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Introduction

In this Introduction, the background and motivations of the book

are presented in section I.1. A literature review on related subjects,

including topology optimization methods, material design and

multiscale optimization, and fracture resistance design, is presented in

section I.2. The outline of the book is presented in section I.3.

I.1. Background and motivations

Topology optimization has been an active research topic in the last

decades and has become a subject of major importance with the

growing development of additive manufacturing processes, which

allow the fabrication of workpieces such as lattice structures with

arbitrary geometrical details. In this context, topology optimization

(Bendsøe and Kikuchi 1988, Allaire 2012) aims to define the optimal

structural or material geometry with regard to specific objectives (e.g.

maximal stiffness, minimal mass or maximizing other physical/

mechanical properties) under mechanical constraints such as

equilibrium and boundary conditions. The key merit of topology

optimization over conventional size and shape optimization is that the

former can provide more design freedom, consequently leading to the

creation of novel and highly efficient designs. With the topology

optimization technique, designers can make the best use of limited

materials and guide the concept design of various practical structures,

especially in automotive and aerospace engineering.
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In recent years, there has been an increase in the use of

high-performance heterogeneous materials such as fibrous composite,

concrete materials and 3D printed materials. Mechanical and physical

properties of complex heterogeneous materials are determined, on the

one hand, by the composition of their constituents but can, on the other

hand, be drastically modified at a constant volume fraction of

heterogeneities, by their geometrical shape and by the presence of

interfaces. Topology optimization of microstructures can help design

materials with higher effective properties while maintaining the

volume fraction of constituents or obtaining new properties which are

not naturally available (metamaterials). Recently, the development of

3D printing techniques and additive manufacturing processes has made

it possible to directly manufacture designed materials from a numerical

file, opening routes for new designs, as shown in Figure I.1. It is no

exaggeration to say that “additive manufacturing” and “topology

optimization” are the best couple made for each other. To this end,

systematic and comprehensive research on the topological design of

complex heterogeneous materials is of great significance for academic

research and engineering applications.

(a)

(b)

Figure I.1. 3D printed lattice materials: (a) cubic and (b) cylindrical
configurations (Mohammed et al. 2017)

However, in topology optimization of material modeling, the scale

separation is often assumed. This assumption states that the

characteristic length of microstructural details is much smaller than

the dimensions of the structure, or that the characteristic wavelength of
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the applied load is much larger than that of the local fluctuation of

mechanical fields (Geers et al. 2010). In additive manufacturing of

architectured materials such as lattice structures, the manufacturing

process may induce limitations on the size of local details, which can

lead to a violation of scale separation when the characteristic size of

the periodic unit cell within the lattice is not much smaller than that of

the structure. In such a case, classical homogenization methods may

lead to inaccurate description of the effective behavior as non-local

effects, or strain-gradient effects may occur within the structure. On

the other hand, using a fully detailed description of the lattice structure

in an optimization framework could be computationally expensive.

One objective of this book is to develop multiscale topology

optimization procedures not only for heterogeneous materials but also

for mesoscopic structures in the context of non-separated scales.

(a) (b)

Figure I.2. Damage phenomena in engineering: (a) macroscopic
structure; (b) cracks (Nguyen 2015)

On the other hand, fatigue or failure characteristics of engineering

structures are another subject of great concern, as shown in Figure I.2.

Microcracking is known to be a significant factor affecting the

mechanical properties and the long-term behavior of engineering

facilities. The accurate modeling of these phenomena, as well as their

coupled effects have received special attention. In addition, topology

optimization design of composite materials accounting for fracture

resistance is a rather challenging task. It is necessary to improve the

fracture resistance of heterogeneous materials in terms of the required

mechanical work, through an optimal placement of the inclusion phase,
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taking into account the crack nucleation, propagation and interaction.

However, this research remains relatively unexplored so far due to the

following reasons. First, there has been a lack of robust numerical

methods for fracture propagation in the presence of complex

heterogeneous media until recently, especially when interface effects

are presented. Second, these numerical simulation models should be

formulated in a context compatible with the topology optimization

scheme. For these reasons, there has been very limited research in the

literature on topology optimization for maximizing the fracture

resistance of heterogeneous materials before the recent works from the

author and his coworkers (Xia et al. 2018a, Da et al. 2018a).

I.2. Literature review

In the following, section I.2.1 provides a brief literature review on

the development of topology optimization methods. Section I.2.2

reviews material microstructure design and extension to multiscale

topology optimization with or without scale separation. Section I.2.3

presents the newly proposed fracture resistance design framework, by

combining the phase field method to take into account the

heterogeneities and their interfaces in the material.

I.2.1. Topology optimization methods

Over the past decades, topology optimization has undergone a

tremendous development since the seminal paper by Bendsøe and

Kikuchi (1988). The key merit of topology optimization over

conventional size and shape optimization is that the former can provide

more design freedom, consequently leading to the creation of novel

and highly efficient designs. Various topology optimization methods

have been proposed so far, for example density-based methods

(Bendsøe 1989, Zhou and Rozvany 1991, Bendsøe and Sigmund

2004), evolutionary procedures (Xie and Steven 1993, 1997), level-set

method (LSM) (Sethian and Wiegmann 2000, Wang et al. 2003,

Allaire et al. 2004), hybrid cellular automaton (Tovar et al. 2004) and
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phase field method (Bourdin and Chambolle 2003). All of these

methods are based on finite element analysis (FEA) where the design

domain is discretized into a number of finite elements. With such a

setting, the optimization procedure is then to determine which points of

the design domain should be full of material (solid elements) and

which void (soft elements), as shown in Figure I.3. According to the

update algorithm, these methods can be generally categorized into two

groups: density variation and shape/boundary variation. The topology

optimization technique has already become an effective tool for both

academic research and engineering applications. A general review of

various methods and their applications was presented by Deaton and

Grandhi (2014). Regarding their strengths, weaknesses, similarities

and dissimilarities, a critical review and comparison on different

approaches was also given by Sigmund and Maute (2013).

Design region

?

Figure I.3. Illustration for structure topology optimization

Level-set method (LSM) is a typical shape/boundary variation

approach that maintains the capability of topological change. It

describes the structural topology implicitly by the iso-contours of a

level-set function. Using the LSM, a fixed rectilinear spatial grid and a

finite element mesh of a given design domain can be constructed

separately, which allows the separation of the topological description

from the physical model. With the merits of the flexibility in handling

complex topological changes and the smoothness of boundary

representation, the LSM has been successfully applied to an increasing

variety of design problems, involving, for example, multi-phase

materials (Wang and Wang 2004), shell structures (Park and Youn

2008), geometric nonlinearities (Luo and Tong 2008), stress
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minimization (Allaire and Jouve 2008) and contact problems

(Myśliński 2008). The reader can refer to the comprehensive review in

van Dijk et al. (2013) for more theoretical details of different LSMs for

structural topology optimization.

Density-based methods are the most commonly used topology

optimization approaches, such as the popular solid with isotropic

material with penalization (SIMP) method. The SIMP method uses

continuous design variables for topology optimization, which can be

interpreted as material pseudo densities (Bendsøe 1989, Zhou and

Rozvany 1991, Mlejnek 1992). The physical justification of the SIMP

method was provided by Bendsøe and Sigmund (1999). A popular

99-line topology optimization Matlab code using the SIMP method

was developed by Sigmund (2001) for education purposes. As a

successor of the 99-line code, a more efficient 88-line Matlab code was

also provided by Andreassen et al. (2011) with high computational

efficiency and alternative filter implements. More details about theory,

numerical methods and applications on the SIMP method can be found

in (Bendsøe and Sigmund 2004).

As another important branch of topology optimization, evolutionary

structural optimization (ESO) (Xie and Steven 1993, 1997, Tanskanen

2002) and its later version bidirectional ESO (BESO) (Da et al. 2018c)

have shown promising performance when applying to a wide range of

structural design problems. ESO-type methods use a simple heuristic

scheme to evolve the structural topology towards an optimum by

gradually removing redundant or inefficient materials. The BESO

method allows not only material removal but also material addition,

showing efficient and reliable performance in various design problems

(Huang and Xie 2008, 2010, Huang et al. 2011, Xia and Breitkopf

2014a,b, 2015b, Huang et al. 2015, Vicente et al. 2015, Da et al.
2017a). The early development of ESO-type methods was summarized

by Xie and Steven (Xie and Steven 1997). The development of the

BESO method and its various applications up to 2010 can be found in

Huang and Xie (2010). A comprehensive review on the BESO method

for advanced design of structures and materials was recently presented

by Xia et al. (2018b).
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As an extension to the original BESO method, the author and his

collaborators proposed a new evolutionary topology optimization

(ETO) method (Da et al. 2018c) to design continuum structures, by

introducing a sensitivity-based level-set function (LSF). The proposed

ETO method identifies the topology far beyond its elements, which

does not involve the removal/addition of elements during the

optimization process, resulting in a smoothed boundary representation

and high robustness. The smooth structural topology has been extended

to the robust topology optimization of continuum structures under

loading and material uncertainties by Martínez-Frutos and

Herrero-Pérez (2018). Inspired by the ETO method, the material

removal scheme of evolutionary-type methods has been combined with

the LSM to nucleate holes in the structure for optimization design of

heat conduction (Xia et al. 2018c).

Recently, a new computational framework for structural topology

optimization based on the concept of moving morphable components

has been proposed (Guo et al. 2014). The basic idea of this method is

to use a set of deformable components as the basic building block of

optimization structures, in order to tailor the structure topology

through deformation, merge and overlap operations between

components. Therefore, the design variables of the method are reduced

during the topology optimization process, and the topological

geometries of the structure can be presented explicitly (Zhang et al.
2016, Guo et al. 2016, Zhang et al. 2017).

I.2.2. Material design and multiscale optimization

Initially restricted to optimizing the geometry of structures,

topology optimization techniques have now been extended to

optimizing the topology of the phase within materials, for example in

periodic microstructures, to design high performance materials

(Sigmund 1994, Sigmund and Torquato 1997, Sigmund 2000, Yi et al.
2000, Guest and Prévost 2006, 2007, Wang et al. 2014a, Andreassen

and Jensen 2014, Chen and Liu 2014, Huang et al. 2015), materials

with properties not found in nature (e.g. negative Poisson’s ratio, zero
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compressibility, negative bulk modulus; see Wang et al. (2014b),

Clausen et al. (2015), Da et al. (2017b), Noguchi et al. (2018)) or

complex multi-physics problems (Nanthakumar et al. 2016, 2017).

These techniques are based on optimizing the homogenized properties

of the representative volume element and using numerical solving

methods such as finite elements to compute the homogenized

properties (Michel et al. 1999, Hassani and Hinton 1998a,b,

Andreassen and Andreasen 2014), given one geometry of the phases

and their microscopic properties, as shown in Figure I.4. A review of

topology optimization of microstructures in the linear context can be

found in, for example, Cadman et al. (2013).

Figure I.4. Material topologies with extreme elastic modulus and
negative Poisson’s ratio: (a, b) geometries with maximum bulk modulus,

(c) geometry with maximum shear modulus and (d) geometry with
negative Poisson’s ratio (Da et al. 2017b)

Rather than pure material design, material microstructures have also

been tailored for a fixed structure (Huang et al. 2013) to maximize

macroscopic performance under specific boundary conditions, for

example structural stiffness (Da et al. 2018d). In order to fully release

the design freedom within multiscale optimization, Rodrigues et al.
(2002) first described a hierarchical computational procedure for

optimization of material distribution as well as the local material

properties of mechanical elements that was later extended to 3D in

Coelho et al. (2008) and to account for hyperelasticity. With this

design strategy, simultaneous structure and materials design has been

extensively studied, such as for composite laminate orientations



Introduction xvii

(Setoodeh et al. 2005, 2006, Coelho et al. 2015), closed liquid cell

materials (Lv et al. 2014) or multi-objective functions, for example

maximum stiffness and minimum resistance to heat dissipation in de

Kruijf et al. (2007) or minimum thermal expansion of the surfaces in

Deng et al. (2013). Extensions to nonlinear materials (Xia and

Breitkopf 2014a), multiple-phase materials (Da et al. 2017a) and

optimization considering uncertainties (Guo et al. 2015, Xu et al.
2015) have been proposed recently.

In the context of non-separated scales, the effectiveness of the

classical homogenization-based multiscale topology optimization

framework for periodic lattice structures will be first investigated here

in this book. The characteristic dimensions of periodic unit cells in the

lattice are comparable with the dimensions of the whole structure such

that the two scales cannot be clearly separated. The dimensions of the

unit cell range from large to small compared with the dimensions of

the whole structure to highlight the size effect. By assuming that

the material microstructures are infinitely small, the inverse

homogenization designs for macroscopic structural performance were

compared with the mono-scale topology optimization framework in

Xie et al. (2012) and Zuo et al. (2013a).

On the other hand, several computational homogenization methods

modeling complex heterogeneous media when scales are not separated

are available (e.g. gradient models in Peerling et al. (1996) and

Kouznetsova et al. (2002), non-local elasticity theories in Eringen and

Edelen (1972) and domain decomposition methods in Ladevèze et al.
(2001)). Among them, the filter-based non-local homogenization

technique developed in Yvonnet and Bonnet (2014a,b) and Tognevi

et al. (2016) was adopted by Da et al. (2018b) to develop a topology

optimization procedure for heterogeneous lattice materials in the

context of non-separated scales, taking into account the strain gradient

effects. The technique generalizes the homogenization theory by

replacing spatial averaging operators by linear low-pass filters, and the

major advantage is that it can take into account an arbitrary level of
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strain gradient without higher-order elements, in a classical finite

element framework.

In the case of fixed/optimized microscopic periodic cells, multiscale

topological design of mesoscopic structures without scale separation is

firstly proposed in this book and will be detailed in a later chapter. The

idea is to use a computational homogenization method that takes into

account the strain gradient effects combined with a topology

optimization scheme of mesoscopic structures, allowing the topology

optimization problem to be performed on a coarse mesh, instead of

using the fully detailed description of the structure for computational

saving, as shown in Figure I.5. In addition, other studies, for example

Zhang and Sun (2006) and Alexandersen and Lazarov (2015) have also

been devoted to the topology optimization of structures in the context

of non-separated scales.

(a) (b)

Figure I.5. Illustration of the two-scale optimized structure composed of
the patterned microstructure periodically with (a) scale separation and

(b) non-separated scales. For a color version of this figure, see
www.iste.co.uk/da/topology.zip
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I.2.3. Fracture resistance design

Optimization design of composite materials accounting for fracture

resistance has remained relatively unexplored so far, mainly due to

the lack of robust numerical methods for simulation of fracture

propagation in the presence of complex heterogeneous media and

interfaces until recently. In addition, these numerical simulation

models should be formulated in a context compatible with topology

optimization (e.g. finite elements). Gu et al. (2016) used a modified

greedy optimization algorithm for composites made up of soft and stiff

building blocks to improve material toughness. San and

Waisman (2016) explored the optimal location of carbon black

particles to maximize the rupture resistance of polymer composites

using a genetic algorithm. In a recent work by the author and his

coworkers (Xia et al. 2018a), topology optimization for maximizing

the fracture resistance of quasi-brittle composites was introduced by

combining the phase field method and a gradient-based BESO

algorithm. However, in the mentioned work, the crack propagation

resistance was only evaluated on the basis of phase distribution. In

most heterogeneous quasi-brittle materials (e.g. ceramic matrix

composites, cementitious materials), the interfacial damage plays a

central role in the nucleation and propagation of microcracks

(Tvergaard 1993, Lamon et al. 2000, Nguyen et al. 2016a, Narducci

and Pinho 2017). Therefore, we further extended the design framework

developed by Xia et al. (2018a) in order to define through topology

optimization the optimal phase distribution in a quasi-brittle composite

with respect to fracture resistance, taking into account crack nucleation

in both the matrix and the interfaces, as shown in Figure I.6. To the

author’s best knowledge, such a study is investigated in this book for

the first time.

Simulating interfacial damage and its interaction with matrix crack

for complex heterogeneous materials is a highly challenging issue for

meshing algorithms. Many numerical methods such as the eXtended

Finite Element Method (XFEM) (Moes et al. 1999, Sukumar et al.
2000), the thick level-set (TLS) method (Bernard et al. 2012, Cazes

and Moes 2015) and the phase field method (PFM) (Francfort and


