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Preface

Metamaterial Physics Deserves a Nobel Prize

During the release of 2019 Nobel Prize in Physics, I was finalizing the book. This
reminds me to think about an interesting (or tongue-in-cheek) problem in order to
attract the reader: Does metamaterial physics deserve to be issued a Nobel prize?
Absolutely, my answer is “YES”. See Fig. 1. Since the seminal article by
V. G. Veselago (June 13, 1929—September 15, 2018) in 1968 and especially the
two other seminal articles by J. B. Pendry and coauthors in 1996 and 1999, the field
of metamaterial physics has grown vigorously until today. With the aid of the

Fig. 1 A large number of novel physics and applications have arisen from metamaterials with
artificial structures for wave systems and diffusion systems since 1968 and 2008, respectively.
Both waves and diffusion are two important methods for transferring energy. See also Appendix:
Brief History of the First Ten Years of Thermal Metamaterials
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concept of metamaterial, many fundamental physics have been discovered in var-
ious branches of physics, ranging from optics/electromagnetics to elasticity/
acoustics/mechanics/��� for wave systems, and from thermotics to particle dynamics
for diffusion systems. As a result, various kinds of metamaterials were theoretically
designed and experimentally fabricated in such branches. This book focuses on the
branch of thermotics, namely, thermal metamaterials. The phrase “thermal meta-
material” was first adopted in Ref. [1] to name thermal cloaks (shields) and relevant
devices designed by using transformation thermotics for heat conduction (diffusion)
studied in the five references [2–6]. Owing to the existence of three ways of heat
transfer (i.e., conduction, convection, and radiation), nowadays the connotation of
“thermal metamaterial” has naturally been extended to include metamaterials for
controlling heat convection and radiation. Incidentally, in this book, thermal
metamaterials also contain some thermal metadevices (whose novel functions are
realized mainly because of specific geometric structures), to comply with the
common usage in the literature.

Thermal Metamaterial: Past, Present, and Future

In 2008, my group and Chen’s group predicted the concept of novel thermal phe-
nomena including thermal cloaking one after another [2, 3]. At the early stage
(loosely speaking, before 2014) of thermal metamaterials, many experiments have
been conducted to demonstrate the phenomenon of thermal cloaking under various
conditions, see Refs. [5–9]. Accordingly, this field received plenty of popular
attention [10–12] (see also https://www.sciencemag.org/news/2012/05/heat-trickery-
paves-way-thermal-computers). These impacts attracted me to come back to the field
of thermal metamaterials. Since the end of 2014, my group has completely returned to
this field. So far, we have published dozens of articles.

Thermal metamaterials mean those materials or devices with artificial structures
that can be used to control heat conduction, convection, and radiation in novel
manners. In this case, geometric structure (rather than physical property) plays a
dominating role. This fact makes thermal metamaterials different from other
materials including thermoelectric materials, pyroelectric materials, magnetocaloric
materials, and photothermal conversion materials; for the latter, physical property
(rather than geometric structure) plays a dominating role instead. For a brief history
of the first 10 years (2008–2018) for thermal metamaterials, I would refer the reader
to the Appendix at the end of this book, which is a celebration article I was invited
to write.

So far, thermal metamaterials have aroused enormous research interests, as also
evidenced by Google search that shows the search of “thermal metamaterials”
occupies 29.6% of all kinds of “metamaterials” as of August 13, 2019.

To celebrate the fruitful progress of thermal metamaterials and to prepare for the
future challenges, I launched and chaired a National Conference on
Thermodynamics and Thermal Metamaterials on July 18–19, 2019, in Fudan
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University, Shanghai, China. About 40 participants attended the first national
conference, see Fig. 2. Due to the success of this national conference, I plan to not
only continue the holding of the national conference, but also launch an interna-
tional conference on the same topic starting from 2020.

Useful Theoretical Physics and Useful Theoretical Thermotics

To design thermal metamaterials in the literature, analytic theories have been
extensively developed with a special focus on transformation thermotics. In this
book, I would prefer to call the transformation thermotics and its extended theories
together as “theoretical thermotics”, with an attempt to contribute them to the
discipline of “theoretical physics (statistical physics)” that is developing very well
in China due to the efforts of many good researchers. This name could also remind
the colleagues and latecomers to figure out the microscopic mechanisms for “the-
oretical thermotics” (that, after all, mainly describes macroscopic thermal theories
for the time being), rather than to satisfy with the existing macroscopic theories; in
this direction, Chap. 8 already gives a good example. Consequently, the name
“theoretical thermotics” looks more suitable than other candidates like “structural
thermotics” or “artificial thermotics” (the latter have been kindly suggested to me
by some friends of mine).

In a word, theoretical thermotics describes the theory of transformation ther-
motics and its extended theories for the active control of macroscopic thermal
properties of artificial systems, namely, metamaterials with artificial structures.
Thus, theoretical thermotics is in sharp contrast to classical thermodynamics, which

Fig. 2 Group photo: 2019 National Conference on Thermodynamics and Thermal Metamaterials,
held on July 18–19, 2019, in Fudan University, Shanghai, China
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mainly comprises the four thermodynamic laws with a particular emphasis on the
passive description of macroscopic thermal properties of natural systems.
Incidentally, because the transformation method in transformation thermotics and
theoretical thermotics is not intended to transform (or actually cannot transform) the
four thermodynamic laws in thermodynamics, for the sake of clarity I choose the
wording “thermotics” instead of “thermodynamics” for naming transformation
thermotics or theoretical thermotics.

Clearly, theoretical thermotics can help to design thermal metamaterials, which are
further useful for engineering techniques and applications [13], say, for designing
standard printed circuit board [14, 15], daytime radiative cooling [16], and so on. This
book focuses on fundamental theories, rather than engineering techniques and appli-
cations, and it introduces 18 theories including 7 general theories and 11 special
theories.
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Chapter 1
Introduction

Abstract Classical thermodynamics pays a special attention to the passive descrip-
tion of macroscopic heat phenomena of natural systems with the theoretical frame-
work of the four thermodynamic laws. In contrast, theoretical thermotics, introduced
in this book, allows one to achieve the active control of macroscopic heat phenomena
of artificial systems with the theoretical framework of transformation thermotics and
extended theories. As a result, thermal metamaterials can be theoretically designed
at will, which have abundant application values. Thus, a hot field comes to appear.

Keywords Thermodynamics · Theoretical thermotics · Passive description ·
Active control · Transformation thermotics · Thermal metamaterials

1.1 Thermodynamics Versus Theoretical Thermotics

1.1.1 Thermodynamics Concentrating on a Passive
Description of Macroscopic Heat Phenomena of
Natural Systems

The framework of thermodynamics is composed of the four laws of thermodynamics.
Let us take the second law of thermodynamics as an example, which states “the
total entropy of an isolated system can never decrease over time”. The statement
indicates an intrinsic property of isolated systems, and this property can not be
changed by humans at all. Thus, we would say that classical thermodynamics pays
a special attention on the passive description of macroscopic heat phenomena of
natural systems.
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2 1 Introduction

1.1.2 Theoretical Thermotics Concentrating on an Active
Control of Macroscopic Heat Phenomena of Artificial
Systems

The above-mentioned passive description of macroscopic heat phenomena means
that humans can not break the four laws, but only obey them. In this regard, if one
can control heat flow at will, this control would be definitely useful for human life.
This is just the goal of theoretical thermotics. Certainly, the four laws of thermo-
dynamics also work for theoretical thermotics, but we try to establish and develop
different kinds of theories to manipulate and control the flow of heat purposefully.
Consequently, we achieve the active control of macroscopic heat phenomena of arti-
ficial systems.

1.2 Two Features of Theoretical Thermotics

1.2.1 Theoretical Framework: Transformation Thermotics
and Extended Theories

In theoretical framework, we establish and develop the theory of transformation
thermotics and its extended theories (all are analytical theories). Such theories allow
us to design artificial systemsor structures (thermalmetamaterials), in order to control
heat transfer arbitrarily.

1.2.2 Application Value: Design Thermal Metamaterials for
Macroscopic Heat-Flow Control

Thermal metamaterials pave a new way to control the transfer of heat (conduction,
convection, and radiation). For the sake of comprehensiveness, below we present
more relevant backgrounds and details according to Ref. [1].

With the advent of energy crisis, energy sources like coal, oil and natural gas are
becoming less and less. However, more and more low-grade heat energy is produced
and wasted due to various reasons including inefficient utilization. Therefore, how
to efficiently control the flow of heat energy becomes particularly important.

Heat transfer at microscopic scale has been deeply explored by many scholars,
such as Refs. [2–8], which have helped to develop the field significantly. For the
existing research at microscopic scale, a delicate review has been made by [5]. In
contrast, the topic of this chapter and this book is mainly on theories and experiments
for controlling heat transfer at macroscopic scale. Certainly, traditional Fourier’s law
(bridging heat flux and temperature gradient in a material), established by Joseph



1.2 Two Features of Theoretical Thermotics 3

Fourier in his treatise “Théorie analytique de la chaleur” (1822), can be seen as
the first quantitative theory for studying heat conduction at macroscopic scale.
After 1822, about two hundred years have witnessed much more developments,
such as, applying effective medium theories from optics/electromagnetics [9, 10]
to thermotics due to the mathematical similarity between dielectric permittivities
and thermal conductivities. Such theories have been reviewed by many researchers
including [11, 12]. Meanwhile, many other macroscopic methods have also been
proposed to study heat transfer, such as phonon hydrodynamics models [13, 14],
the dual-phase-lag model [15, 16], the ballistic-diffusive model [17, 18], and so on.
Such methods can be referred to a comprehensive review by Guo and Wang [19].

Starting from ten years ago, researchers started to develop new theories for con-
trolling macroscopic heat transfer again. Reference [20] first introduced the theory
of coordinate transformation from optics/electromagnetics [21, 22] to thermotics
(steady-state heat conduction), and predicted the concept of “thermal cloak”, which
helps to guide the flow of heat around an object as if the object does not exist.
Such a thermal cloak has potential applications in thermal protection, misleading
infrared detection, and heat preservation/dissipation. As a result, a new direction
forms, which is called “transformation thermotics” (or equivalently “transformation
thermodynamics” as occasionally used by some other researchers) in the literature.

With the establishment of transformation thermotics and extended theories,
there comes a research upsurge of achieving novel thermal transport phenomena
via designing artificial structures or devices. The theoretical proposals of thermal
cloaks [20, 23–27] have further motivated experimental demonstrations [28–32] and
popular attention [33–35] (see also http://www.sciencemag.org/news/2012/05/heat-
trickery-paves-way-thermal-computers). In this book, we call transformation ther-
motics and extended theories as theoretical thermotics, which has been explained in
Part III of Preface.

The so-called “thermal metamaterial” was first adopted by [36] to name ther-
mal cloaks (shields) and relevant devices designed by using transformation ther-
motics in the five references [20, 23, 26, 28, 29], thus causing the formation of
the direction of thermal metamaterials. Incidentally, the phrase “thermal metama-
terial” was originally used for thermal conduction only [36], but its connotation
has been significantly extended afterwards. So far, thermal metamaterials also cover
those artificial structural materials for controlling thermal convection [37–39] and
radiation [40–43] with novel properties. Nowadays, as defined by [44], “thermal
metamaterials are materials composed of engineered, microscopic structures that
exhibit unique thermal performance characteristics based primarily on their physical
structures and patterning, rather than just their chemical composition or bulkmaterial
properties”.

In our eyes, the existing materials for macroscopic heat control can be generally
classified into two types. One is based on physical properties, such as thermoelectric
materials, pyroelectric materials, magnetocaloric materials, photo thermal conver-
sion materials, etc. The other is based upon geometric structures rather than physical
properties (namely, geometric structures play a more important role than materials’
physical properties). Among geometric structures, (normal) structural materials can
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be used to realize normal control of heat flow, but thermal metamaterials can be uti-
lized to achieve novel controls. So far, the field of thermal metamaterials has aroused
enormous research interests, as also evidenced by Google search that shows the
search of “thermal metamaterials” occupies 29.6% of all kinds of “metamaterials”
as of August 13, 2019.
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Chapter 2
Transformation Thermotics for Thermal
Conduction

Abstract This chapter describes the theory of transformation thermotics for thermal
conduction. We begin with the relationship between coordinate transformation and
geometric transformation and then give some basic tools of tensor analysis. Based on
Fourier’s law for heat conduction, we show how the form-invariance of an equation
under arbitrary coordinate transformation can result in a new technique tomanipulate
temperature field and heat flux. As a model application, we design a thermal cloak
to show how transformation thermotics works.

Keywords Transformation thermotics · Coordinate transformation · Geometric
transformation · Form invariance · Heat conduction

2.1 Opening Remarks

“Transformation thermotics is based on the form-invariance of the governing equa-
tions of heat transfer under coordinate transformations. It engineers thermal proper-
ties of materials like thermal conductivity, to modulate the heat flux in novel manners
like cloaking, concentrating and rotating.”

We can find similar descriptions about transformation thermotics [1, 2] in the
literature today. If one is not familiar with transformation theory on thermotics,
optics or acoustics, he/she might be puzzled by some concepts like “form-invariance
under coordinate transformations” and why this invariance can be used for heat
management. Here, we shall firstly talk about the motivation of transforming theory
and introduce some basic concepts.

Suppose light is traveling on a uniform plane and the trace of movement is a
straight line. Now one wants to let the light move on a curve, a simple idea is just to
bend the plane and then he/she may expect the light is bent accordingly. However, is
this enough and how to bend the space like bending a paper? Luckily, we have been
told in general relativity that the change of energy-momentum tensor can bend the
space so we can have a more general guess here that if one wants to manipulate some
physical fields as if the space is changed, he/she can change some important properties
of the space or the material on it, for example, the thermal conductivity tensor.

© Springer Nature Singapore Pte Ltd. 2020
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10 2 Transformation Thermotics for Thermal Conduction

Fig. 2.1 Schematic diagram showing how transformationworks, a is the original coordinate system
shown by black uniform grids, and the blue arrow represents a straight physical field, b is the new
coordinate system shown by uneven grids, which can also be seen as a twisted space so the blue
arrow is curved

Now one may ask: “Where is the coordinate transformation? You seem be talking
about geometric transformation when mentioning bending the light. What’s more,
why can this ideawork for heat transfer?” To answer these questions, we should intro-
duce transformation theory which tells how to change space or material properties
based on coordinate transformation to achieve the desired effect as the fields change
under geometric transformation; see Fig. 2.1. Also, we shall discuss the condition
when transformation theory is valid.

2.2 Coordinate Transformation and Geometric
Transformation

Let us start from the relationship between coordinate transformation and geometric
transformation. For clarity, we have to talk about some basic knowledge on tensor
analysis. Using Cartesian coordinate system in three-dimensional Euclidean space
E
3, a vector r with coordinates (x, y, z) can be written as

r = x i + y j + zk (2.1)

where {i, j , k} is the standard orthogonal basis of Cartesian coordinate system.
Consider a mapping f : E3 → E

3, satisfying

f (r) = (2x)i + (2y) j + (2z)k. (2.2)

It can be easily checked that f is a bijection or one-to-one correspondence on E
3.

The meaning of f is that the length of each vector doubles in E3 while the direction
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keeps unchanged. For a unit-ball in E3, its volume becomes 8 times under f . This is
a simple example of geometric transformation, which changes the vector r .

Naturally, we have another bijection f̂ : R3 → R
3, satisfying

f̂ ((x, y, z)) = (2x, 2y, 2z). (2.3)

If we use a new set of basis {gu, gv, gw} = {i/2, j/2, k/2}, we can see f̂ just
gives the new coordinates under this basis,

(x, y, z) · (i, j , k)′ = f̂ ((x, y, z)) · (gu, gv, gw)′. (2.4)

Here we should point out that a set of vectors {gu, gv, gw} can be a basis in E3 if
and only if they are linearly unrelated (the 3 vectors are not in the same plane). In
other words, orthogonality and normality are unnecessary. {gu, gv, gw} is also called
covariant basis. In tensor analysis, contravariant basis {gu, gv, gw} is another set of
vectors satisfying

gu · gv = δuv, (2.5)

where δuv is the Kronecker delta

δuv =
{
0 if u �= v,

1 if u = v.
(2.6)

It is obvious to see the existence of this contravariant basis andwemay decompose
the vector r as

r = xugu + xvgv + xwgw = xug
u + xvg

v + xwg
w, (2.7)

or by using Einstein summation convention, we can simplify it as

r = xugu = xug
u . (2.8)

Here {xu, xv, xw} is also known as contravariant components and {xu, xv, xw} is
called covariant components, which can be obtained by

xu = r · gu, xu = r · gu . (2.9)

In Cartesian coordinate systems, both covariant basis and contravariant basis are
{i, j , k}, so covariant and contravariant components are also the same.

To sum up, coordinate transformation means choosing a different basis while the
vector r itself is not changed. In fact, invariance under coordinate transformation is
a necessary condition for vectors.

So far, we can see geometric transformation and coordinate transformation are
two different concepts. However, it can be observed that the mapping f in geometric



12 2 Transformation Thermotics for Thermal Conduction

transformation andmapping f̂ in coordinate transformation have some relationships.
Mapping f can naturally induce mapping f̂ and vice versa. They both change the
coordinates (and thus length) of a vector: f changes the vector itself while f̂ changes
the measure of space instead. So, we can take f and f̂ as the same if we only care
about the mathematical forms of new coordinates after the mappings, although they
have different physical explanations indeed.

For most curvilinear coordinate systems, {gu, gv, gw} is not a set of constant
vectors and can vary with the elements in E3. Unless otherwise stated in this chapter,
indices u, v, w are used for general (curvilinear) coordinate systems while i, j, k for
Cartesian coordinate systems. For example, in spherical coordinate systems, we have
r = rgu + θgv + ϕgw where

gu = sin θ cosϕ i + sin θ sin ϕ j + cos θk,

gv = r(cos θ cosϕ i + cos θ sin ϕ j − sin θk),

gw = r sin θ(− sin ϕ i + cosϕ j).

(2.10)

In addition, we can see only gu is a unit vector. Here {gu, gv, gw} is also called
local covariant basis and we shall give the derivation for general cases below. Let
(xu, xv, xw) denote the coordinates for a vector in a curvilinear coordinate system
which has the relationship with Cartesian coordinates as

xu = xu(x, y, z),

xv = xv(x, y, z),

xw = xw(x, y, z).

(2.11)

To ensure (xu, xv, xw) can be a curvilinear coordinate, the map f̂ : (x, y, z) →
(xu, xv, xw) should be a smooth bijection, which is equivalent to the condition

det J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂xu

∂x

∂xu

∂y

∂xu

∂z
∂xv

∂x

∂xv

∂y

∂xv

∂z
∂xw

∂x

∂xw

∂y

∂xw

∂z

∣∣∣∣∣∣∣∣∣∣∣∣
�= 0, det J−1 =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂xu
∂x

∂xv

∂x

∂xw

∂y

∂xu
∂y

∂xv

∂y

∂xw

∂z

∂xu
∂z

∂xv

∂z

∂xw

∣∣∣∣∣∣∣∣∣∣∣∣
�= 0, (2.12)

where J is the Jacobianmatrix (we use a different font to distinguish between tensors)
from coordinate (x, y, z) to (xu, xv, xw). Here, the domain (for (x, y, z)) and the
range (for (xu, xv, xw)) of f̂ are both R

3.
Since we want to obtain the local basis for vector r with coordinate (xu, xv, xw),

we write the line element for an infinitesimal displacement from r to r + dr ,

dr = ∂ r
∂xu

dxu + ∂ r
∂xv

dxv + ∂ r
∂xw

dxw. (2.13)
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On the other hand, for vector dr , its coordinate is set as (dxu, dxv, dxw), meaning

dr = gudx
u + gvdx

v + gwdx
w. (2.14)

So the local covariant basis is just

gu = ∂ r
∂xu

, gv = ∂ r
∂xv

, gw = ∂ r
∂xw

. (2.15)

It is clear that {gu, gv, gw} points out the directions in which (u, v, w) increases.
Finally we have

gu = ∂x

∂xu
i + ∂y

∂xu
j + ∂z

∂xu
k,

gv = ∂x

∂xv
i + ∂y

∂xv
j + ∂z

∂xv
k,

gw = ∂x

∂xw
i + ∂y

∂xw
j + ∂z

∂xw
k.

(2.16)

This is a very convenient choice of the basis and we can use other basis.With local
basis, we can introduce metric tensor G, whose covariant components are defined as

guv = gu · gv. (2.17)

Then we can use the form of tensor product ⊗ (the Cartesian product) as

G = guvg
u ⊗ gv. (2.18)

The determinant of
[
guv

]
is

g = ∣∣[guv

]∣∣ (2.19)

and it is a function with r or (xu, xv, xw). Since we can also write

G = guvgu ⊗ gv = guvgu ⊗ gv = gv
ug

u ⊗ gv, (2.20)

we obtain ∣∣[guv
]∣∣ = 1

g
,

∣∣[guv ]∣∣ = ∣∣[gv
u

]∣∣ = 1. (2.21)

Here what we want to emphasize is that the determinant of a rank-2 tensor is
different from the determinant of a matrix. In tensor analysis, the determinant of a
rank-2 tensor A is

det A = ∣∣[Au
v

]∣∣ = ∣∣[Av
u

]∣∣. (2.22)

For metric tensor G, we have

det G = 1, (2.23)


