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Preface

The Integrated Computational Materials Engineering (ICME) thrust is an inte-
gral part of the Materials Genome Initiative (MGI) that has been launched to
advance multi-scale materials modeling for addressing complex materials structure-
property-performance-processing relationships. It is viewed as the integration of
computational tools for materials discovery, design, and sustained development,
with information technologies, component design systems, and manufacturing
process simulations, to foster improved product performance, manufacturability,
and sustainability. The ICME thrust is aimed at novel innovations in fundamental
science and engineering of materials for providing significant tools that can bridge
the gap between materials engineering and component design. Robust theoretical,
computational, and experimental methods pertaining to materials, performances,
and process models are emerging as a consequence of this thrust. High-performance
structural applications that have been hitherto restricted to available structural
materials with limited ability to integrate new materials into the design process are
now opening up to new possibilities with the advances made in this thrust.

While structural engineering has greatly benefited from the introduction of
effective computational tools, such as finite element, finite difference, and boundary
element methods, advances in computational and experimental methods have
been more piecemeal for the materials community. This is due to the underlying
complexities in processing-structure-property relationships for different classes of
materials like metals, polymer matrix composites, and ceramics. The materials
science paradigm for structural materials relates the internal structure, produced
through processing, to the desired properties and response. The ICME approach
has helped create synergistic advances in materials research, blending advanced
computational mechanics with materials characterization, multi-scale modeling,
and experimental property acquisition, providing a strong computational backbone
for integrating computational tools and data handling methods with high pedigree
experimental methods for accelerating materials transition into component design
to achieve improved product manufacturability, performance, and sustainability.
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viii Preface

In the spirit of fostering foundational advances in computational and experimen-
tal methodologies supporting the ICME theme, the Materials and Manufacturing
Directorate of the Air Force Research Laboratory at Wright Patterson Air Force
Base and the Air Force Office of Scientific Research jointly initiated the Center
of Excellence on Integrated Materials Modeling (CEIMM) in 2012, with Johns
Hopkins University as the lead institution. Other major partners were the University
of California at Santa Barbara and the University of Illinois at Urbana-Champaign.
CEIMM was focused on the development of fundamental science and common
threads of computational and experimental methods pertaining to structural mate-
rials. The central philosophy was to overcome limitations of empiricism-based
phenomenological models through physics-based 4-D spatiotemporal multi-scaling
approaches, transcending materials classes and boundaries between computational
materials science and computational mechanics. Research in CEIMM has developed
novel theoretical, computational, and experimental methods for advancing the
state of the art in science and engineering of ICME-related fields without being
material-specific. This includes mechanical modeling of high-temperature metals
and composite materials including predicting spatial and temporal response and
properties like strength, crystal plasticity, fracture, and fatigue. Significant advances
have been made in computational multi-scale modeling, materials characterization,
and experiments to efficiently describe the evolution of heterogeneities and outlier
structures and their effect on the balance of structural properties. A suite of methods
and models have been developed for two classes of structural materials, namely,
nickel-based superalloys and epoxy-matrix carbon fiber composites. The unifying
platform is accomplished through the incorporation of fundamental physics-based
multi-spatial and temporal scale modeling, in lieu of conventional empiricism.

This book discusses significant research advancements in ICME that have
taken place under the aegis of CEIMM. It includes contributions from other
thought leaders in the field, who are leading researchers in ICME from prominent
academic institutions and government laboratories. It also introduces theoretical,
computational, and experimental methods, advancing the state of the art in science
and engineering of the ICME fields for structural materials. A special focus is on
two structural materials listed below:

1. Ni-based superalloys, e.g., René 88DT, characterized by polycrystalline
microstructures with sub-grain heterogeneities in the form of secondary γ − γ ′
phases;

2. Polymer matrix composites with carbon fibers in epoxy matrix.

Four themes are broadly addressed in this book. They are:

• Multi-scale Data Acquisition, Characterization, and Image-Based Virtual Mod-
els: This introduces methods of acquiring high-fidelity materials microstructural
data and methods of advanced microstructural characterization and addresses the
generation of three-dimensional statistically equivalent virtual models.
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• Physics-Based Multi-scale Model Development: The development of image-
based micromechanical computational models with morphological and crys-
tallographic details is discussed. The models represent dominant deformation
and failure mechanisms at each scale. Comprehensive methods of identifying
representative volume elements (RVEs) based on microstructure and materials
response or properties are detailed. Associated boundary conditions for RVEs
with non-uniform microstructures are derived. Hierarchical multi-scale models
for connecting mechanisms at different scales are discussed. Spatial scales
encompass atomistic scales, mesoscales of coarse-grained models and discrete
dislocations, and microscales of polyphase and polycrystalline microstructures.

• Experimental Methods for Constitutive Models and Failure Processes: Novel
experiments for aiding the development of computational models, with infor-
mation on mechanisms and data for calibration and validation are addressed.
Experiments characterize relevant properties and microstructural responses over
a range of operating conditions.

• Probabilistic Modeling and Uncertainty Quantification: This discusses proba-
bilistic models accounting for stochastic distributions of materials microstructure
and properties.

The relations between microstructural morphology, crystallography, and
mechanisms to the materials response at different scales are investigated.

This book is a collection of 14 chapters that discuss aspects of ICME develop-
ments, ranging from physics-based multi-scale computational methods to experi-
mental data acquisition and uncertainty quantification. The first eight chapters deal
with experiments and modeling of polycrystalline alloys, with a focus on Ni-based
superalloys. Chapter 1 details methods of 3D microstructural data acquisition for
predicting monotonic and cyclic properties of superalloys. It provides information
on the distribution of important structural features, namely, precipitates, annealing
twins and grains. Data structures and workflow tools for generating and analyzing
materials data in an ICME context are discussed in Chap. 2. Chapter 3 details funda-
mental aspects of statistically equivalent virtual microstructures and microstructure
and property-based statistically equivalent representative volume elements (M-
SERVE and P-SERVE) of Ni-based superalloys at multiple scales. The two specific
scales considered are the sub-grain scale of intragranular γ − γ ′ microstructures
and the polycrystalline scale of grain ensembles with annealing twins. Chapter 4
provides an overview of micro-tensile experiments and characterizations for the
superalloy René 88DT. A computational micromechanics model of the polycrys-
talline superalloys application to Inconel 718 is presented in Chap. 5. A combination
of simulations and tests, together with computational homogenization strategies,
is used to predict the mechanical behavior of these superalloys. A comparison
of deterministic and non-deterministic calibration methods for crystal plasticity
model parameters is made in Chap. 6. Chapter 7 reports on the soft-coupled linkage
between a macroscale damage model and mesoscale calculations of a suite of
polycrystal instantiations of tantalum. A macroscale model is used to represent a
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tantalum on tantalum plate impact experiment and predict the point in time in the
loading profile when porosity is likely to initiate. Chapter 8, the last chapter in the
category, projects a framework for quantifying effects of characterization error on
the predicted local elastic response in polycrystalline materials.

Chapter 9 presents a unique materials agnostic data-driven framework to develop
structure-property linkages and addresses curation of materials’ knowledge from
the available data sets in computationally efficient manner to extract and use
the processing-structure-property relationships. Chapters 10 through 13 focus on
the development of ICME-related techniques for polymer matrix composites.
Chapter 10 provides a review of multi-scale modeling efforts involving molecular
dynamics modeling of epoxy and epoxy-based composites for structural, ther-
mal, mechanical, and interfacial properties. In Chap. 11, a novel microstructural
statistics-informed boundary condition has been developed for statistically equiv-
alent representative volume elements (serve) of polydispersed elastic composites.
Chapters 12 and 13 relate to transverse failure of unidirectional composites,
including sensitivity to interfacial properties and geometric modeling. Chapter 14,
the final chapter, deals with the challenges in modeling dynamic behavior of
granular media, reactive powder mixtures, energetic and composite materials, and
multiphase materials. It discusses possible ways of exploring topology, property
contrasts, and microstructural morphology to link dynamic response to micro- and
mesoscale behavior.

It is our expectation that this book will address many of the current gaps in the
ICME theme and will be a leading resource for practitioners of ICME. The materials
presented in this book will enable researchers in academia, government labora-
tories, and industries to comprehend and approach ICME-related issues involved
in predicting materials performance and failure with a focus on the structure-
materials interaction. The book is expected to be an important scientific compilation
of high value to the ICME community, especially in mechanical engineering,
materials science and engineering, aerospace engineering, civil engineering, and
other disciplines. We gratefully acknowledge the research support from the Air
Force Office of Scientific Research (Program Managers Drs. Fariba Fahroo and
Ali Sayir) and the Air Force Research Laboratories (Chief Scientists Dr. Barry
Farmer and Timothy J. Bunning). This work would not have been possible without
the financial and technical support of Johns Hopkins University and the Air Force
Research Laboratory’s Materials and Manufacturing Directorate. Chris Woodward
recognizes the insightful discussions with Dr. Jeff Bauer during the conceptual
phases of the center and the significant contributions and guidance of Dr. Tim
Breitzman during the first 2 years of the project.

We, the editors, would like to extend our sincere thanks and appreciation to all
the contributing authors of this volume for embracing our vision and providing
excellent state-of-the-art articles on different topics in the general field. We are
also thankful to the Springer editorial staff for their support with the production
of this book. Somnath Ghosh expresses his love and deep appreciation to his wife,
Chandreyee, for her constant encouragement and support throughout this project.
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Acquisition of 3D Data for Prediction
of Monotonic and Cyclic Properties
of Superalloys

McLean P. Echlin, William C. Lenthe, Jean-Charles Stinville,
and Tresa M. Pollock

1 Superalloys and Fatigue

Turbine engines have continuously improved in performance and efficiency due
to advances in materials and coatings, combined with the application of advanced
thermomechanical, heat transfer, and aerodynamic design methodologies. Turbine
disks are among the most safety-critical components in an aircraft engine and have
therefore been the subject of extensive development and characterization studies
[1–3]. Polycrystalline nickel-base superalloys are the typical material of choice
for turbine disks due to their high fatigue resistance and ultimate tensile strength
and good thermomechanical and thermochemical stability at elevated temperatures
[4, 5]. Powder metallurgy processing is used to produce disk components with
highly controlled grain size distributions, controlled inclusion (carbide and nitride)
content via powder stock filtering, and near net shape part geometries [1–5].
Inclusion content and grain structure have both been shown to be influential in the
fatigue life of disk alloys [6, 7]. An improved predictive capability of the mechanical
performance of these alloys is required to enhance life prediction and reliability as
well as guide the development of new alloys and processing paths.

Predicting fatigue properties of superalloys is particularly challenging, due to
the localized character of the plasticity during cycling and its strong dependence
on material structure. The schematic in Fig. 1 shows the microstructure of a
polycrystalline superalloy, containing annealing twins as well as the L12 γ

′
precipitate strengthening phase, and the approximate length scales at which they
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2 M. P. Echlin et al.

Fig. 1 Turbine disks (left) are often made from supersolvus nickel superalloys, such as René
88DT. This class of polycrystalline superalloys used for disks have microstructure at various length
scales from precipitate structure (10’s–100’s nm as shown on the right) to twin related domain
structure (10’s–100 μm as shown in the center) with grains containing multiple, fine twinned
structures of varying sizes that are crystallographically related to the parent material. They are
strengthened by L12 γ

′ precipitates, which can exist over a range of length scales, depending on
the processing conditions. Populations of secondary and tertiary γ ′ particles exist within the γ
matrix phase (right), with the secondary particles typically being around 100 nm in diameter in
René 88DT

exist. The fraction of �3 annealing twin boundaries, a product of the processing
path, can approach 46% by 2D measurement [8] or 70% by 3D measurement of
the total boundary length fraction [9]. There is relatively limited crystallographic
texture in these materials as a result of powder metallurgy processing or forging
under nominally superplastic conditions. Depending on the alloy composition and
processing route, populations of secondary and tertiary γ ′ particles exist within the
γ matrix phase. The γ ′ precipitates inhibit the passage of dislocations through
the γ matrix [5, 10], by requiring them to either shear through or bow around
the ordered precipitates or cross-slip to continue to glide, effectively strengthening
the material up to the solvus temperature of the precipitates. Typically, powder
metallurgy consolidated components are oil quenched from near 1150 ◦C and then
aged at 760 ◦C to produce a volume fraction near 40% of secondary and tertiary γ ′
precipitates [3].

In powder metallurgy superalloys such as René 88DT [1–3] cracks initiate in
large grains that are in the tail of the size distribution and contain favorably oriented
annealing twin boundaries [8, 11, 12] or at nonmetallic inclusions [7, 13, 14].
Though the annealing twin boundaries form during thermomechanical processing,
the mechanisms by which they form are still not understood well enough to fully
control their size and distribution. The relatively small grain size combined with
moderate levels of L12 ordered precipitates imparts yield strengths above 1 GPa [4].
The relatively small grain size also limits the maximum length over which strain
localization and slip events can occur over [6, 15, 16], before impinging on the
adjacent high angle grain boundary, causing dislocation pileups.
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Fatigue cracks typically initiate at the “weakest link” of the material structure.
Rigorous models for fatigue thus require knowledge of the volume of the material
that must be interrogated to capture the “rare” combinations of material structure
that result in early strain localization and subsequent crack initiation [6, 7]. This,
in turn, requires three-dimensional information on the distribution of important
structural features: precipitates, annealing twins, grains, and in some cases carbides,
nitrides, and oxides.

Nickel-base superalloys used for disks have microstructure at various length
scales from precipitate structure (10’s–100’s nm) to twin related domain structure
(10’s–100 μm) with grains containing multiple, fine twinned structures of varying
sizes that are crystallographically related to the parent material.

2 Importance of 3D Data

Many materials can be characterized using targeted 2D sections to analyze the
microstructure, especially when the microstructure is isotropic and its features can
be captured with well-known distributions [17, 18]. However, 2D inferences about
structure and crystallography will be incomplete when investigating materials with
rare features or heterogeneously distributed microstructure [17, 19, 20].

Nickel-base superalloys used for disks have microstructure at various length
scales from precipitate structure (10’s–100’s nm) to twin related domain structure
(10’s–100 μm) with grains containing multiple, fine twinned structures of varying
sizes that are crystallographically related to the parent material. Full 3D characteri-
zation is required to quantify the geometrical characteristics of the twins as well as
to capture the five grain boundary parameters (three orientation parameters and two
boundary normal parameters) [21–23]. The twin structures, which have been shown
to be critical for the localization of strain [15, 16] and eventually the initiation of
fatigue cracks [8, 11, 12], can be thin compared to the grain structure (μm thick)
and may or may not extend across the entire grain.

A range of 3D tomography techniques have emerged in recent years that utilize
femtosecond pulsed lasers [24, 25], mechanical polishing [26–29], broad ion beams
[30], focused ion beams (FIB) [31–33], plasma FIBs [21, 34], and microtomes or
serial block face SEM imaging [35, 36] to remove material in a serial sectioning
approach. If only grain information is needed, then a combination of near-field [37–
39] and far-field X-ray imaging allows for direct, nondestructive 3D characterization
[40–44]. With current data collection and reconstruction methods, the X-ray
diffraction methods have difficulty reconstructing crystallographic features that are
below 5–10 μm in size, including fine twin structure, and also with crystals with
preexisting strain gradients such as in samples that have been plastically deformed.
Here we focus on serial sectioning approaches, due to the presence of thin micron-
scaled annealing twins which are challenging to characterize with X-ray techniques.

Manual serial sectioning polishing techniques are effective for relatively coarse
sectioning resolutions, especially if fiducial depth markers are incorporated; how-
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ever much more advanced robotic polishing systems have been developed for
optical imaging [45] and electron microscopy [26–29]. Currently, cm3 volumes have
been captured using the AFRL/RoboMet LEROY sectioning systems, as well as
entire turbine blade components [46] using manual polishing approaches. For SEM
imaging combined with robotic serial sectioning, the vacuum cycling and sample
transfer time sets a limit on the minimum cycle time, which makes experiments
with limited SEM imaging more time-consuming compared to other electron-optics-
based serial sectioning systems.

FIB and Xe-plasma FIBs (PFIB) are rather limited with respect to the total
accessible volume that can be analyzed as well as the types of material and speed
at which materials can be sectioned. Microtomes have been shown to be useful,
but primarily for biological samples and soft structural materials such as aluminum
and polymers, and microanalytical analysis is challenging due to the extreme
mechanical deformation imparted at the cut face.

X-rays have proven difficult to access large volumes of material with μm-scale
microstructural features, although the techniques for software reconstruction are
rapidly improving allowing access to deformed metallic samples [47, 48] and in situ
dislocation imaging [49]. The advantages of X-ray diffraction contrast tomography
(DCT) and the TriBeam femtosecond laser-based technique can be found elsewhere
[50]. The resolution of synchrotron DCT and the high energy diffraction microscopy
(HEDM) have dramatically improved [47], especially due to new reconstruction
algorithms that identify grains and diffraction spots. These codes are actively being
improved by the growing community of DCT users and scientists, facilitated by the
open repositories at the beamlines and the open-sourced nature of the code. Routine
access to synchrotron facilities can be challenging and requires careful preparation,
motivating efforts for the development of a range of lab-based X-ray techniques that
can be made available more broadly and with short notice. The available lab-scaled
DCT systems [51, 52] are most effective for in situ experiments on materials with
coarser grains than those accessible by synchrotron X-ray diffraction experiments
and mostly for undeformed samples; however the reconstruction codes and scanning
speeds are improving rapidly.

3 The TriBeam

The TriBeam microscope, shown in Fig. 2, is a modified FEI/Thermo Fisher
Scientific Versa 3D focused ion beam scanning electron microscope (FIB-SEM)
designed for high-speed, low-damage, bulk (mm3-scaled) serial sectioning [24, 25].
A femtosecond laser beam has been incorporated into the FIB-SEM chamber
with scanning lens, optics, and an alignment system. Multimodal data may be
collected between material removal steps using a range of detectors for grain orien-
tation information (electron backscatter diffraction – EBSD), chemical information
(energy dispersive X-ray spectroscopy – EDS), atomic density (backscatter electron
detector), and topographical and morphological information (secondary electron
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Fig. 2 The TriBeam microscope. The optics and beamline is contained within the red box on the
right. The electron and focused ion beam are indicated. The femtosecond laser and beamline are
directly aligned into the FIB-SEM via a coupled floating optics table

detector). Previous studies have shown that the damage resulting from femtosecond
laser ablation is limited to dislocation injection in structural materials [53, 54]. To
date, a wide range of materials including metals [55–57], ceramics [50], composites
[58], and semiconductors [59] have been imaged in 3D using the TriBeam. The
stock mechanically driven microscope stages are used to position the sample into
the scanned laser beam (down to 0.5–1 μm slice thickness), or custom attocube
piezoelectric stages can be utilized for slice thicknesses below 1 μm. However, the
reliability and stiffness of the stock microscope stages are superior.

A typical 3D nickel dataset contains several hundred slices, with each slice
requiring 1–100 min for acquisition, depending on the imaging modalities, imaging
resolution, and whether FIB cleanup is required. The femtosecond laser ablation
material removal step (1–3 min) is a very small fraction of the total slice time, which
is typically dominated by the resolution at which EBSD data is gathered and whether
FIB cleanup is performed.

The data in Table 1 shows the slice times that would be required for a hypothetical
collection of a 1 mm3 volume TriBeam dataset, with and without FIB cleanup
and with 1 μm cubic voxels. Ga+ FIB cleaning requires approximately 1 min per
every 20,000 μm2 at glancing angles between 3 and 10◦. The time required for
cleanup does not change with glancing angle because the FIB dosage per area
is held constant, resulting in increased dwell times at more glancing FIB beam
angles. Experiments that do not require a FIB cleanup step reduce the total cycle
time significantly, as shown in the last column in Table 1. Materials that do not
require FIB cleanup in order to obtain acceptable quality EBSD patterns generally
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Table 1 Times and percent of total cycle time required for imaging steps, material removal, stage
moves, and surface cleanup that would be required during a 1 mm3 experiment with 1 μm cubic
voxel resolution

Operation Slice time (min) % of total cycle time % of total cycle time (no FIB)

EBSD 30 33.7 76.9

Glancing FIB 50 56.1 -

SEM imaging 3 3.4 7.7

Fs laser Abl. 3 3.4 7.7

Stage moves 3 3.4 7.7

have good thermo-mechanical properties [53, 54]. Furthermore, new TriBeam
instruments [60] that are based on a Xe-plasma FIB (PFIB) platform can perform
focused ion beam cleanup with 30 kV and μA’s of current, reducing the cleanup
time by at least a factor of 20×. However, PFIB ion columns are still 3–4 orders
of magnitude slower in terms of material removal speeds than a femtosecond laser,
affirming the need for a multibeam system. The EBSD collection times described
can easily scale to be much longer if the mapping resolution in x and y is finer than
1μm over a 1 mm2 mapping area.

The latest CMOS-based EBSD cameras can collect patterns at rates up to 3000–
5000 points per second. These cameras attain high pattern collection speeds through
binning modes, whereby the full resolution of the camera is reduced by averaging
the intensity from square regions of pixels. Binning increases the electron collection
per binned pixel area and therefore allows for the reduction in exposure times,
increasing pattern collection speed. Furthermore, the binned pattern resolutions
are reduced, expediting the transfer rates between the hardware and decreasing
computational times for indexing. These very high speeds are useful for gathering
information suitable for grain mapping of single phase materials that diffract well,
using Hough-based EBSD pattern indexing [61, 62]. In practice, larger EBSD
pattern sizes are required for gathering more detailed information than grain maps
while using Hough indexing, such as subgrain misorientation gradients, multiple
phase indexing, and overlapping pattern information near grain boundaries. In
this case, a longer exposure time and lower binning modes are necessary (slower
collection speeds) for enhanced EBSD band contrast, typically yielding speeds of
500–800 EBSD patterns collected per second (50–80% of maximum). For instance,
in order to collect a 3D EBSD dataset with well-defined subgrain orientation
gradients, then the EBSD collection rate would likely need to be under 1500 pps.
New methods such as dictionary indexing (DI) [63–67] and EMSphInx [68] are
able to index EBSD patterns with relatively small resolutions (72 × 72 pixels),
high noise, and low band contrast while maintaining angular orientation indexing
resolution of 0.2–0.8◦ [69]. DI is substantially slower than Hough indexing however,
currently limiting it to be an offline post-processing indexing mode, although the
emerging EMSphInx method promises to increase the indexing speeds substantially
[68].
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The following actions may be incorporated into the workflow for a 3D exper-
iment, depending on the data necessitated: femtosecond laser ablation and pole
piece shutter insert/retract, glancing angle FIB milling (cleanup), stage movements,
precision stage positioning by fiducial alignments with image processing scripts,
detector insert/retracts (EBSD, EDS, BSE), EBSD data collection, EDS mapping,
SE/BSE image collection, image processing for on-the-fly feature identification and
FIB cleanup, automated electron beam tilt alignment and current measurements, and
laser beam stability and power measurements. The example data collection times in
Table 1 have been simplified to the primary detector imaging modes, laser ablation,
FIB cleaning, and stage movements. More details about the TriBeam tomography
setup can be found here [24].

3D datasets of nickel disk material were collected at different resolutions, as
shown in Fig. 3, in order to characterize the γ ′ precipitates, high-resolution twin
structure regions, and large volumes for grain and twin scale information. The
resolution and sizes of the TriBeam datasets are summarized in Table 2.

A γ ′ precipitate dataset was collected from René 88DT using a FEI Quanta 3D
DualBeam FIB-SEM with a ion beam sectioning resolution of 20 nm. A total volume
of 5 × 4.25 × 4.5 μm was reconstructed from 221 slices. BSE images from this
dataset were segmented in the ImageJ/FIJI software package [70] and reconstructed
to measure precipitate characteristics in this René 88DT polycrystalline superalloy.

Fig. 3 TriBeam and FIB serial section datasets were collected from Ni-base disk material at
resolutions to capture (left) large volumes of grain and twin data, (center) a high-resolution dataset
containing detailed twin boundary regions, and (right) the γ ′ precipitates. The precipitate dataset
coloring is showing individual precipitates as different random colors, whereas the grain and twin
scale datasets are colored by IPF coloring

Table 2 Resolution, size, and dimensions of René 88DT 3D EBSD serial section datasets
collected using the TriBeam microscope

Name Resolution (μm) Size (voxels) Dimensions (μm)

Twin scale 0.10 × 0.10 × 0.50 742 × 993 × 140 60 × 70 × 70

Grain scale 0.30 × 0.30 × 0.75 802 × 482 × 199 240 × 145 × 130

Crack 0.30 × 0.30 × 0.75 429 × 757 × 127 120 × 200 × 90

Inclusion 0.55 × 0.55 × 0.75 534 × 802 × 143 400 × 600 × 105
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Fig. 4 The 3D EBSD data that is produced by the TriBeam requires a number of post-
processing steps, which are described schematically here. Each dataset requires somewhat different
parameters; however the core structure of that processing is relatively constant

A series of 3D EBSD TriBeam datasets were collected at various resolutions
and at targeted features, including a fatigue crack initiation site and from a region
where high-resolution digital image correlation (DIC) strain information had been
collected [15, 71]. The characteristics of these René 88DT datasets are listed in
Table 2, as well as an identifying name.

The workflow for acquiring, reconstructing, and analyzing 3D datasets is shown
in Fig. 4. Briefly, this workflow includes defining data collection parameters that
are closely tied to an understanding of the problem to be solved. These parameters
include the 3D resolution necessary to capture the relevant microstructural features,
which imaging modalities are required, or very specific parameters such as EBSD
dwell time for pattern diffraction quality or potential pseudosymmetry complica-
tions [72–74]. Reconstruction of the 3D data happens next in the workflow, where
a finalized dataset will be defined for analysis. Slice alignment, data cleanup, image
segmentation, artifact removal, and distortion correction may be performed during
this step. Data cleanup and artifact removal are always rooted in an understanding
of the material via detailed 2D characterization. For instance, a minimum grain
size filter may be applied if it is well-known that grains of a very small size do
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not exist. Analysis of the data may be either based on voxelized or meshed data
formats, depending on whether access to microstructural descriptors is desired, or
direct property simulation. However, some microstructural descriptors may require
meshed data formats as well, such as grain boundary inclinations.

For TriBeam EBSD datasets, DREAM.3D [75] is used to perform all reconstruc-
tion steps except for distortion corrections, which are performed using the methods
described for strontium titanate [50] and a nickel superalloy [76]. The reconstruction
steps can be clustered into four major groups: slice alignment, data cleanup, grain
or feature segmentation, and artifact removal.

Although generating a preliminary dataset reconstruction is trivial with modern
software tools, creating a high-quality reconstruction is still a significant challenge
and often requires more time than dataset collection. Procedures that reduce
noise or improve data quality greatly enhance the ability to extract high fidelity
information from the dataset for modeling. Alignment and segmentation are by far
the most difficult tasks. Alignment can be particularly challenging for small datasets
where the morphology of a few dominant features dictates shifts computed during
registration. Creating sample pedestals like the one fabricated using wire EDM
shown in Fig. 5 that are small enough to collect data from the entire sample surface
makes alignment significantly easier, and recovering the original sample shape
provides a simple validation of alignment quality [20]. The pedestal fabrication
procedure is a coarser scaled equivalency to the FIB procedures pioneered by Uchic.
In many instances the pedestals used to collect data shown here were of the order
of 1 × 1 mm in cross section by several mm in height. Orientation gradients and
systemic misindexing due to pseudosymmetry are the most serious challenge for
segmentation, when present.

Dataset volumes can become many terabytes in size, mostly due to the collection
of raw EBSD patterns (EBSPs) or full spectrum EDS maps. The approximate scale

Fig. 5 Wire EDM is often
used to create custom
mm-scaled sample pedestals
for targeted and untargeted
TriBeam sectioning. The
roughly 10 μm EDM
heat-affected zone is
mechanically polished away
before TriBeam experiments
or is located adjacent to a
region where data will not be
collected. The pedestal
geometry is used in order to
reduce material redeposition
during laser ablation and to
prevent shadowing of the
EBSD signal at high sample
tilt angles
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Fig. 6 Data usage is shown for the imaging modalities available during a hypothetical TriBeam
experiment all scaled up for collection of 1 mm3 of material at 1 μm cubic voxel size. Raw EBSPs,
indexed EBSD maps, and EDS data take up the majority of the total data stored, with the rest being
attributed to SEM images and metadata

of data usage is described in Fig. 6, where imaging data takes up much less than
1%, and the balance being EBSD indexed data, raw EBSPs, and full spectrum
EDS data. EBSPs are stored so that re-indexing of the grain orientations can be
performed with EMsoft dictionary indexing [63–66, 77], EMSphInx [68], or with
higher-resolution Hough indexing parameters in the EDAX software OIM Analysis
[78, 79]. EBSPs can scale to much larger sizes, depending on the EBSD detector
resolution and whether a binning mode is used. For instance, using a EDAX Hikari
camera to capture EBSPs at each mapping location can generate patterns of size
76 × 76 pixels for 6× binning (as shown in the example in Fig. 6) up to full
resolution patterns of roughly 480 × 480 pixels. Full spectrum EDS mapping also
can require massive amounts of data storage, with 1000 channels typically recorded
per 10 kV electron beam energy. Depending on the data type chosen to store the
arrays and assuming 30 kV electron accelerating voltage, 3–12 KB is consumed for
each spectrum, resulting in 3–12 GB per mm2 mapping area at 1 μm resolution. The
challenges with gathering such large full spectrum EDS data and detailed analysis
are described in more detail elsewhere [80]. During an experiment, metadata such
as the detector configurations and calibrations, stage position logs, hardware error
logging (microscope, femtosecond laser and output, optics beamline, EBSD, EDS),
and script parameters are all stored in HDF5 data containers similar to those
formulated by Jackson and De Graef [81].
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4 Targeted 3D Data

The microstructural configuration (neighborhood) is demonstrated to be influential
to the initiation of fatigue cracks [6, 7, 9, 82]. A postmortem analysis of fatigue
samples is a good way to identify systematic microstructural characteristics that
result in fatigue cracks. Samples of René 88DT were cycled with fully reversed
loading and then interrupted at 80% lifetime (R = −1, 1 Hz, peak load 758 MPa)
such that the regions surrounding the initiated fatigue cracks could be investigated.
Previous work has shown that this polycrystalline superalloy spends much of its life
(80%) initiating cracks [82], before they propagate into the next few grains and then
begin short crack-type growth.

A dataset was gathered in the TriBeam system from a region where a typical
fatigue crack had initiated. The FIB was used to clean a 250-μm-wide region after
femtosecond laser ablation using a 15 nA, 30 kV Ga+ beam at an angle of 3◦ to
the surface. Although EBSD maps containing high-quality diffraction patterns are
obtainable from the laser-ablated surface in René 88DT, FIB cleaning was still
performed in order to guarantee that small and thin twin features (<1 μm) were
well resolved. The total collection time per slice was 53 min, with 28 min EBSD
collection, 20 min FIB, and the balance stage movements and SEM imaging. The
dataset is comprised of 127 slices collected at a 0.75 μm slice thickness and 0.3 μm
EBSD resolution.

Both the 3D fatigue crack location and the microstructural neighborhood at the
surface and subsurface were reconstructed. Twin boundaries are visible adjacent to
the crack initiation location in Fig. 7, as expected based on the room temperature

Fig. 7 A region containing a crack (a) was identified and a targeted 3D dataset collected beneath
(b) in order to investigate the microstructure and local loading conditions leading to failure. The
3D dataset is 200 × 120 × 90 μm with a 0.75 μm slice thickness and 0.3 μm EBSD resolution.
The crack initiating twin related domain (c) and the crack path (d) are shown along with the
microstructure surrounding the crack path (e)
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Fig. 8 (Left) reconstruction of a targeted TriBeam dataset containing the grain structure surround-
ing a nonmetallic inclusion (center) and a volume mesh of the inclusion for use in finite element
modeling (right)

fatigue crack initiation criterion developed previously for polycrystalline superal-
loys [9, 82]. Briefly, this criterion predicts crack initiation in highly loaded grains
(large Schmid factor) where the slip trace is parallel to a large twin boundary, and
the elastic mismatch between the twin and parent grain are large.

Nonmetallic inclusions have been shown to initiate cracks in polycrystalline
nickel superalloys, particularly at elevated temperatures (400–650 ◦C) during high
cycle fatigue at stresses near 768–965 MPa [6, 7]. The crystallographic configuration
surrounding an inclusion, particularly in the vicinity of peak stress concentrations, is
of particular importance to the localization of strain and eventually the initiation of
cracks [6, 7, 13, 14, 83]. A targeted 3D dataset was collected for a volume containing
a crack initiating nonmetallic inclusion, shown in Fig. 8. The inclusion was volume
meshed according to the details in [84], and mechanical loading was simulated using
Abaqus. Direct comparisons between the simulation and DIC strain measurements
showed good qualitative agreement, particularly when the interface between the
matrix and inclusion is considered to be debonded [83]. The DIC measurements
capture the localization of strain into bands along twin boundaries, whereas the
elastic regime Abaqus simulations show a continuum representation. The exact
details of this comparison can be found elsewhere [83, 84].

While not discussed here, the third phase of the workflow is analysis of the 3D
dataset. This often requires development of algorithms and specialized routines to
extract information from the dataset. Given the size of these datasets, it should
be emphasized that manual analysis of features is rarely feasible. In addition to
traditional stereological measurements, 3D data enables calculations not possible
in 2D. Some unique 3D measurements are well established but nontrivial, e.g.,
degree of coherence of the twins in these René 88DT datasets requiring careful
surface meshing to measure boundary normals [9, 84]. Significant capacity for
novel analyses also exists, e.g., characterizing twin related domains via connectivity
networks.
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5 Future Needs

The most obvious limitation of the TriBeam approach, like most other 3D tech-
niques, is the cost and time required for acquisition and reconstruction of the
dataset. Crystallographic orientation mapping in SEM is usually performed via
EBSD, which has seen recent speed improvements with the replacement of CCDs
with CMOS cameras into standard phosphor-optics-type setups. It is likely that rates
will continue somewhat with direct electron (DE) detectors, which may also have
the advantage of enhanced electron sensitivity. We expect these CMOS and DE
systems combined with emerging indexing algorithms [63–66, 68, 77] will decrease
collection times and increase data mapping quality. The other significant time
restriction is (if necessary) the glancing angle surface cleaning of the femtosecond
laser-ablated surfaces. Currently the TriBeam uses a Ga+ FIB with 65 nA beam
current. Xenon plasma FIBs are available and have been integrated into a new
prototype TriBeam [60] to produce currents up to 20 times higher than a Ga+ FIB
[85], which can scale to a similar 20× surface cleanup rate increase, depending on
the material.

Data sharing, provenance, and portability have become a key issue for the
large-scale and collaborative efforts required to tackle scientific problems with 3D
data. A new software and data infrastructure, BisQue [86–88], has been useful for
addressing the data challenges and providing a platform on which data versions can
be synchronized between collaborative institutions and parallelized, parameterized
processing of data workflows is possible.

Data merging from various modalities including HR-DIC, synchrotron X-ray
DCT, and TriBeam tomography is challenging due to the complex distortions
associated with each experimental method. For instance, SEMs can have spatial
distortions and drift distortions from the electron optics and sample charging effects
[71, 89]. New algorithms are being developed to perform and address data merging
including those used for combining synchrotron diffraction contrast tomography
and TriBeam tomography [50] and a generalized multimodal data merging approach
using an evolutionary optimization machine learning algorithm [76].

Furthermore, developments in digital image correlation (DIC) via high-
resolution DIC and Heaviside-DIC [90] and coupling with EBSD data are being
used to predict strain localization, slip transmission across boundaries, and how
strain can create “microvolumes” [91], where non-Schmid-type loading conditions
are imposed on adjacent grains across a grain boundary. Opportunities for the
targeted investigation of the influence of the subsurface 3D grain structure on strain
localization and transmission phenomenon are also emerging.

At the precipitate scale, the glide of dislocations that locally shear precipitates
results in strain localization along twin boundaries [15, 16, 71, 92, 93]. These are
ultimately sites for crack initiation, and their intersection with grain boundaries
dominates the early stages of crack growth [6, 12, 94–98]. The new 3D characteri-
zation capabilities described here, in combination with multiscale plasticity models,
ultimately enable much higher fidelity prediction of properties such as yield strength


