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Preface 
to Volumes III and IV 

The first two volumes of this monograph can be regarded as an expansion 
and updating of my book "Linear partial differential operators" published 
in the Grundlehren series in 1963. However, volumes III and IV are almost 
entirely new. In fact they are mainly devoted to the theory of linear 
differential operators as it has developed after 1963. Thus the main topics 
are pseudo-differential and Fourier integral operators with the underlying 
symplectic geometry. The contents will be discussed in greater detail in the 
introduction. 

I wish to express here my gratitude to many friends and colleagues who 
have contributed to this work in various ways. First I wish to mention 
Richard Melrose. For a while we planned to write these volumes together, 
and we spent a week in December 1980 discussing what they should 
contain. Although the plan to write the books jointly was abandoned and 
the contents have been modified and somewhat contracted, much remains of 
our discussions then. Shmuel Agmon visited Lund in the fall of 1981 and 
generously explained to me all the details of bis work on long range 
scattering outlined in the Goulaouic-Schwartz seminars 1978/79. His ideas 
are crucial in Chapter XXX. When the amount of work involved in writing 
this book was getting overwhelming Anders Melin lifted my spirits by 
offering to go through the entire manuscript. His detailed and constructive 
t::riticism has been invaluable to me; I as weil as the readers of the book 
owe him a great debt. Bogdan Ziemian's careful proofreading has eliminated 
numerous typographical flaws. Many others have also helped me in my 
work, and I thank them all. 

Some material intended for this monograph has already been included in 
various papers of mine. Usually it has been necessary to rewrite these 
papers completely for the book, but selected passages have been kept from a 
few of them. I wish to thank the following publishers holding the copyright 
for granting permission to do so, namely: 
Marcel Dekker, Inc. for parts of [41] included in Section 17.2; 
Princeton University Press for parts of [38] included in Chapter XXVII; 
D. Reidel Publishing Company for parts of [ 40] included in Section 26.4; 
John Wiley & Sons lnc. for parts of [39] included in Chapter XVIII. 
(Here [N] refers to Hörmander [N] in the bibliography.) 

Finally I wish to thank the Springer-Verlag for all the support I have 
received during my work on this monograph. 

Djursholm in November, 1984 Lars Hörmander 
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Introduction 
to Volumes III and IV 

A great variety of techniques have been developed during the long history 
of the theory of linear differential equations with variable coefficients. In 
this book we shall concentrate on those which have dominated during the 
latest phase. As a reminder that other earlier techniques are sometimes 
available and that they may occasionally be preferable, we have devoted the 
introductory Chapter XVII mainly to such methods in the theory of second 
order differential equations. Apart from that Volumes III and IV are in­
tended to develop systematically, with typical applications, the three basic 
tools in the recent theory. These are the theory of pseudo-differential oper­
ators (Chapter XVIII), Fourier integral operators and Lagrangian distri­
butions (Chapter XXV), and the underlying symplectic geometry (Chapter 
XXI). In the choice of applications we have been motivated mainly by the 
historical development. In addition we have devoted considerable space and 
effort to questions where these tools have proved their worth by giving 
fairly complete answers. 

Pseudo-differential operators developed from the theory of singular in­
tegral operators. In spite of a long tradition these played a very modest role 
in the theory of differential equations until the appearance of Calder6n's 
uniqueness theorem at the end of the 1950's and the Atiyah-Singer-Bott 
index theorems in the early 1960's. Thus we have devoted Chapter XXVIII 
and Chapters XIX, XX to these topics. The early work of Petrowsky on 
hyperbolic operators might be considered as a precursor of pseudo-differen­
tial operator theory. In Chapter XXIII we discuss the Cauchy problern 
using the improvements of the even older energy integral method given by 
the calculus of pseudo-differential operators. 

The connections between geometrical and wave optics, classical me­
chanics and quantum mechanics, have a long tradition consisting in part of 
heuristic arguments. These ideas were developed more systematically by a 
number of people in the 1960's and early 1970's. Chapter XXV is devoted to 
the theory of Fourier integral operators which emerged from this. One of its 
first applications was to the study of asymptotic properties of eigenvalues 
(eigenfunctions) of higher order elliptic Operators. lt is therefore discussed in 
Chapter XXIX here together with a number of later developments which 
give beautiful proofs of the power of the tool. The study by Lax of the 
propagation of singularities of solutions to the Cauchy problern was one of 
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the forerunners of the theory. We prove such results using only pseudo­
differential operators in Chapter XXIII. In Chapter XXVI the propagation 
of singularities is discussed at great length for operators of principal type. lt 
is the only known approach to general existence theorems for such oper­
ators. The completeness of the results obtained has been the reason for the 
inclusion of this chapter and the following one on subelliptic Operators. In 
addition to Fourier integral operators one needs a fair amount of symplectic 
geometry then. This topic, discussed in Chapter XXI, has deep roots in 
classical mechanics but is now equally indispensible in the theory of linear 
differential operators. Additional symplectic geometry is provided in the 
discussion of the mixed problern in Chapter XXIV, which is otherwise 
based only on pseudo-differential operator theory. The same is true of 
Chapter XXX which is devoted to long range scattering theory. There too 
the geometry is a perfect guide to the analytical constructs required. 

The most conspicuous omission in these books is perhaps the study of 
analytic singularities and existence theory for hyperfunction solutions. This 
would have required another volume - and another author. Very little is 
also included concerning operators with double characteristics apart from a 
discussion of hypoellipticity in Chapter XXII. The reason for this is in part 
shortage of space, in part the fact tliat few questions concerning such operators 
have so far obtained complete answers although the total volume of results 
is large. Finally, we have mainly discussed single operators acting on scalar 
functions or occasionally determined systems. The extensive work done on 
for example first order systems of vector fields has not been covered at all. 



Chapter XXV. Lagrangian Distributions 
and Fourier Integral Operators 

Summary 

In Section 18.2 we introduced the space of conormal distributions associated 
with a submanifold Y of a manifold X. This is a natural extension of the 
classical notion of multiple layer on Y. All such distributions have their 
wave front sets in the normal bundle of Y which is a conic Lagrangian 
manifold. In Section 25.1 we generalize the notion of conormal distribution 
by defining the space of Lagrangian distributions associated with an arbi­
trary conic Lagrangian Ac T*(X) '- 0. This is the space of distributions u 
such that there is a fixed bound for the order of ~ '". PNu for any sequence 
of first order pseudo-differential operators ~ •... , PN with principal symbols 
vanishing on A. This implies that WF(u)cA. Symbols can be defined for 
Lagrangian distributions in much the same way as for conormal distri­
butions. The only essential difference is that the symbols obtained are half 
densities on the Lagrangian tensored with the Maslov bundle of Sec­
tion21.6. 

In Section25.2 we introduce the notion of Fourier integral operator; this 
is the class of Operators having Lagrangian distribution kernels. As in the 
discussion of wave front sets in Section 8.2 (see also Section 21.2) it is 
preferable to associate a Fourier integral operator with the canonical re­
lation c(T*(X)'-0) x (T*(Y)'-0) obtained by twisting the Lagrangian with 
reflection in the zero section of T*(Y). We prove that the adjoint of a 
Fourier integral operator associated with the canonical relation C is as­
sociated with the inverse of C, and that the composition of operators 
associated with C1 and C2 is associated with the composition C1 o C2 when 
the compositions are defined. Precise results on continuity in the H<•) spaces 
are proved in Section 25.3 when the canonical relation is the graph of a 
canonical transformation. We also study in some detail the case where the 
canonical relation projects into T*(X) and T*(Y) with only fold type of 
singularities. 

The real valued C"' functions vanishing on a Lagrangian c T*(X) '-0 form 
an ideal with dim X generators which is closed under Poisson brackets. We 
define general Lagrangian ideals by taking complex valued functions in­
stead. With suitable local coordinates in X they always have a local system 
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of generators of the form 

x1-aH<e)fae1, j=1, ... ,n, 

just as in the real case. The ideal is called positive if Im H;:;;! 0. This condition 
is crucial in the analysis and tums out to have an invariant meaning. 
Distributions associated with positive Lagrangian ideals are studied in Sec­
tion 25.4. The corresponding Fourier integral operators are discussed in 
Section 25.5. The results are completely parallel to those of Sections 25.1, 
25.2 and 25.3 apart from the fact that for the sake of brevity we do not 
extend the notion of principal symbol. 

25.1. Lagrangian Distributions 

According to Definition 18.2.6 the space Im(X, Y;E) of conormal distribution 
sections of the vector bundle Eis the largest subspace of ""H:~m-n/41 (X,E), 
n=dimX, which is left invariant by all first order differential operators 
tangent to the submanifold Y. It follows from Theorem 18.2.12 that it is even 
invariant under all first order pseudo-differential operators from E to E with 
principal symbol vanishing on the conormal bundle of Y. The definition is 
therefore applicable with no change to any Lagrangian manifold: 

Definition 25.1.1. Let X be a coo manifold and Ac T*(X)-..... 0 a coo closed 
conic Lagrangian submanifold, E a C"" vector bundle over X. Then the 
space Im( X, A; E) of Lagrangian distribution sections of E, of order m, is 
defined as the set of all ue!')'(X,E) suchthat 

(25.1.1) 

for all N and all properly supported L1e'P 1(X;E,E) with principal symbols 
L~ vanishing on A. 

The following Iemma allows us to localize the study of Im( X, A; E). 

Lemma2S.1.2. lf uelm(X,A;E) then WF(u)cA, and Auer(X,A;E) if 
Ae'P0(X;E,E). Conversely, uelm(X,A;E) if for every (x0 ,e0)eT*(X)-.....O one 
can find Ae'P0(X;E,E) properly supported and non-characteristic at (x0 ,e0 ) 

suchthat Auelm(X,A;E). 

Proof lf (x0 ,e0)!1A we can choose L1, ... ,LN in (25.1.1) non-characteristic in 
a conic neighborhood r and conclude that ueH::; in r if s<N -m-n/4. 
Hence WF(u)nF=0. To prove the second statement we observe that 

L 1 ... LNAu=L1 ... LN_ 1ALNu-L1 ... LN-t [A,LN]u. 
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Here [A,LN]e1J1°(X;E,E) and LNuelm(X,A;E) by Definition25.1.1. By in­
duction with respect to N we conclude that 

L1 •.. LNAUE 00H:~m-n/4)(X, E) 

for all properly supported Ae IJI0 (X; E, E) and Lie IJI 1(X; E, E) with principal 
symbols vanishing on A. To prove the converse we choose B according to 
Lemma 18.1.24 so that (x0 ,e0 )f/:WF(BA-I). Thus (x0 ,e0 )f/:WF(BAu-u), 
and since BAuer(X,A;E) it follows that 

L L ooHloc 
1 ··• Nue <-m-n/4) 

if L 1, •.• ,LN satisfy the conditions in Definition25.1.1. Hence (25.1.1) is 
fulfilled so uer(X, A; E). 

Remark. So far we have not used that A is Lagrangian. However, if (25.1.1) 
is fulfilled we have [Li,Lk]Nue 00H:~m-n/4l(X,E) for any N, so WF(u) is 
contained in the characteristic set of [L i• LJ by the first part of the proof. 
Hence WF(u) cannot contain an arbitrary point in A unless A is involutive. 
The hypothesis that A is Lagrangian means that A is minimal with this 
property, or altematively that we have a maximal set of conditions (25.1.1) 
which do not imply that u is smooth. 

Lemma 25.1.2 reduces the study of distributions u e Im(X, A; E) to the case 
where WF(u) is contained in a small closed conic neighborhood fO of some 
point (Xo, eo)EA, and supp u is close to Xo. In that case Definition 25.1.1 is 
applicable even if A is just defined in an open conic neighborhood r;_ of JO, 
for only the restriction of the principal symbol of Li to r;_ is relevant. More 
generally, given a conic Lagrangian submanifold A of the open cone r;_ 
cT*(X)'-0 weshall say that uelm(X,A;E) at {x0 ,e0)e.T;. ifthere is an open 
conic neighborhood f'oci;_ of (x0 ,e0) suchthat Auer(X,A;E) for all prop­
erly supported Ae IJI0 with WF(A)cfO; it suffices to know this for some such 
A which is non-characteristic at (x 0 , e0 ). 

In view of Theorem 21.2.16 we may thus assume now that X= 1R" and 
that A = {(H'(e), e); ee1R"' 0} where H is a real valued function in 
C00(1R."'-0) which is homogeneaus of degree 1. We may also assume that E 
is the trivial bundle, which is then omitted from the notation. 

Proposition25.1.3. If ue/~omp(R",A), A={(H'(e),e); eeJR."'-0}, then u(e) 
=e-iHWv(e), Iei > 1, where vesm-n/4{1R."). Conversely, the inverse Fourier 
transform of e-iHv is in Im(JR.",A) if vesm-n/4(R."). 

Proof Choose xe Cg'(JR.") equal to 1 in a neighborhood of 0 and define h by 
h=xfl0 where H 0 ={1-x)H. Then fl 0 -heff' (see the proof of Theo­
rem7.1.22), so H 0 -he.9'. Thus heS1 has the principal symbol H, so it 
suffices to prove the result with H replaced by h. Set hi(e)=oh(e>Joei. The 
operator hi(D) is convolution with the inverse Fourier transform of hi so it 



6 XXV. Lagrangian Distributions and Fourier Integral Operators 

is properly supported. Hence 

(25.1.2) 

for [x1-hiD),DJ=il51" so commuting the factors D11 we obtain a sum of 
products of operators of the form (x1-h1(D))D" to which (25.1.1) is applica­
ble. Recalling the definition of «> H< -m-n/41 we obtain 

J 1~11 ll<-D1 -h1(~))'"u(~Wd~~C .. R2<m+n141 ; R>1, lßl=lal. 
R/2<i~i<2R 

With the DOtation u(e)=e-ilt((lv(e) this means that 

f ·lel21a11Dav<e>l2de ~ CaR2C.m+n/4>. 
R/2<IEI<2R 

lf vR<e) = v(R~)/R"'-•14 then 

J ID'"vR(~)I 2 d~ ~ c .. 
i< 1(1< 2 

which by Lemma 7.6.3 gives uniform bounds for D'"vR when 1~1 = 1, that is, 
bounds for ID'"v(~)l (1 + IWiczl-m+n/4. The argument can be reversed to prove 
the last Statement in the proposition, for the passage from the operators 
(x1-h1(D))D" to the generat operators in (25.1.1) can be made by the argument 
preceding Theorem 18.2. 7. 

A slight modification of the proof gives precise information about the 
smoothness of elements in r. We state the result directly in a global form. 

1beorem25.1.4. If Uel"'(X,A) and UeH<sol at (x0 ,~0)eA, then Uel"(X,A) at 
(xo.~o) if ~t+s0 +n/4>0. 
Proof. Choose Ae IJ'0(X) properly supported, non-characteristic at (x0 , ~0), so 
that AUeH<•o>· By Lemma25.1.2 we have AU er. We can choose Aso that 
WF(AU) is in a small conic neighborhood of (x0 ,~0). Writing u=AU we 
conclude that it is sufficient to prove that uel" if ueH<sol and u satisfies the 
hypotheses in Proposition25.1.3. With the notation used there we have 

f IDavR<e>l2 de ~Ca, J lvR<e>l2 de ~ cR-2C.&o+m+n/4>. 
i<IEI<2 i<IEI<2 

Let 1~1=1 and set VR,(('1)=vR(~+'7/R")R_.",2 where 15>0. Then 

J ID,.VR.(('7Wd'7~C,.R-21«1", J IVR,(('7Wd'7~cR-2(so+m+n/41. 
1111<1 1111<1 

Now we use the Sobolev inequality 

ID11 V(O)I 2 ~ C11 J <I ID'"+ 11 v(")I 2 +1V<'7W)d'7 
1111< 1 lczl-• 

where s>n/2. This is somewhat more generat than (7.6.6) but follows from 
the same proof. Taking s solarge that s15>s0 +m+n/4 we obtain 

IDII VR,((O)I ~ C' R -(so+m+n/41, 
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ID~'vR(e)l ~ C' R"ln/2+lllll-l•o+m+n/4l, 

ID~'v(e)l ~ C'lei.J(n/2+1111>-l•o+n/2+1111>, 

For every p we can choose {J so that the exponent is smaller than J.l.-n/4 
-lßl, and then we obtain ves"'-"14, hence uel"'. 

We shall now prove that elements in l"'(X, A) can also be represented by 
means of arbitrary phase functions fjJ parametrizing A in the sense of 
Definition 21.2.15. At first we assume that fjJ is non-degenerate. 

Proposition 25.1.5. Let f/J(x, 0) be a non-degenerate phase function in an open 
conic neighborhood of (x0 , 00 )eR" x (lR. N ......_ 0) which parametrizes the 
Lagrangian manifold A in a neighborhood of (x0 ,e0); e0 =f/J~(x0 ,0o), 
f/J6(Xo,Oo)=O. If aesm+(n-lN)/4(RnxRN) has SUpport in the interior of a 
sufficiently small conic neighborhood r of (x0 , 00 ), then the oscillatory integral 

(25.1.3) u(x) =(2n)-ln+ lN)/4 J e1• 1"·9> a(x, O)dO 

defines a distribution ueJ~omp(R", A). lf A = {(H'(e), m as in Proposition 25.1.3 
then (for 1e1 > 1) 

(25.1.4) eiH(~) U(e}- (27t)"/4 a(X, 0) exi/4 sgn~ ldet cf>l-tesm-n/4-l 

where (x,O) is determined by f/J0(x,0)=0,f/J~(x,O)=e, and 

4> = (f/J~" f/J~9) 0 

<P~x lf>~s 

Here a(x,O) is interpreted as 0 if there is no such point in r. e'HI~>u(e) is 
polyhomogeneaus if a is. Conversely, every uel"'(X, A) with WF(u) in a small 
conic neighborhood of (Xo, eo) can, modulo C"", be written in the form (25.1.3). 

In the proof weshall need an extension of Lemma 18.1.18. 

Lemma 25.1.6. Let I} c R."' x (]RN' " 0), j = 1, 2, be open conic sets and Iet 
t/1: I; -+Ti be a C"" proper map commuting with multiplication by positive scalars 
in the second variable. lf aeS"'(1R."' x RN2) has support in the interior of a 
compactl y based cone c Ti then a 0 "'E sm(R n I X 1R NI) if the composition is 
defined as 0 outside I;. 

Proof. The support of a o t/1 belongs to a compactly based cone c I; where 
t/J(x,e)=(y,tl) implies IWC<I'71<Ciel. The hypothesis on a means that 

ID~."a(y,t'7)1 ~ C,.t"', 1/C <1'71 < C. 

Since ao t/l(x, te)=a(., t.)o t/J(x, e) by the homogeneity of t/1, we obtain 

ID:.e<a o 1/J)(x, tel I ~ C~t"', 1e1 = 1, 

by using Leibniz' rule. This proves the Iemma. 
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Proof of Proposition25.1.5. By hypothesis 4>~(x0 ,00)=~0 =t=O, so the oscii­
Iatory integral (25.1.3) is weil defined. u has compact support if r has a 
compact base. Weshall use the method of stationary phase to evaluate 

(25.1.5) eiH(~) u(~) = (2n)-(n+ lN)/4 H ei(,P(x,B)+H(~)- (x.~)) a(x, 0) dx dO. 

The exponent has a critical point if 

1/>~(x,O)=~. 4>~=0, 

which by hypothesis means that (x, ~)E A, hence that x = H'( ~). The critical 
point is non-degenerate. In fact, the maps 

C={(x,O); 4>~=0}3(x,0)1-+(x,ljl~)EA and A3(x,~)1-+~ 

are diffeomorphisms. Hence C 3 (x, 9) 1--+ 4>~ is a diffeomorphism, so dlj>~ = dlj>~ 
=0 implies dx=d0=0. The matrix (JJ is therefore non-singular. If we divide 
(multiply) the first n (last N) rows (columns) by 101 we see that det (JJ is 
homogeneaus in 9 of degree n- N. Hence a(x, 0) ldet (JJI-t .is in sm-"14 in a 
conic neighborhood of C. By Lemma25.1.6 this remains true for the restric­
tion to C regarded as a function of ~-

It follows from Theorem 7.7.1 that there is a constant C such that for 
any N 

(25.1.6) IJ e'<.P<x.B)-(x.~)) a(x, O)dxl ~ C N(l~l + 191)-N, 

if 101 > Cl~l or 1~1 > CIOI. 

In fact, (1/>(x,O)-(x,O)!(I~I+IOI)=f(x) is homogeneaus in (~,8) of degree 0 
and bounded in C00• lf (x, O)esupp a we have 

lf'(x)l ~(1~1- C 1 101)/(1~1 + 101)~~ 

lf'(x)l ~(C2 101-I~I)/(I~I + 101) > C2/2 

if 101/lel is small, 

if 1~1/191 is small. 

We can therefore apply Theorem 7.7.1 with w =1~1 +101. 
Choose xeCg'(JR..N'-0) equal to 1 when 1/C<IOI<C. By (25.1.6) the 

difference between eiH(~) U(~) and 

U(~)=(2n)-(n+2N)/4 H ei(,P(x,8)+H(~)-(x.~)) x(O/IWa(x, O)dx dO 

is rapidly decreasing as ~-+oo. Set l~l=t, ~/t=11 and replace 9 by tO. Then 

U(~)= (2n)-(n+ lN)/4 H eit(,P(x,B)+H(>r)-(x.~)) x(O) a(x, tO)tN dx dO. 

Here the exponent has only one critical point in the support of the inte­
grand and it is defined by 1/>~(x, 9) = 0, 1/>~(x, 0) = '1· At that point 

ljl(x, 9) = (9, 1/>~(x, 0)) = 0, (x, 17) = (H'(17), 17) = H(17) 

so the critical value is 0. Using (7.7.13) we obtain an asymptotic expansion 
of U. Since x = 1 at the critical point, the Ieading term is 

(2 n)"/4 a(x, tlJ)t<N -n)/2 e"i/4sgnfll ldet (JJI- t, 
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that is, the term displayed in (25.1.4) in view of the homogeneity of det cp 
already pointed out. The k'h term will contain another factor t -k and a 
linear combination of derivatives of a(x, t 0) with respect to x, 0, so it is in 
S"'-"14 -k. In view of Proposition 18.1.4 it follows that we have an asymptotic 
series in the sense of Proposition 18.1.3, and this completes the proof of the 
first part of the proposition. 

To prove the converse it is by Proposition 25.1.3 sufficient to consider an 
element uEI"'(X, A) with v = i'ieiH ESm-n/4 having support in a small conic 
neighborhood of ~0 . Choose a co..o map (x, O)f-+t/J(x, O)ElR"' 0 in a conic 
neighborhood of (x0 , 00 ) such that t/1 is homogeneaus of degree 1 and t/J(x, 8) 
= ilcf>jax when ccf>!c8 = 0. Let 

ao(X, 8) = (2 n:) -n/4 V 0 t/J(x, A) e- ~i/4 sgn<l> ldet cJ>It ES"' +(n- lN)/4 

near C, and define u0 by (25.1.3) with a replaced by a0 . From the first part 
of the proposition it follows then that u- u0 E /"'- 1. Repeating the argument 
gives a sequence ajEsm+<n-ZNJ/4 -j suchthat u-u0 - ... -ujEI"'-j-t if uj is 
defined by (25.1.3) with a replaced by aj. If a is an asymptotic sum of the 
series I>j it follows that (25.1.3) is valid modulo C"". The proof is complete. 

We shall now examine what must be changed in the preceding argument 
if cf> is just a clean phase function. We still have (25.1.6) so only U( ~) is 
important. However, cf>(x, lJ) + H(l])- (x, IJ) does not satisfy the hypotheses 
in Theorem 7.7.6. We do know that (locally) 

C= {(x, 0); ocf>(x, 8)/clO=O} 

is a manifold of dimension e + n, where e is the excess, and that the 
composed mapC->A->IR": (x,O)f-+(x,cf>~)f-+c/>~ has surjective differential, 
hence a fiber C ~ of dimension e over IJ where x = H'(IJ). The critical points of 
cf>(x,O)+H(17)-(x,q) are defined by cf>~=O, cf>~=IJ, that is, (x,O)EC~, and dcf>~ 
=0, dcf>~=O precisely along the tangent space of C~. Note that we have 
fixed upper and lower bounds for 101 on C~ since lc/>~1 = l. We can split the 0 
variables into two groups 0', 0" so that the number of 8" variables is e and 
the projection C~3(x,0)f-+0" has bijective differential. Then dcf>~=O, dc/>~=0, 
d0"=0 implies dx=d0=0. Thus the Hessian of cf>(x,O)+H(rJ)-(x,IJ) with 
respect to (x, 0') is not 0, so the critical point on C~ when 0" is fixed is non­
degenerate. lf we change the definition of cp to 

cp = (cf>~x cf>~w) 
</J~. X 4>~· 8' ' 

an application of Theorem 7.7.6 to the integral U(e) with respect to the 
n + N - e variables x, (}' gives, when we integrate with respect to (}" after­
wards, 

eiH(~) i'i( ~)- (2 n:)•/4 -e/2 f t<N +e -n)/2 a(x, t 8) e"i/4sgn<l> ldet cJ>I- t d(J" ES"' +e/2 -n/4 -I. 

c, 
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Note that the order has increased by e/2 since the stationary phase evalua­
tion is applied to e variables less. For the same reason a factor (2nt12 is 
lost. If we introduce t8 as a new variable, noting that det ~ is homogeneaus 
of degree n- N + e now, we obtain 

Proposition 25.1.5'. Let 4> (x, 8) be a clean phase function with excess e in an 
open conic neighborhood of (x0 ,80)e:R."x(RN,O) which parametrizes the 
Lagrangian manifold A in a neighborhood of (Xo, eo); eo = t/J~(Xo, 8o), 
t/J~(Xo, 8o) =0. If aesm+(ll- 2N - 2 e114(:R. n X :R. N) has Support in the interior of a 
sufficiently small conic neighborhood r of (x0 , 80) then the oscillatory integral 

(25.1.3)' u(x)=(2n)-!"+ 2N-lel/4 J ei.;(x,Bla(x,8)d8 

defines a distribution uei~omp(JR", A). If A = {(H'<e), m as in Proposition 
25.1.3 then 

(25.1.4)' eiH(~) u<e) -(2n)"'4 J a(x, 8) e"i/4 sgn~ ldet ~~-! d8" ESm-n/4 - 1• 

Ce 

Here C~={(x,8); t/J~(x,8)=0, t/J~(x,O)=e}; 0=(0',0") is a splitting of the 0 
variables in two groups such that C ~3(x, O)t-+0" has bijective differential; and 

~ = (tP~x tP~8') 
t/J~'x t/J~'B' • 

Conversely, modulo coo every ueim(X, A) with WF(u) in a small conic neigh­
borhood of (x 0 , eo) can be written in the form (25.1.3)'. 

Remark. If feC00(Y) has a critical point at y0 eY then ldetf"(y0)1! trans­
forms as a density at y 0 • This is why in the standard stationary phase 
formula the density in the integrand is transformed to a scalar in the 
asymptotic expansion. lf on the other band f is critical on a submanifold Z 
c Y and is non-degenerate in transversal directions, then the square root of 
the determinant of the Hessian in transversal planes defines a density in the 
normal bundle. Dividing a density in Y by it gives a density on Z. This 
confirms theinvariant meaning of the integrand in (25.1.4)'. 

There is no difficulty in performing a change of local coordinates x in 
the representation (25.1.3) of an element in Im(X, A), so Proposition 25.1.3 

contains all that is needed to define a principal symbol isomorphism for Im 
extending Theorem 18.2.11. However, it is instructive to establish first a 
theorem on Iimits of elements in Im which connects the definitions in this 
section with those given in the linear case in Section 21.6. 

Proposition25.1.7. Let uei~omp(R",A), A={(H'(e).e), ee:R."'-0}, and set eiBu 
=(2n)"14 v, vesm-"14• If t/feC00(:R.") is real valued, t/l(x0)=0, t/l'(x 0)=~0 9=0, 

(x0 ,e0)eA, then as t-++oo 

(25.1.7) t-2m-n/2(ue-it2t/J)(:xo + x /t) - v(t2eo>t-2m+n/2u!.eo (x) --+ 0 in !?P', 
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where 

(25.1.8) u!o.~o(x)=(21t)- 3 "14 J exp iQ!o.~o(x, e>de, 
Q!o.~o(x, e)= (x, 0- (t/l"(x0)x,x)/2-(H"(eo)e, 0/2. 

Note that the factor t-"12 in the left-hand side of (25.1.7) means that 
ue_;,z~ is pulled back as a half density by the map xt-+x0 +x/t. The other 
factor t- 2"' reflects that u is of order m and is examined near the frequency 
r2eo· 

Proof of Proposition 25.1.7. By Fourier's inversion formula 

u(x) =(21t)-3n/4 J ei«x.~>-HI~)) v(e)de. 

Replacing e by t2 e 0 + t e we obtain if Xe Cg" 

(25.1.9) t- 2m-n/2 ((ue-i11~)(Xo + ./t), X) 
=(21t)-3n/4 H eiE,(x,() v(t2 eo +te) t- 2m+n/2 x(x)dxde, 

where 
E,(x, e)= (x0 +x/t, t2eo +te) -t2Y,(x0 +x/t)'-t2 H(e 0 + e/t). 

Now H(e0)=(H'(e0),e0 )=(xo,eo>• H'(eo)=xo, Y,(xo)=O, Y,'(xo)=eo. so 

E,(x,e> = Q!.~<x.e> + 0(1/t> 

uniformly on compact sets. Hence 

(25.1.10) I e; Et<.r.~>x(x)tk-+ I exp(iQ!.~<x.e»x(x)iU 
uniformly for e in a compact set. If xesupp X then 

laE,(x, e)/axl = lteo+ e -tY,'(x0 +x/t)l ~Iei- C~(lel + 1)/2 

if 1e1 > 2 C + 1, so Theorem 7.7.1 shows that the left-hand side of (25.1.10) has 
abound CN(1+Ieo-N independent oft, for every N. Thus 

(21r)-3n/4 II e; E.<.r.~>x(x)tk de-+ (u!.~· x), 
and (25.1.7) follows if we show that for large N 

Jlv(t2eo +te)-v(t2e0)lr 2'"+"12(1 + lei)-N de --+0, t-+oo. 

The integrand can be estimated by 

ltel<r2r-"'4-1 t-2m+•i2(1 +lw-N ;;:iir llel<l +lw-N, 

if lel<tleol/2, so this part of the integral is 0(1/t). When lel>tleol/2 the 
bound (1 +lel)4 1ml+~~/l-N for the integrand is obvious, which completes the 
proof. 

Remark. Ifue~'(Jl"), (x0 ,e0 );WF(u) and 0=H0 =1/1'(x0 ), then 

tN(ue-i11~){x0 +x/t)-+O in ~· 
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for every N. In fact, replacing u by xu where XE C~ is 1 in a neighborhood 
of x0 and supported in another small neighborhood we can assume that 
uEfc:' and that u is rapidly decreasing in a conic neighborhood of ~0 . We 
may also assume that 1/J(x) = (x, ~0 ) for if p vanishes of second order at x 0 

then t2 p(x0 +x/t)--+(p"(x0 )x,x)/2, t--+oo. The Fourier transform of 
tN+ 1(ue-it 2 t/l)(x0 +x/t) is then tN+n+ 1 u(t2 ~ 0 +t~)eit(xo.ü which is bounded 
when IWt is small, and uniformly bounded by apower of (1 +lW elsewhere. 

If vEs;h-;_"14 it follows from (25.1.7) that 

(25.1.7)' t-lm-nf 2 (ue-i12 "')(x0 +x/t)--+v0(~0 )U~0.~0(X) in fi)', 

where v0 is the principal symbol of v. At first sight it might seem that the 
Iimit is strongly tied to the specific local coordinates x, but in fact it is not: 

Lemma 25.1.8. Let u1 be distributions in a neighborhood of 0 in 1R." such that 
M1 u1 --+ V in fi)' as t--+ 0, where M1(x) = t x. lf 8 is a local diffeomorphism at 0 
with 8(0)=0, it follows then that 

Mi 8* U1 --+ 8~ V, t--+ 0, 

where 80(x)= 8'(0)x is the differential of 8 at 0. 

Proof We can write Mi8*u1=Mi8*M{11 Miu1• Since 

M 111 o 8 o M 1(x) = t- 1 8(t x)--+ 80(x) 

in coo as t--+0, it follows that Mi8*u1 --+8~V. 

The existence of the Iimit V is thus coordinate independent. If we regard 
u as a distribution on a manifold, the Iimit is a distribution on the tangent 
space at 0. If u1 is transformed as a half density distribution under a change 
of variables, we obtain of course a factor ldet 8'(0)It, so the Iimit is a half 
density on the tangent space. 

Let us now return to (25.1.7)' where vES;h-;_"14 and v0 is the principal 
symbol. If u is thought of as a half density u(x) ldxlt in a manifold X, 
expressed in the local coordinates x, we conclude that the Iimit v0(~0) u~o.~o 
is a half density on the tangent space T .. 0 (X). In the tangent space S 
= 'fx0.~0 (T*(X)) the tangentplanes A. 1 and A. of the graphs oft/land of A. are 
given by e=l/l"(xo)X and x=H"(eo)e in our local Coordinates. In s the 
tangent space of the fiber defined by x = 0 is a distinguished Lagrangian 
plane A.0 • If we compare (25.1.8) with (21.6.5) and (21.6.6) it follows that 
v(e0)u!.,.~0 el(A.,A. 1 ) defines an element in J(A.) ind~pendent of the choice of Y,, 
hence an element in the tensor product M;. ® Q]: where M;. is the fiber over 
A. of the Maslov bundle defined on T*(X) by the tangents of the fibers, and 
Qy is the fiber of the half density bundle on A.. With the trivialization of the 
Maslov bundle given by the Lagrangian planes ~ = 0 in the local coordinates 
used in Propositions 25.1.5 and 25.1.7, the half density in the tangent space 
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at (H'(~ 0H0)EA is v(~ 0 ) ld~lt when ~ parametrizes A by x = H'(~). Thus we 
obtain an invariant definition of a section of M A®Q} which is homo­
geneous of degree m + n/4. (F or the definition of homogeneity see the dis­
cussion preceding Definition 18.2.10.) It will be called the principal symbol of 
u. 

The preceding discussion motivates our definition of the principal sym­
bol for general uElm(X,A), but it will actually only depend on Proposition 
25.1.5. As a preliminary to the definition we must extend Definition 18.2.10 
to symbols on conic manifolds. On any conic manifold V there is defined a 
multiplication M, by real numbers t > 0, satisfying the conditions in Defini­
tion 21.1.8. We define sm(V) as the set of all aEC""(V) such that the 
functions t-mMia are uniformly bounded in C00(V) when t~l. If for some 
compact set K c V the support of a is contained in U M,K, and V is an 

I 2: I 

o;:>en subset of R" x (RN....__ 0) with M, defined as multiplication by t in the 
second variable, then the proof of Lemma 25.1.6 shows that this definition 
agrees with our earlier ones. An advantage of the present definition is that it 
is applicable also if say a is a half density on V. Let a0 be a fixed positive 
half density on V which is homogeneaus of degree Jl, that is, Mi a0 = t" a0 • 

For example, if V=R"x(RN'-0) with variables x, e, then ldxltld(Jit is a 
half density which is homogeneaus of degree Jl = N /2. W e can now write 
every aESm(V,Qt) in the form a=a0 b where bESm-"(V) is a scalar symbol, 
and conversely all such products are in sm(v, Qt). 

We return now to the definition of the principal symbol of a general 
uE lm(X, A) where X is a C"" manifold and Ac T*(X) ....__ 0 is a coo conic 
Lagrangian manifold. For any (x0 ,~ 0)EA we can choose local coordinates x 

at x 0 such that a conic neighborhood r of (x0 , ~ 0) in A is defined in the 
local coordinates by x = H'( ~) as in Proposition 25.1.3. If r; c r is a com­
pactly generated cone we can use Lemma 25.1.2 to split u into a sum u 1 + u2 

where uiElm(X,A) and WF(u,)cr, WF(u 2)nr1 =0. We can take u1 with 
compact support in the coordinate patch. For the Fourier transform in the 
local coordinates we have by Proposition 25.1.3 

(25.1.11) 

If u = i1 1 + 11 2 is another decomposition with the same properties, we have 
WF(u 1 -u1)nr; =0. Since WF(u 1 -u,)cr and r; = {(H'(~), ~), ~EYd for some 
dosed cone y1 cR"'-0 we condude that the Fourier transform of 11 1 -u 1 is 
rapidly decreasing in a conic neighborhood of y 1• Hence the dass of v in 
sm-n/4 (y,)/s-oo(y,) does not depend on the decomposition of u, and we can 
consider vld~lt as an element in sm+"14(r;, Q1.)1S-""(r;, Q1) in view of the 
isomorphism }' 1 3~~-->(H'(~), ~)Er;. We shall now study to what extent 
the residue dass mod sm+n/4 - 1 depends on the choice of local COOrdinates. 
lt is convenient to do so by examining the symbol definition just made 
when u is defined by (25.1.3) in terms of a non-degenerate phase function 
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but the local coordinates are fixed. Note that (25.1.11) gives 

(25.1.11)' u1(x)=(2n)- 3n14 f ei«x.~>-H!~))v(~)d~ 
which is a special case of (25.1.3) with Q>(x, ~) = (x, ü-H<e) and N = n. 

From (25.1.4) it follows that if uel~omp(X,A) and eiHu=(2n)n14 v, then 

(25.1.12) v(~) ld~lt- a(x, 0) e"i14"1n•ldet 4>1-t ld~ltesm+n/4 - 1 (A, .Q~) 

where Q>~(x, 0) = 0, Q>~(x, 0) = ~ defines (x, 0) as a function of ~. Apart from the 
Maslov factor exp(ni/4 sgn 4>) we can interpret (25.1.12) as follows. (Com­
pare (21.6.17)'.) Set as before 

C = {(x, 0); Q>~(x, 0) =0}. 

The pullback dc=t5(Q>~) of the {J function in RN by the map (x,O)t-+Q>~e:RN 
is a density on C given by 

dc = ld..tiiD(..t, Q>~)/D(x, 0)1- 1 

if ..t = (..t 1, ... , ..tn) denote arbitrary local coordinates on C extended to C"" 
functions in a neighborhood and jd..tl is the Lebesgue density. This follows 
from (6.1.1). In particular we can take ..t=Q>~ when A is parametrized by ~. 
Then we obtain dc = I d ~ II det 4>1- 1, hence 

(25.1.13) 

where C is identified with A by the map (x, 0) 1-+ (x, Q>~). 
If we now introduce new coordinates .X and transform u as a half 

density, that is, u(x)=!DxjDxltu(x), then (25.1.3) gives 

ü(i) = (211r<n+2N)/4 f e; ~.B> ä(i' 9)d9, 

c$(x, 0) = Q>(x, 0), ii(x, 0) = IDx/Dxlt a(x, 0). 

With the obvious identification of the manifolds C and C defined by q, and 
by 4}, we have dc=IDx/D.XIdc so 

(25.1.14) iid~=ad~. 

The half density v(~) ld~lt is thus invariant under a change of local coor­
dinates apart from a Maslov factor of absolute value 1. Every non-singular 
(n + N) x (n + N) matrix 4> has signature congruent to n + N mod 2 so if cP is 
the matrix replacing 4> in the new coordinate system then the Maslov factor 
e"i/4 <•sn•-•sn.PJ which occurs is a power of the imaginary unit i. This means 
that (25.1.13) gives a principal symbol esm+n14(A, .Q~) for the element uer 
defined by (25.1.3), which is uniquely determined modulo sm +nt4 - 1(A, .Q~) 
and is multiplied by a power of i when the local coordinates are changed. 
For every uelm(X,A) we therefore get a principal symbol in 

sm+ni4(A,MA ®.0~)jsm+n/4-1(A,MA ®.0~), 

where M A is a locally constant line bundle. lt is defined by a covering 
A = U lj of A with open cones lj and transition functions which are just 
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powers of i. The discussion of the polyhomogeneous case above or just 
comparison of (25.1.13) and (21.6.17)' identifies M A with the Maslov bundle 
defined more geometrically in Section 21.6. In particular, it follows from 
(21.6.18) that if we have another local representation 

u(x) =(21t)-(n+ lN>/4 r ei.(x,iJ) ii(x, i1)dl1 

in addition to (25.1.3) then 

iid~ -e"is14 ad~es"'+•14- 1(A, ~) 

in the common domain of definition on A if 

s = (sgn c/J'98(x, 0)- sgn tPÖe(x, 11)) 

where c/J'(x,O)=t/)'(x,i1)=0 and c/J~(x,O)=t/)~(x,i1)=e. Here the integer s is 
locally constant, and the x coordinates are now arbitrary. This connects 
with the definition of the Maslov bundle indicated after (21.6.17). 

Summing up, we have now proved the following extension of Theo­
rem 18.2.11 where we allow again the presence of a general vector bundle: 

Theorem 25.1.9. Let X be a coo manifold, Ac T*(X)-...... 0 a coo conic 
Lagrangian submanifold, and E a coo complex vector bundle over X. Then we 
have an isomorphism 

l"'(X, A; Uj®E)/I"'- 1(X, A; Uj®E) 

-+Sm+nf4(A,MA®UJ®E)/S"'+nt4-l(A,MA®Ul®E). 

Here E is the Iifting of the bundle E to A. The image under the map is called 
the principal symbol. 

Proof By Lemma25.1.2 this only has to be verified locally. For suitable 
fixed local coordinates the statement follows from Proposition25.1.3. The 
Maslov bundle has been defined so that it is independent of the local 
coordinates chosen. - We shall often write E instead of E when no con­
fusion seems possible. 

Under the hypotheses in Proposition 25.1.5' the principal symbol of u 
expressed in terms of the local coordinates there is equal to 

ldelt f a(x,O)e";14 "1neldet4>1-tdO". 
c~ 

This follows from (25.1.4)', and C~, 4> have been defined in Propo­
sition25.1.5'. We want to compare this with the definitions in Section 21.6. 
To every (x 1 ,0 1)eC~ the Hessian Q of c/J/2 at (x1,01) defines 

U =a(x 1, 01)(21t)-1"+ 2N-lelf4 f eiQ(x,lll dOel(A., A1)®U(R) 

where R is the radical of Qx,,e, in the 0 direction, A is the tangent plane of 
A at (H'<e), e) and A1 is the horizontal Lagrangian plane defined by de =0 
there. By hypothesis R301-+ (}'' is bijective, and the symbol of U as defined 
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in Section 21.6 with the local coordinates x, ~ is 

ld~l-t a(x 1, 0 1 )e";14 sgn4> ldet 4>1--t ldll''l. 

Since C ~3(x, O)t-+ 0" is bijective, ldO"I is a positive density on C ~· Thus the 
symbol of u is the integral over C, of the density on C ~ witli values in 

! • . 
(MA @QA)(H'w.~1 defined according to Section 21.6. 

The phase function - cfJ defines the Lagrangian A = i A where 
i: T*(X)-+ T*(X) is defined by i(x,()=(x, -~). From (25.1.4) it follows that 
the principal symbol of ii is defined on A by 

(25.1.15) a(x, 0) e- ni/4 sgn4> ldet 4>1- t, 

that is, we obtain the pullback by i of the complex conjugate of the 
principal symbol of u. Now the complex conjugate of a section of MA®Q~ 
is a section of M Ä 1 ®Q}, and i* M ;; 1 = M .:1 by (21.6.5) since i* u = - u. (This 
is just another way of expressing the complex conjugation of the Maslov 
factor in (25.1.15).) The pullback of a section of M Ä 1 ®Qj can thus be 

identified with a section of M .:1 ®Q.~. Summing up, we have 

Theorem 25.1.10. Let the hypotheses of Theorem 25.1.9 be julfilled and Iet 
j: E-+F be an antilinear bundle map. Then uEI'"(X,A;Ql®E) implies 
juEim(X,/i;Ql®F) if A=iA, i(x,()=(x, -e); and i*jaESm+ni4 (X,A; M,~® 
Q~®F) is a principal symbol ofju if aESm+n14(X,A; MA @Q~ ®E) is one for u. 

As in Section 18.1 we could have used considerably more general sym­
bols in the preceding discussion. Lemma 25.1.6 remains valid for the symbol 
spaces s; =S;.I-p· More generally, we can define s:'(V) if V is a conic 
manifold as the set cf aE C'"( V) such that when t ~ I 

is uniformly bounded in Ck(J/) for every k~O. We abandon now the intrin­
sic Definition 25.1.1 and define I; w hen p >! as the set of distributions 
which are microlocally of the form (25.1.11)' with vEs;-"14. An analogue of 
Proposition 25.1.5 follows with no essential change of the proof, and it Ieads 
to a principal symbol isomorphism 

Im(X A' Q!iOIE)/Im+ I-2P(X A' Q!i01E)-+ 
p ' ' X"CC p ' ' X'CI 

s;+n/2(A, MA®Qj®E)!s:•+n/2+ l-2P(A, MA®Qj®E). 

It would also have been possible to define I; by the condition (25.1.1) in 
Definition 25.1.1 for all LiE 'l'P2 P- 1(X; E, E) with principal symbol vanishing 
on A. However .. the ='roof of the analogue of Proposition 25.1.3 becomes 
somewhat Ionger since, we must consider on one hand operators with 
symbols of the form I~IP x((x-h'(~))I~I 1 -P)(xi-hi~)) and on the other hand 
operators with symbols of the form lei 2P- 1 (1-x((x-h'(~))I~I 1 -P)). Here 
XECg" is equal to 1 in a neighborhood of the origin. We leave the details for 
the interested and energetic reader. 
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25.2. The Calculus of Fourier Integral Operators 

Let X and Y be two coc manifolds and E, F two complex vector bundles on 
X, Y. Then every Ae.@'(X x Y, DLr®Hom(F, E)) defines a continuous map 

.9/: C~( Y, Di®F)-+ .@'(X, Dj®E) 

and conversely. (See Section 5.2 and, for the roJe of the half densities, also 
Section 18.1.) Here the fiber of the vector bundle Hom(F, E) at (x, y) consists 
of the linear maps F,.-+ E_,. In particular, if A is a closed conic Lagrangian 
submanifold of T*(X x Y)'-0 we can identify /m(Xx Y, A; DLr®Hom(F, E)) 
with a space of such maps. lf we have 

(25.2.1) Ac(T*(X)'-0) x (T*(Y)'-0) 

then it follows from Theorem 8.2.13 and Lemma 25.1.2 that .91 is even a 
continuous map from C~(Y) to C""(X) which can be extended to a con­
tinuous map from ~'( Y) to .@'(X) with 

(25.2.2) WF(slu)c C(WF(u)), uelf'(Y, Di®F), 

where 
C = A' = {(x, ~. y, - 17)e(T*(X)'- 0) x (T*(Y)'- 0); (x, ~.y, 17)eA} 

is a canonical relation from T*( Y) '-0 to T*(X) '-0. (See Definition 21.2.12.) 
As in Section 21.2 we call A = C' the twisted canonical relation. The Maslov 
bundle M A can be regarded as a bundle M c on C defined by C and the 
product symplectic form u x-ur· 

Definition 25.2.1. Let C be a homogeneaus canonical relation from T*( Y)" 0 
to T*(X)'-0 which is closed in T*(X x Y)'-0, and Iet E, F be vector 
bundles on X, Y. Then the operators with kerne) betonging to 
lm(X x Y, C'; DL r ® Hom(F, E)) are called Pourier integral Operators of 
order m from sections of F to sections of E, associated with the canonical 
relation C. 

Let E* be the vector bundle with fiber E: at xeX antidual to the fiber 
E_, of E. Then we have a pairing 

u. N-+ J<u. v)(x); ueCg'(X, Dj®E), ve.@'(X, Dj®E*), 

and a similar one for Y and F. If Ae~'(X x Y, Q~,. r®Hom(F,E)) then the 
adjoint of the ma~ Cö'(Y,Q~®F)-+~'(X,Q~®E) defined by A is defined 
by A*e~'(YxX,Drxx®Hom(E*,F*)). If s is the map YxX-+Xx Yinter­
changing the two factors then A • is obtained by composing s* A with the 
antilinear bundle map Hom(F,E)-+Hom(E*,F*) given by taking adjoints. If 

then 
Aelm(X x Y. C; DLr®Hom(F,E)) 

s* Ael"'(Y x X,s* C';DLx®Hom(F,E)); 
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if a is the principal symbol of A then s* a is the principal symbol of s* A. 
This is obvious by the invariance of our constructions. With the same 
notation i for the reflection in the cotangent bundle as in Theorem25.1.10 
we have i*s*C'=(C- 1)' where c- 1 is the inverse canonical relation ob­
tained by interchanging T*(X) and T*(Y). Thus we obtain in view of 
Theorem25.1.10: 

Theorem 25.2.2. Let C be a homogeneous canonical relation from T*( Y)' 0 to 
T*(X)' 0 which is closed in T*(X x Y)' 0, and Iet E, F be vector bundles on 
X, Y. If Aer(X x Y, C'; Dlxr®Hom(F,E)), identified with the correspond­
ing linear operator, then A*elm(YxX, (C- 1)'; Dlxx®Horn(E*,F*)). lf 
aesm+n14(C;Mc®Dl®Hom(F,E)) is a principal symbol for A, where 
n=dim(X x Y), then s* a*esm+"14(C- 1,Mc-• ®Dl-• ®Hom(E*,F*)) is a prin­
cipal symbol for A *. H ere s is the interchanging map Y x X -+X x Y. 

Note that we have here chosen to regard the principal symbol as defined 
on C rather than on C'. This is usually more convenient in connection with 
Fourier integral operators and should cause no confusion. 

We shall now discuss products, so Iet C1 be a homogeneaus canonical 
relation from T*(Y)'-0 to T*(X)'-0 and C2 another from T*(Z)'-0 to 
T*(Y)'-0 where X, Y, Z are three manifolds, with vector bundles, E, F, G. 
Let 

A1 e/m'(X x Y, C'1 ; DLr®Hom(F,E)), 

A 2 elm2(Yx Z, C~; DLz®Hom(G,F)) 

and assume that both are properly supported so that the composition A 1 A 2 

of the corresponding operators is defined. W e want to show that it is 
associated with the composition C of the canonical relations C 1 and C 2 

provided that the composition is clean, proper and connected in a sense 
which we shall now define. Already after the statement of Theorem 21.2.14 
we defined the composition to be clean if C 1 x C 2 intersects T*(X) 
x A(T*(Y)) x T*(Z) cleanly, that is, in a manifold C with tangent plane 
everywhere equal to the intersection of the tangent planes of the intersecting 
manifolds. We shall say that the composition is proper if the map 

c-+ T*(X X Z)'-.0 

is proper. (When Y is compact this is automatically true since C1 and C2 

are closed in T*(X x Y)'-0 and T*(Y x Z)'-0 respectively but contained in 
(T (X)'-0) x (T*(Y)'-0) and (T*(Y)'-0) x (T*(Z)'-0).) Then the range Cis a 
closed subset of T*(XxZ)'-0 contained in (T*(X)'-O)x(T*(Z)'-0). The 
inverse image CY in C of ye C is a compact rnanifold of dimension equal to 
the excess e of the clean intersection. To avoid self-intersections of C we 
assume that the cornposition is connected in the sense that C7 is connected 
for every ye C. Then it follows from Theorem 21.2.14 that C is also a 
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canonical relation. Weshall prove that 

(25.2.3) 

and compute the principal symbol. Note that when the composition is 
transversal, that is, the excess e=O, then A1A2 el'"1 +m2• The normalizations 
introduced in Section 25.1 were to a large extent motivated by our wish to 
maintain this natural property of the order of differential and pseudo­
differential operators. 

By a partition of unity we can reduce the proof of (25.2.3) to the local 
case where XcR."x, YcR."r, Zc1R."2 , the bundles E, F, Gare trivialand 

A l(x, y)=(21t)-(nx+ny+2Nlll4 J ei4>(x,y,IJ) al(x,y, O)dO, 

Az(y, z)=(21t)-(ny+nz+2N2)/4 J ei~(y.z,t) a;z(y, z, t}dt. 

Here q, is a non-degenerate phase function in a conic neighborhood of 
(x0 , y0 , 00)eX x Y x (R.N1 '0) parametrizing C 1 in a conic neighborhood of 
(xo, ~0 , y0 , 170 ), thus 

c/>~=0, c/>~=~0 , c/>~= -170 at (x0 ,y0 ,00 ). 

Similarly 1/1 is a non-degenerate phase function in a conic neighborhood of 
(y0 , z0 , t 0)e Y x Z x (IN2 '-0) parametrizing C2 in a conic neighborhood of 
(y0 , 170 , z0 , C0), thus 

1/1~=0, 1/1~='1o• 1/1~=-Co at (yo,zo,to)· 

The amplitudes a 1, a2 have supports in small conic neighborhoods of 
(x0 ,y0 , 00) and (y0 , z0 , t 0 ) respectively, and 

(25.2.4) 

lf aies-oo then A =A 1A 2 is given by 

(25.2.5) A(x, z)= J A 1(x, y)A 2(y, z)dy 

where 

=(21t)-<nx+nz+21nr+Nl+N2))/4 JJJ ei•<x,z,.v,ll,•l a(x, z,y, 0, t)dydOdt 

4>(x, z, y, 0, t}= cf>(x, y, 0)+ 1/J(y, z, t); 

a(x, z, y, 0, t) =a1(x, y, O)a2(y, z, t). 

From Proposition 21.2.19 we know that ~ isaclean phase function defining 
C, in a conic neighborhood of (x0 , z0 , y0 , 00 , t 0). This willlead to a proof of 
(25.2.3) when we have proved that the integration can be restricted to a set 
where 101 and ltl have the same order of magnitude so that a is a weil 
behaved symbol. This is not the case for the function a as it stands since, for 
example, differentiation with respect to 0 only improves the magnitude by a 
factor 1/(1 + 101) and not by 1/(1 + 101 + ltl}. 

We assume that a 1 and a2 have supports in compactly generated cones 
~ and r;_ where ocf>(x,y,O)foy and oljJ(y,z,-r)foy never vanish. Then we can 


