x1

1 < x1
2 < . . . < x1

n1
= x1

max, for the first resource
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x2
min = x2

1 < x2
2 < . . . < x2

n2
= x2

max, for the second resource
...............

xrmin = xr1 < xr2 < . . . < xrnr = xrmax for the r-th resource.

We introduce the group parameters by functions

v1(x1
i , t), v

2(x2
i , t), . . . , vr(xri , t) which express a quantitative estimate of the

elements of resources λ1, λ2, . . . , λr with the individual parameter
x1
i , i = 1, 2, . . . , n1, x2

i , i = 1, 2, . . . , n2, . . . , xri , i = 1, 2, . . . , nr at the time
t .

Explain this through an example: the system with two fish resources λ1 and λ2.
The weight is the individual parameter of the resource λ1 ;

x1
1 = 100 gr, x1

2 = 200 gr, . . . , x1
100 = 10000 gr

are the values of this individual parameter. The number of fish with a fixed weight
x1
i is a group parameter,

v(xi, t), i = 1, 2, . . . , 100.

The length is the individual parameter of the resource λ2;

x2
1 = 5 cm, x2

2 = 10 cm, . . . , x2
20 = 100 cm.

The total weight of fish with a fixed length yi is a group parameter

w(xi, t), i = 1, 2, . . . , 20.

The function v(xi, t) is the number of fish of the weight xi at the time t , the function
w(yi, t) is the total weight of fish of the length yi at the time t .

Passing from discrete description on to a continuous description we obtain the
functions v(x, t), w(y, t) which are the densities of the objects with the parameters
x, y at the time t .

Let t0 be the initial time and S the system under consideration.
As in our previous work [1, 2] on modeling the system, we will hold the following

principles:

I. The description of changes that occur on the interval (t0, t0 + T ) will be
substituted by the fixing of the final results at the moment t0 + T ;

II. The separation of parameters into individual parameters, group parameters and
the study of dependence of group parameters from individual parameters.

The initial state of system S at time t0 is represented as density functions of a
distribution of the group parameter by the individual parameter for each resource

v1(x1, t0), x
1
min ≤ x1 ≤ x1

max,
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v2(x2, t0), x
2
min ≤ x2 ≤ x2

max,

...............

vr(xr , t0), x
r
min ≤ xr ≤ xrmax,

which express a quantitative estimate of the elements of resources λ1, λ2,. . . ,λr with
the individual parameter x1, x2, . . . , xr .

If there are no doubts, then we omit t0 and assume that the initial values of the
individual parameters are zero:

v1(x1, t0) = v1(x1), v2(x2, t0)=v2(x2), . . . ,

vr(xr , t0) = vr(xr); x1
min=x2

min= . . . =xrmin=0.

We will now analyse the system’s evolution. In the course of time, the elements
of the system can change their individual parameter – e.g. fish can change their
weight and length.

Modifications in the distributions of the group parameters by the individual
parameters are represented by displacements. The state of the system S at the time
t = t0 + T is:

v1(x1, t0+T )= d

dx1
α1(x1)·v1(α1(x1)), . . . , vr (xr , t0+T )= d

dxr
αr(xr)·vr(αr(xr )).

(2.1)

In Sect. 2.3, the appearance of derivatives will be explained.
In the case of two resources λ1, λ2 with the individual parameters x = x1, y =

x1, the functions of density v(x) = v1(x1), w(x) = v2(x2) and the displacements
α(x) = α1(x1), β(x) = α2(x2), relation (2.1) will look like
(

v(x, t0 + T ) = d

dx
α(x) · v(α(x)), w(y, t0 + T ) = d

dy
β(y) · w(β(y)).

)

In the sequel, we will also use parentheses to distinguish a particular case of
a system with two resources Further, we will also use parentheses to distinguish
between a particular case of a system with two resources.

Over the period j0 = [t0, t0+T ], extractions might be taken from the system as a
result of human economic activity; these are represented by summands ρj (xj ); if an
artificial entrance of elements into the system has taken place, it shall be accounted
for by adding terms ζ j (xj ); we take natural mortality into account with coefficients
dj (xj ), 1 ≤ j ≤ r .

The process of reproduction will be represented by terms

nr∑

i=1

P
j
i p

j
i (x

j ), 1 ≤ j ≤ r,

(
n∑

i=1

Pipi(x),

m∑

i=1

Qiqi(y),

)


