
Computational Music Science

Series Editors

Guerino B. Mazzola
Moreno Andreatta

Gérard Milmeister

The Rubato
Composer
Music Software

Component-Based Implementation
of a Functorial Concept Architecture

Dr. Gérard Milmeister

Langackerstrasse 49
8057 Zürich
Switzerland
gemi@bluewin.ch

Contributors:

Prof. Dr. Guerino B. Mazzola

164 Ferguson Hall
Minneapolis MN 55455
USA
mazzola@umn.edu

Florian Thalmann

Helmern 77l
6102 Malters
Switzerland

ISBN 978-3-642-00147-5

DOI 10.1007/978-3-642-00148-2

e-ISBN 978-3-642-00148-2

Library of Congress Control Number: 2009921145

c© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Foreword

Gérard Milmeister’s thesis, which is now published in Springer’s innova-
tive series Computational Music Science, is a key text for accessing the
present version of the RUBATO software. It is also the beautiful trace of a
conceptual and technological completion of a development that was initi-
ated in 1992, when Oliver Zahorka and I conceived, designed and imple-
mented the RUBATO sofware for musical performance. This first implemen-
tation on NeXT computers, written in Objective C, was driven by the idea
to implement Theodor W. Adorno’s theory of an analytical performance,
i.e., a performance that is defined upon musical analysis of the given score.
The original architecture of RUBATO was therefore modular and split into
modules for analysis (rhythmical, melody, and harmonic) and modules for
performance. These modules, coined rubettes, were only conceived as or-
ganic parts of an overall anatomy. However, the successive developments
and also research driven investigations, such as Anja Fleischer’s work1 on
rhythmical analysis or Chantal Buteau’s work2 on motivic analysis showed
that there is also a legitimate interest in rubettes without being necessarily
parts of a given fixed anatomy. Successive work by Stefan Göller3 on ge-
ometric concept spaces associated with RUBATO data formats, and Stefan
Müller4 on performance and gesture rubettes proved that there is a differ-
ent approach to RUBATO, which by far transcends the original “hardcoded”
anatomy.

1 Fleischer, Anja. Die analytische Interpretation: Schritte zur Erschließung eines For-
schungsfeldes am Beispiel der Metrik. Dissertation, Berlin 2003
2 Buteau, Chantal. A Topological Model of Motivic Structure and Analysis of Music: The-
ory and Operationalization. Dissertation, Zürich 2003
3 Göller, Stefan. Object Oriented Rendering of Complex Abstract Data. Dissertation,
Zürich 2004
4 Müller, Stefan. Pianist’s Hands—Synthesis of Musical Gestures. Dissertation, Zürich
2004

v

vi Foreword

The new requirements had to face different conceptual, soft-, and hardware
conditions and challenges. To begin with, the NeXT computer had finished
to exist, and the platform-dependent strategies, such as the original Ob-
jective C implementation had become obsolete by the now standard Java
virtual platform environment. The other point of change was that the ru-
bettes had to become a modular construct that would be of any size and
would also be of open usage without much predefined larger anatomical
preconditions. It turned out that the decisive requirements were defined by
component-driven programming. However, this generic setup also entailed
a radical redesign of the data format of denotators, which was invented in
the early collaboration with Zahorka. The redesign was however not only
affected by the component-driven data architecture, but by a meanwhile
dramatic urge to step from naive (zero-addressed) denotators to functorial
denotators, i.e., to quit the old-fashioned concept of a point and to intro-
duce functorial points, i.e., morphisms defined on variable address modules
and with values in not necessarily representable space functors.

All these delicate requirements set up an agenda that could not be real-
ized except by a computer scientist with excellent programming and really
solid mathematical competence. Gérard Milmeister was the ideal researcher
to bring such a difficult enterprise to its completion. His award-winning
doctoral dissertation, which is now in your hands, is the written counter-
part of his remarkable programming work, available as a GPL software on
http://www.rubato.org. The thesis is not only a clear and concise intro-
duction to the conceptual and mathematical architecture of the RUBATO

enterprise, but offers also precise and concrete tutorials for the program-
ming of rubettes and their networks.

The success of Milmeister’s work is, last, but not least, documented by
contributions from Florian Thalmann and myself, which prove that the
RUBATO software may now reach out to compositional tasks that were
postponed since the early developments of a geometric composition soft-
ware presto in the late 80s. Thalmann’s BigBang rubette is the long-awaited
extension of RUBATO to gestural strategies in composition, and it is the
proof that Milmeister’s work is not only the completion of a long march
through the hard- and software meanders and conceptual revolutions, but
also is setting a pointer to creative future music software perspectives.

Minnesota, Prof. Dr. Guerino Mazzola
October 2008

Preface to the Springer Edition

For this edition published by Springer, I am happy to be able to include as
chapter 17 and chapter 18 two contributions by Guerino Mazzola and Flo-
rian Thalmann. The first is the description of a sophisticated rubette that
provides an extensive gestural interface to manipulate musical structures.
The second contribution is the first major application of RUBATO COM-
POSER in music theory and computational composition. It resulted in a
remarkable piece of music starting from the idea of “analyse créatrice” for-
warded by Pierre Boulez. The whole process involves many of the features
presented in this book, and, thus, is something of a “proof by construction”
of the usefulness of these concepts. I therefore thank both for their energy
and ingenuity in putting the RUBATO COMPOSER system to test and exer-
cising its capabilities.

Zurich, Gérard Milmeister
December 2008

vii

Preface

Trained as a computer scientist, I have always been interested in music and
musicology. Therefore I took the opportunity offered by PD Dr. Guerino
Mazzola to work with his MusicMedia group, then a part of the MultiMedia
Laboratory at the Department of Informatics of the University of Zurich,
directed by Prof. Dr. Peter Stucki.

Thus, first and foremost, thanks go to Guerino Mazzola, who introduced
me to mathematical musical theory, most of which I had never heard of
before. He gave me the conviction of working at the forefront of music re-
search and taught me the use of modern mathematical methods, such as
category theory. He supervised my work with all the enthusiasm and com-
petence one could wish for.

I would also like to thank the reviewers Prof. Dr. Bernd Enders of the Univer-
sity of Osnabrück and Prof. Dr. Renato Pajarola of the University of Zurich,
who suggested improvements to this thesis.

The thesis could not have been accomplished without the backing by Prof.
Dr. Pfeifer, whom I like to thank for his willingness to support it as the
responsible member of the Faculty of Mathematics and Natural Sciences.

Finally, I have to thank the staff of the Department of Informatics for help-
ing me with the tedious administrative tasks that a doctoral student and
assistant has to manage.

Zurich, Gérard Milmeister
November 2006

ix

Introduction

It is significant that the art and theory of music production and performance
have always been connected to the newest developments of the natural and
engineering sciences of the time. Indeed, a sophisticated theory of sound
and music has been an important part of the earliest mathematics in an-
cient Greece. The theory of musical intervals set forth by Pythagoras is still
a matter of discussion among psychologists of music and theorists alike. On
the other hand, since the appearance of digital computers, and the develop-
ment of computer science as a mathematical and engineering discipline in
the late 1940s and early 1950s, music has been among the first applications
to appear besides numerical computations on the newly invented machines.

At lot has happened since, and there have always been researchers in math-
ematics who have been trying to apply the newest trends in their disciplines
to the explanation of the principles of music, with various degrees of suc-
cess. Whatever the outcome of each of these developments, the outlook of
music as a whole has been changed forever to the open-minded observer.
Unfortunately, it is still the case that the intersection of the set of mathe-
matical music researchers and the set of musicologists or music theorists
is vanishingly small compared to the combined number of people active in
the field.

To further the penetration of mathematical music theory into the realm of
music production, it is vital to offer a computer-based tool to contemporary
composers and music theorists that provides the most advanced ideas from
mathematics applied to music.

Category theory is the field of mathematics that has crept into almost ev-
ery mathematical domain and reformulated most basic tenets in a modern
language. Computer science is another discipline that has benefited enor-
mously from the exposure to category theory, as has mathematical music
theory. It is certainly not exaggerated to assert that the colossal volume The
Topos of Music by Guerino Mazzola has brought music theory to a new

xi

xii Introduction

level by infusing it with advanced and recent ideas from category and topos
theory, whence the name.

The following work takes the fundamental ideas expounded in that book
and describes the design and implementation of a software system, called
RUBATO COMPOSER, that provides the tools to work creatively and ana-
lytically with those principles. The software system is both an application
development framework, targeted at programmers proficient in mathemat-
ics or music theory, or both, and a graphical user interface intended for the
composer or the theorist who wants to make use of components created by
developers to build an application that embodies his or her musical ideas.

The first part presents the concepts and theory. There is neither place nor
need for a complete exposition of the theory developed in The Topos of
Music. Therefore only those parts that have found their way into the imple-
mentation are discussed.

The second part is a thorough account of the implementation of the RU-
BATO COMPOSER software system. Here the high-level organization as well
as some details are covered. This chapter is also of importance to the devel-
oper who wants to extend and build on the RUBATO framework.

The third part is about the practical aspects of using RUBATO COMPOSER.
A tutorial describes a typical use through a step-by-step tour illustrated with
screenshots of the running program. Several uses of the framework by exter-
nal projects are introduced that exemplify the application developer aspect.

The fourth and last part acts as an appendix. The greatest part is taken up
by the RUBATO COMPOSER user’s manual. This manual is intended as a
stand-alone reference and also features many details that are not essential
to understanding and therefore are not included in the treatment in the
main text.

Overview

Part I Concepts and Theory

1 Overview of Music Theories . 3

2 The Representation of Music . 7

3 Architecture of Concepts I: Principles . 19

4 The Category of Modules . 31

5 Architecture of Concepts II: Forms and Denotators 55

6 Software Components for Computational Theories 65

7 Historical Overview . 71

Part II The Implementation

8 Overview . 79

9 Architecture . 81

10 Modules and Morphisms . 87

11 Forms and Denotators . 105

12 Tools and Utilities . 127

xiii

xiv Overview

13 Rubato Composer GUI . 135

Part III Rubato Composer in Practice

14 Overview . 151

15 A Tutorial . 153

16 First Applications in Rubette Construction 167

17 The BigBang Rubette . 183

18 Creative Analysis of Boulez’s Structures . 201

19 Conclusion and Outlook . 227

Part IV Appendix

20 User’s Manual . 233

Contents

Part I Concepts and Theory

1 Overview of Music Theories . 3

2 The Representation of Music . 7

2.1 Types of Representation . 7

2.2 Symbolic Representation of Music . 9

2.2.1 Electronic Scores . 10

2.2.2 MIDI . 13

2.2.3 Musical Representation Languages 14

2.2.4 Language of General Concepts 18

3 Architecture of Concepts I: Principles . 19

3.1 Pure Architecture . 19

3.1.1 Selection . 20

3.1.2 Conjunction . 21

3.1.3 Disjunction . 21

3.2 Architecture with Primitives . 22

3.3 Examples . 24

3.3.1 Macro Notes . 25

3.3.2 Frequency Modulation . 26

3.3.3 Full Score . 27

4 The Category of Modules . 31

4.1 From Monoids to Modules . 31

4.1.1 Monoids . 32

xv

xvi Contents

4.1.2 Groups . 33

4.1.3 Rings . 33

4.1.4 Modules . 37

4.2 Categories . 41

4.2.1 Definition . 41

4.2.2 Functors . 43

4.2.3 Natural Transformations . 45

4.2.4 Yoneda’s Lemma . 48

4.2.5 Limits and Colimits . 49

4.2.6 Topoi . 52

5 Architecture of Concepts II: Forms and Denotators 55

5.1 Forms . 55

5.2 Denotators . 57

5.3 Computational Category Theory . 58

5.3.1 Data Types in Programming Languages 58

5.3.2 The Role of Diagrams . 61

6 Software Components for Computational Theories 65

6.1 Types of User Interface . 66

6.2 Rubato Composer: Computational Theories 69

7 Historical Overview . 71

7.1 presto . 71

7.2 “Classic” RUBATO . 73

7.3 Experiments in Java . 75

7.4 RUBATO COMPOSER . 76

Part II The Implementation

8 Overview . 79

9 Architecture . 81

9.1 Overall Structure . 81

9.2 The RUBATO COMPOSER Universe . 83

9.3 Java Packages . 85

10 Modules and Morphisms . 87

Contents xvii

10.1 Modules and their Elements . 87

10.1.1 The Module Interface . 87

10.1.2 The ModuleElement Interface . 91

10.2 Module Morphisms . 95

10.2.1 The ModuleMorphism Interface 95

11 Forms and Denotators . 105

11.1 Requirements . 105

11.2 Forms . 106

11.2.1 Form Class . 107

11.2.2 SimpleForm Class . 109

11.2.3 LimitForm and ColimitForm Classes 109

11.2.4 PowerForm and ListForm Classes 110

11.3 Denotators . 110

11.3.1 SimpleDenotator Class . 113

11.3.2 LimitDenotator Class . 114

11.3.3 ColimitDenotator Class . 115

11.3.4 PowerDenotator and ListDenotator Classes 115

11.4 Tools and Operations . 116

11.4.1 Construction of Forms and Denotators 116

11.4.2 Paths . 118

11.4.3 Module Mapping and Structural Replacement 119

11.4.4 Reforming . 120

11.4.5 Address Changing . 123

11.4.6 List and Set Operations . 124

12 Tools and Utilities . 127

12.1 Low-Level Mathematical Tools . 127

12.1.1 Numbers . 127

12.1.2 Matrixes . 128

12.2 Repository and Predefined Universe . 128

12.3 MIDI Sequencer and Synthesizer . 130

12.4 Scheme Interpreter . 131

12.5 XML as File Format for RUBATO COMPOSER 132

13 Rubato Composer GUI . 135

13.1 Terminology . 135

xviii Contents

13.2 The Implementation of Networks . 136

13.3 Running a Network . 138

13.4 Macro Rubettes . 141

13.5 Tools . 144

13.6 The Plug-In System . 144

Part III Rubato Composer in Practice

14 Overview . 151

15 A Tutorial . 153

16 First Applications in Rubette Construction 167

16.1 Rubettes for Macro Objects . 167

16.2 The Wallpaper Rubette . 170

16.3 The Alteration Rubette . 176

16.4 Counterpoint Theory . 179

16.5 Music Composition . 180

17 The BigBang Rubette . 183

17.1 Spontaneous Algorithmic Composition 183

17.1.1 Facts about Geometric Composition Strategies 184

17.2 Gestural Interaction Concept . 185

17.2.1 Gesture Theory . 185

17.2.2 Application of Gesture Theory 187

17.3 Modular Views . 188

17.3.1 View Concept . 188

17.3.2 Note representation . 189

17.3.3 Basic Functionality and Navigation 193

17.3.4 Layers . 193

17.4 Implemented Gestures . 194

17.4.1 Geometrical Transformations 195

17.4.2 Wallpapers . 196

17.4.3 Alteration . 198

17.5 The BigBang Rubette in Context . 199

18 Creative Analysis of Boulez’s Structures . 201

18.1 Boulez’s Creative Analysis Revisited . 201

Contents xix

18.2 Ligeti’s Analysis . 201

18.3 A First Creative Analysis of Structure Ia 203

18.3.1 Address Change . 204

18.3.2 Primary Parameter Address Changes 205

18.3.3 Secondary Parameter Address Changes 206

18.3.4 The First Creative Analysis . 208

18.4 Implementing Creative Analysis in RUBATO COMPOSER . . 209

18.4.1 The System of Boulettes . 211

18.5 A Second More Creative Analysis and Reconstruction 213

18.5.1 The Conceptual Extensions . 214

18.5.2 The BigBang Rubette . 219

18.5.3 A Composition . 221

19 Conclusion and Outlook . 227

19.1 Lessons Learned . 227

19.2 Things To Do . 228

19.3 Ideas for Future Work . 229

Part IV Appendix

20 User’s Manual . 233

20.1 Introduction . 233

20.2 Concepts . 233

20.2.1 RUBATO COMPOSER’s World of Objects 233

20.2.2 Rubettes . 234

20.2.3 Networks . 236

20.2.4 Macro Rubettes . 237

20.2.5 Tools . 238

20.3 Using RUBATO COMPOSER . 238

20.3.1 Starting up . 238

20.3.2 General Usage . 238

20.3.3 Main Window . 239

20.3.4 Main Menu and Toolbar . 240

20.3.5 Network . 242

20.3.6 Tools . 244

20.3.7 Scheme Tools . 251

20.3.8 Preferences . 252

xx Contents

20.3.9 Recurring User Interface Elements 253

20.4 Core Rubettes . 257

20.4.1 Rubette Description Schema . 257

20.4.2 List of Core Rubettes . 258

20.5 Built-in Non-Core Rubettes . 269

20.6 Writing Rubettes . 271

20.6.1 Developing with the RUBATO Framework 271

20.6.2 Rubette Interface . 273

20.7 Rubette Example . 279

20.7.1 Specification . 279

20.7.2 The LatchRubette class . 279

20.7.3 Packaging a Plug-In . 284

20.8 Types of Module Morphisms . 285

20.9 The Rubette Java Interface . 287

20.10 Example LatchRubette class . 288

20.11 Keyboard Shortcuts . 291

20.12 Rubato Scheme . 292

Part I

Concepts and Theory

Chapter 1

Overview of Music Theories

The title of this chapter states Music Theories in the plural and not the
singular Music Theory or Theory of Music. Probably no single theory will
ever cover the enormous richness of music in the world, although there have
been promising endeavors to extract certain principles common to most.
This is a boon and a bane at the same time: a bane, because all attempts at
reducing music to a single set of rules have failed so far to satisfy adherents
of universally valid systems; a boon, since it relieves music lovers from the
potential danger of the dreaded reduction of music to a mere system of rules,
devoid of all mysticism cherished by many. Even putting aside all aspects
of the subjective, this state of affairs promises new vistas for future musical
activity, since the reservoir of new and modified theories for generating new
music seems inexhaustible.

The role of theory in the analysis as well as the production of music has
however not been the same at all times in the history of music. To better
understand how theories and what theories fit into contemporary music, it
is necessary to shed some light on the last few hundred years during which
music theories have been perceived as such by musicians.

It is necessary to restrict the discussion to theories about Western music.
Of course theories of music from other cultural environments such as India
exist and its literature is very broad indeed, but including it would by far
break the tight limits set by this text.

Certainly the most famous theory linking music and natural science known
from Antiquity is the description of music intervals using of chord ratios by
Pythagoras. However from the post-Antiquity treatise by Boethius through
the Middle Ages until 19th century, music theories were rather enshrouded
in the philosophical (or theological) frameworks of the day. Those parts
relevant to the analysis and composition of music did not much more than
describe the state of the art as it was a decade before the publication of the
treatises.

3

4 1 Overview of Music Theories

Thus the Gradus ad Parnassum by Johann Joseph Fux published in 1725
[25] laid out the rules of counterpoint, even if those rules did not accurately
describe the practice of most advanced contemporary composers, such as
Johann Sebastian Bach. This work, well used even into the present, also
illustrates features common to similar theoretical treatises: they delivered a
set of recipes justified by empirical or psychological phenomena, thus pro-
viding weak theories, even in comparison to the studies pursued by Greek
mathematicians.

The schema behind the history of these theories can be summarized in the
phrase: Theory follows Composition. There is hardly any theoretical pro-
posal that would provide the composer with new ways and guidelines to
drive his work. Therefore, it is mostly the case that “avant-garde” com-
posers, such as Beethoven in his late string quartets, produce the material
that musicologists try to put into theory after the event.

The beginning of the 20th century saw new developments of music the-
orists trying to give the various aspects of music, such as harmonic and
formal structure, a more exact and scientific character. This is certainly
connected to the rise of abstract mathematics in the 19th century, which
relies on new rigorous types of notation, as well as the use of diagrammatic
methods. Such theories include the Funktionstheorie by Hugo Riemann and
the structural theories by Heinrich Schenker.

During the second half of the 20th century, finally, modern mathematics
found its way into theoretical considerations of music [5]. Combinatorics is
seen as playing a major role throughout the history of musical composition.
Dodecaphonic composition and its generalization to serial techniques pro-
vide the telling example of this trend. Driven by the popularity of structural-
ist views, generative theories as they were first proposed by Noam Chomsky
for the formalization of language have been applied to musical form as well
[38].

This has been a breakthrough in that, for the first time, theories have been
devised not least with a view to provide new means for composition. Com-
posers start complementing their musical works by theoretical studies ex-
plicating the methods that led to their construction, for example Musiques
formelles (1962) by the Greek composer Iannis Xenakis [74]. Several other
eminent composers, such as Arnold Schoenberg, Ferruccio Busoni or Paul
Hindemith, have published theoretical works that give insight into their
works. It has eventually become possible to state that: Composition follows
Theory.

In the last decades, the role of mathematics in music has been on a steady
increase. The invention of digital computers in the late 1940s was soon
followed by the creation of music with the help of computers (for example
the famous Illiac Suite from 1957 by Hiller and Isaacson [31]) and along
with it the development of mathematical theories quite specific to musi-
cal applications. It was Milton Babbitt, Hillers teacher of composition at

1 Overview of Music Theories 5

Princeton University, who promoted the use of mathematics, its terminol-
ogy and, thus, scientific precision in studying theories of music. A music
theory should be objective and be stated as a body of definitions, axioms,
and theorems, just as in the case of other mathematical investigations. An
analogy can be made to the relation of physics to engineering: mathemat-
ical music theories play the role of physics, and musical composition the
role of engineering. It is obvious that without the theoretical work provided
by physics, engineering would be impossible, or, even worse, engineering
with a disregard of physics would result in bad work. Cautiously applying
the analogy, we would say that contemporary composition without regard
to mathematics results in bad music. . . .

Two types of composition by electronic means have been predominant. One
type is exemplified by the computer programs Project 1 (1964) and Project
2 (1966) developed by the composer Gottfried Michael Koenig. They imple-
ment composition algorithms and operate on the level of musical structure.
On the mathematical side, aleatoric and combinatorial methods play an
important role [36].

Another line of development involving the use of computers for musical
composition concerns the production of sound by means of digital process-
ing. In this case music is controlled on a very low level, effectively down
to the sound wave. Many parameters, which before were constrained by
acoustic instruments, become available. These parameters allow qualities
of sound never heard before and thus fruitful for new principles of compo-
sition. The pioneering work has flown into the MUSIC-N family of synthe-
sis languages, the prototype program MUSIC having been written by Max
Mathews in 1957 at Bell Labs [42]. The most recent descendant in the fam-
ily, widely used today on many computer platforms, is Csound [10].

The import from mathematics to musical theories comes from all domains
of abstract algebra, such as group theory. More recently, category theory has
provided comprehensive tools for both analysis and composition. Mathe-
matical studies have been conducted for fields such as counterpoint or the
theory of the string quartet. A main event in this direction has been the
publication of The Topos of Music by Guerino Mazzola [47], which uses
extensive knowledge from category theory to provide theoretical treatments
of a broad selection of branches in musical theory.

The mathematical approach to music analysis and composition also al-
lows new means for joining the musical past to the future. In accordance
with the idea of “analyse créatrice (creative analysis)” put forward by Pierre
Boulez [49], Guerino Mazzola undertook the ambitious project of a new
composition based on the analysis of the first movement of Beethoven’s
sonata op. 106 “Hammerklavier” [43]. The process involved the discovery
of mathematical principles buried in the piano sonata and the extraction
of significant parameters (“analysis”). The result is an analytical model. Af-
ter changing the analytical coordinates of this model using mathematical

6 1 Overview of Music Theories

transformations, the model was remapped to produce a new musical work
that fundamentally based on, but different from, Beethoven’s composition
(“creative”). The process itself is not entirely new, as similar principles have
been employed in a vague manner throughout the history of music. But the
mathematical approach, the exactness of the procedure, and the awareness
of its happening are aspects of a modern phenomenon and open new vis-
tas for future experimentation. The result of the project is the piano sonata
“L’Essence du Bleu” which has also been recorded [48].

The sonata has been constructed completely by hand, using the traditional
tools available to the composer and mathematician, such as pencil and
graph paper. To manage this kind of composition, computer software im-
plementations of the methods used would provide an ideal tool. The devel-
opment of such software is of paramount importance for future experimen-
tation in this direction. The RUBATO COMPOSER presented in this thesis
is the result of this insight. It is the attempt to bring the mathematical and
computational tools to a level that a composer is comfortable with. The
mathematics it is based on is category theory, specifically the category of
modules. Module theory is very important in mathematical music theory,
since it allows the representation of the common objects in music, such as
notes and chords, and the description of the usual transformations in the
theory of counterpoint and composition, such as transposition, inversion
and retrograde, among others. The theory of modules contains the com-
plete theory of linear algebra, and thus Euclidean spaces, which ensures the
availability of general geometric manipulations at the hands of the com-
poser. Categorical considerations led to the development of a very general
data model, called denotators, which is used throughout RUBATO COM-
POSER for the transport of concepts and information.

Chapter 2

The Representation of Music

Theories, whether in mathematics or in music, presuppose a world of ob-
jects that we can be theorize upon. In mathematics the notion of objects is
quite clear, from obvious number domains to high dimensional manifolds.
Musical objects, if we may call them thus, are much more elusive. Identify-
ing the musical objects would be nothing less than determining what music
ultimately is. So far, no one really knows what happens in the brain when
listening to music, what symbolic structures are generated and and how
they are processed. The psychology of music does make some inroads, but
without effective results useful to the theorizing we have in mind. We are
left with the only possibility of grasping musical objects, namely proposing
more or less formal schemes for the representation of music, preferably in
a mathematical context.

Such a representation should allow the manipulation required by the vari-
ous methods of musical composition as well as analysis. Certainly, no one
format will be able to provide all of this, and, in effect, the formats devel-
oped during the centuries of written music targeted overlapping, but differ-
ent, uses.

2.1 Types of Representation

To bring a little order into the various types of representation, it is helpful
to borrow from the ontology and semiotics of music. The cube shown in
figure 2.1 is an abstract model of locating music within our knowledge sys-
tem. It considers multiple aspects, which may or may not enter in a specific
type of representation. The levels of reality discriminate between the layers
where music takes place. The physical and mental levels will be of primary
concern in this context. The communication coordinate of the cube refines
these layers and relates the musical work to its creator and the recipient.

7

8 2 The Representation of Music

This coordinate is usually not made explicit in the representations that we
discuss below. The third coordinate semiosis deals with the semiotics of
music. It provides the theory of how expressions (significants) are related
to the meaning (significate) of a musical work. The act of relating signif-
icants to significates is called signification. The process of signification is
the attempt of extracting the content from a representation. An in-depth
discussion of musical ontology can be found in [47].

Physical

Psychological

Mental

Reality

Creator Work Listener
︸ ︷︷ ︸

Communication

Significant
Signification

Significate

Sem
iosis

Fig. 2.1: Topographic cube of musical ontology, after [47].

The semiotic status of the various types of music representation is very dif-
ficult to assess, since we have to deal with two types of information. On the
one hand, there is explicit information (or extension). It is the kind of infor-
mation that can be controlled by rules, many of which have even been cast
into formal clothes, for example counterpoint rules according to Fux [25] or
harmonic theories such as Schoenberg’s [63]. On the other hand, there is
implicit knowledge (or intension). This knowledge cannot be formalized. It
depends on environment, personal preferences, historical background, etc.

2.2 Symbolic Representation of Music 9

[2]. The consequence of this is that, whatever representation we use, the
act of signification, and therefore the relation of expressions to meanings,
varies from individual to individual, thus making impossible the “ultimate”,
completely unambiguous representation.

It has already been hinted that the levels of physical and mental realities
play an important role in the representation of music. A physical represen-
tation aims to reproduce music in terms of sound, often as low-level as air
pressure changes as in the physical theory of sound. The theories of sound
production as in the acoustics of instruments also belongs to this class.
Common formats of representation include analog tape recordings or dig-
ital audio file formats such as MP3. It is the quality of sound rather than
of music that is transported in this kind of representation. It has been the
means of old to preserve musical performances and to archive oral, non-
written music common in ethnomusicologist studies. More recently, audio
has been supplemented by video, thus capturing an important part of per-
formance, namely the gestures involved in making music.

However important the interest in the other types of representation is, we
are going to concentrate on symbolic representations, which try to capture
the mental aspects.

2.2 Symbolic Representation of Music

The printed score is the most famous of all representations. Developed from
a gestural language, the neumatic notation used in manuscripts of early
church music (see figure 2.2 for an example) [19], it was extended and re-
fined over ten centuries to the point of integrating a wealth of information
for the musical performer. In its original form it reached its peak during the
first decade of the 20th century, when composers such as Gustav Mahler
determined every aspect of the performance of their works using extremely
fine-grained instructions affecting even single notes. Some structure is in-
dicated and beginning in the Romantic era, content is hinted at by often
poetic directions (for example, très doux et pur in figure 2.3 showing the
beginning of Scriabin’s 10th Sonata).

Other printed representations targeted at specific instruments and types
of music have been devised, such as the various tablatures for lute and
keyboard music, very common from the 15th to the 18th centuries [23].

Along with common notation, many composers from the second half of
20th century devised notations of their own to communicate the intent
of their works or even specific to a single work [17]. In many cases these
graphic “scores” have been considered as works of art in themselves.

10 2 The Representation of Music

Fig. 2.2: Neumatic signs describing the melodic motion above the lines of text
(St. Gall, 10th century).

�
� �

16
9

16
9

�

�

����
�� �

�
�
�

�

� � ��
�

�
�très doux et pur� � �	 �� � �

�� ��

�
�

� ���� ����

� � ��
�

�
� �� ��

�

� 	
Moderato

�

�
p

�

���
Fig. 2.3: The first four bars of Alexander Scriabin’s Sonata No. 10, Op. 70, in
traditional notation.

2.2.1 Electronic Scores

Early in the development of computers, handling of music has already been
a hot topic. Thus it comes as no surprise that many efforts have been made
to bring musical scores into electronic form. One aim has been, of course,
to follow the way of digital book production and make the production of
musical scores entirely digital. A whole industry is devoted to the devel-
opment of so-called music notation software, and with it, the invention of
electronic score representations.

Two examples of quite different approaches shall illustrate this idea. The
popularity of XML has had its effect on music representation too, and we
now have a large number of XML based markup languages for music, such
as SMDL (Standard Music Description Language) [65], NIFF XML (Nota-
tion Interchange File Format), and many more.

One particular scheme is MusicXML [59], which has become the lingua
franca for the interchange of electronic scores between many notation pro-

textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:68:75
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:43:9:16
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:39:46
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:45:7:14
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:18:25
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:49:56
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:45:9:16
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:28:55:62
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:28:60:67
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:44:1:8
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:23:30
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:46:9:16
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:28:53:60
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:45:15:22
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:27:37:44
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:28:1:8
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:28:6:13
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:46:7:14
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:28:62:69
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:35:47:54
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:28:72:79
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:44:9:16
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:44:7:14
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:20:27
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:35:45:52
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:51:58
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:28:35
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:35:29:36
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:9:16
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:5:12
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:35:5:12
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:35:15:22
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:27:1:8
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:35:11:18
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:43:1:8
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:35:13:20
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:45:1:8
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:46:1:8
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:35:37:44
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:53:60
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:44:15:22
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:53:60
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:34:41
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:12:19
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:43:7:14
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:28:44:51
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:31:53:60
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:35:17:24
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:27:3:10
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:28:41:48
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:35:21:28
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:27:35:42
textedit:///home/gemi/Projects/Rubato/diss/diss_2006/images/scriabin_lily.ly:35:39:46

2.2 Symbolic Representation of Music 11

grams, e.g., Finale and Sibelius. As is often the case with XML, even a small
musical fragment generates a rather large instance of MusicXML. Therefore
only part of the music from figure 2.3 as coded in MusicXML is shown in
figure 2.4.

<?xml version="1.0"?>
<score-partwise>
<part-list>
<score-part id="right">
<part-name>Right</part-name>

</score-part>
<score-part id="left">
<part-name>Left</part-name>

</score-part>
</part-list>
<part id="right">
<measure number="1">
<attributes>
<divisions>960</divisions>
<time>
<beats>9</beats>
<beat-type>16</beat-type>

</time>
<clef>
<sign>G</sign>
<line>2</line>

</clef>
</attributes>
<note>
<rest/>
<duration>480</duration>
<voice>1</voice>
<type>eighth</type>

</note>
<note>
<pitch>
<step>D</step>
<octave>5</octave>

</pitch>
<duration>240</duration>
<voice>1</voice>
<type>16th</type>

</note>
<note>
<pitch>
<step>A</step>
<alter>1</alter>
<octave>4</octave>

</pitch>
<accidental>sharp</accidental>
<duration>1440</duration>
<voice>1</voice>
<type>quarter</type>
<dot/>

</note>
</measure>

</part>

<part id="left">
<measure number="1">
<attributes>
<divisions>960</divisions>
<time>
<beats>9</beats>
<beat-type>16</beat-type>

</time>
<clef>
<sign>F</sign>
<line>4</line>

</clef>
</attributes>
<note>
<tie type="start"/>
<pitch>
<step>F</step>
<alter>1</alter>
<octave>4</octave>

</pitch>
<accidental>sharp</accidental>
<notations>
<tied type="start"/>

</notations>
<duration>1440</duration>
<voice>1</voice>
<type>quarter</type>
<dot/>

</note>
<note>
<tie type="stop"/>
<pitch>
<step>F</step>
<alter>1</alter>
<octave>4</octave>

</pitch>
<notations>
<tied type="stop"/>

</notations>
<duration>720</duration>
<voice>1</voice>
<type>eighth</type>
<dot/>

</note>
</measure>

</part>
</score-partwise>

Fig. 2.4: MusicXML representation of the fragment figure 2.3.

12 2 The Representation of Music

These XML based formats are mainly intended for interchange and are not
meant to allow authoring on the source itself. In contrast, there is a school
of typography that favors textual representation of typesetting instructions
that are compiled into high quality renderings. The main representative is
Donald Knuth’s TEX, which allows for score typesetting using the add-on
package MusixTEX. Modern descendants are ABC [70] and the powerful
score typesetting software Lilypond [28]. The score fragment in figure 2.3 is
effectively the result of compiling the code in figure 2.5. Observe how Lily-
pond tries to find out a good layout without the author providing precise in-
structions. The implementation of such layout software requires advanced
research and techniques in computer science [27] and the construction of a
fully functional and complete software application is a major undertaking.

\score {
\new PianoStaff <<

\time 9/16
\new Staff {

\clef treble
{

r8^\markup{\bigger\bold{Moderato}}\p\<
d’’16^\markup{\italic{tres doux et pur}}\(
bes’4.\! ~ bes’8[beses’16] ges’4.\)
<<

{
r8. r8 c’’’16-.(
<d’’’ fis’’ c’’>8\arpeggio)-.--\laissezVibrer
r16

}
\\
{

bes’16\>\([c’’ beses’] as’4.\! ~ as’4. ~ as’8.\)
}

>>
}

}
\new Staff {

\clef bass
{

ges’4.(ges’8.)
es’4. ~ es’8. ~
es’4. ~ es’8. ~
es’4. ~ es’8.

}
}

>>
}

Fig. 2.5: The Lilypond source code used to generate figure 2.3.

2.2 Symbolic Representation of Music 13

All of these types of representation, different as they may be, serve the main
purpose of the visual layout of traditional printed scores. Machine-based
manipulation and feature extraction for analysis would be hard, if not im-
possible. This is to be expected, since they adopt all of the idiosyncrasies of
human music notation accrued over the centuries.

Some attempt to address the strictly musical aspect and allow the export of
a MIDI version of their data (Lilypond for example), but for a more deeply
musical understanding, other representations are needed.

2.2.2 MIDI

The Musical Instrument Digital Interface (MIDI) was first proposed in
1981 as a means for driving electronic instruments, such as synthesizers.
The standard [55] comprises three parts:

1. a specification for a serial cable and plug that establishes the physical
connection of electronic devices;

2. a protocol that defines the possible events that are sent over the cable
in real-time and are to be interpreted by the receiving instrument (where
each instrument is assigned a channel number);

3. a file format that integrates such events, provides them with the times of
their occurrence, and is enriched with so-called meta events for changing
tempi and selecting programs (a means for choosing among several sound
types provided by a device).

The most important type of event is Note on/off. The Note on event signifies
the pressing of a key. This event requires as parameters the channel (which
is the address of the receiving device), the pitch (where the number 60 is
defined to be c4), and the velocity, which essentially corresponds to the
loudness. The Note off event analogously signifies the release of a key.

Figure 2.6 lists the MIDI events generated from a simple rendering of the
fragment in figure 2.3.

MIDI does show its age though, in particular in its hardware limitations. Its
affinity to keyboard instruments makes it cumbersome to control musical
events that are not based on semitone scales, the workaround being to make
use of meta events such as pitch bending. Nevertheless, MIDI can be put to
good use when it comes to create fragments of musical performance, since
the file format is probably the most common of all among music software
and therefore is a sure value for interchanging data. We will come back later
to this use when discussing the RUBATO COMPOSER software.

14 2 The Representation of Music

Time Event Channel Pitch Velocity

0 Tempo Meta Event Meta Event MSPQ = 1666666
0 Program 1 program = 0
0 Note on 1 66 100
240 Note on 1 74 100
360 Note off 1 74 127
360 Note on 1 70 100
1080 Note off 1 66 127
1080 Note on 1 63 100
1320 Note off 1 70 127
1320 Note on 1 69 100
1440 Note off 1 69 127
1440 Note on 1 66 100
2160 Note off 1 66 127
2160 Note on 1 70 100
2280 Note off 1 70 127
2280 Note on 1 72 100
2400 Note off 1 72 127
2400 Note on 1 69 100
2520 Note off 1 69 127
2520 Note on 1 68 100
2760 Note on 1 84 100
2880 Note off 1 84 127
2880 Note on 1 72 100
2880 Note on 1 86 100
2880 Note on 1 78 100
3120 Note off 1 72 127
3120 Note off 1 86 127
3120 Note off 1 78 127
4320 Note off 1 68 127
4320 Note off 1 63 127

Fig. 2.6: A sequence of MIDI-events. In this example the unit of time is defined
to be 1/480 of a MIDI quarter note. The Tempo event specifies the duration of a
MIDI quarter note as MSPQ, which means milliseconds per quarter note.

2.2.3 Musical Representation Languages

Musical notation and instrument control languages are ultimately surface
representation and not conducive to analytical research. They require a mu-
sical mind to make sense of the analytical signification looming behind the
music they describe. On the other end of the spectrum are the languages
explicitly designed for the purpose of unfolding analytical structure. These
languages are invented in the context of the development of software for
musical composition and analysis.

In the world of computer-based manipulation of symbolic data, the pro-
gramming language LISP assumes a prominent place. Predominantly used

