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Chapter 1
Introduction to Inland Dunes of North
America

Check for
updates

Nicholas Lancaster and Patrick Hesp

Abstract This chapter provides an introduction to the volume and summarizes the
occurrence of inland dunes in North America, the history of dune studies, and
aspects of dune chronology.

Keywords Dune fields - USA - Canada - Mexico - Luminescence chronology -
Sediment supply

1.1 Introduction

Inland sand dunes are widespread in North America and are found from the North
Slope of Alaska to the Sonoran Desert in northern Mexico and from the Delmarva
Peninsula in the east to Southern California in the west (Fig. 1.1). They cover an
area of approximately 459,165 km? of the United States and 42,000 km? of Canada
(Wolfe et al. 2009). Many of these dune fields are small and isolated, and are now
stabilized by vegetation and inactive or degraded in current conditions of climate
and sand supply. In combination with luminescence and radiocarbon dating of peri-
ods of aeolian accumulation or stability, these dune systems provide information on
past environmental conditions, including past wind regimes and periods of drought.
Active (vegetation-free or sparsely vegetated) dunes are mostly restricted to parts of
the southern Great Plains and the deserts of the Southwestern USA and Northern
Mexico, although small areas of active dunes do occur in boreal locations, e.g. Great
Kobuk Sand Dunes, Alaska (Mann et al. 2002).
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Fig. 1.1 Inland dune systems of North America. Dunefield extent from Wolfe et al. (2009) and
Soller et al. (2009), supplemented by Lancaster mapping

In this volume, we provide an overview of and highlight recent research on areas
of inland dunes in North America that span a range from those that are actively
accumulating in current conditions of climate and sediment supply to those that
were formed in past conditions and are now degraded relict systems. The contribu-
tions include detailed analyses of individual active dune systems at White Sands,
New Mexico; Great Sand Dunes, Colorado; and the Laurentian Great Lakes; as well
as the vegetation-stabilized dunes of the Nebraska Sand Hills and the Colorado
Plateau. Additional chapters discuss the widespread partially vegetated dune sys-
tems of the central and southern Great Plains; the relict dunes of the Atlantic Coastal
Plain of the eastern USA; and active and stabilized dunes of the Colorado Plateau
and the southwestern deserts of the USA and northern Mexico.

1.2 Inland Dune Studies in North America

There is a long history of observations and studies of inland dunes in North America.
European travelers and survey parties noted and, in some cases, mapped the occur-
rence of dunes (often referred to as “sand hills”). Their observations provide a valu-
able source of information on the state of dune fields on the Great Plains in the
nineteenth and early twentieth century, as discussed by Muhs and Holliday (1995).
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Many of these early observers also commented on the scenic beauty of the dunes.
For example Russell (1885) in his studies of the Lake Lahontan basin noted

“The sand here is of a light creamy-yellow color, and forms beautifully curved
ridges and waves that are covered with fret-work of wind-ripples, and frequently
marked in the most curious manner by the foot-prints of animals thus forming
strange hieroglyphics that are sometimes difficult to translate”. Zebulon Pike hap-
pened on the Great Sand Dunes of Colorado in January 1807 and observed that the
dunes appeared “exactly that of a sea in a storm (except as to color) and not the least
sign of vegetation”.

Mapping of soils and Quaternary deposits in the late nineteenth and early twen-
tieth centuries provided important information on the nature and extent of dunes in
the Midwest and Northeastern states (see references in Cooper (1935)), and in
southern California (Thompson 1929). The availability of aerial photographs in the
1920s and 1930s prompted more systematic investigations. One of the first to pro-
vide a comprehensive and detailed classification of dunes and to assess geomorphic
and age relations between different generations of dunes was the work of Melton
(1940), in the southern High Plains. Melton also suggested that dune-forming wind
regimes had changed over time from northwesterly to southerly, a change confirmed
by more recent studies (see Halfen and Johnson (2013) and Sridhar et al. (2000)).
Working at the same time, Hack (1941) mapped dunes in NE Arizona and provided
a seminal classification of dune type in relation to vegetation cover, sand supply, and
wind energy.

The first compilation of the extent of dune areas in the USA and parts of Canada
was undertaken by Thorp and Smith (1952) who published a map of sand and loess
deposits, based on state-by-state soil mapping. More detailed regional surveys of
dune occurrence and characteristics include those by Eymann (1953) and Dean
(1978) for deserts in southern California. H.T.U Smith and his son Roger (R.S.U.)
Smith compiled major surveys of dunes for the central Great Plains (Smith 1965)
and the North American deserts (Smith 1982). H.T.U. Smith was, in addition, one
of the first to recognize the importance of past wind action in shaping the dune sys-
tems of the Mojave Desert (Smith 1967).

Despite the widespread nature of dune areas in North America, major reviews of
Quaternary landforms and deposits such as Wright and Frey (1965) and Schultz and
Frye (1965) focused on the extensive loess deposits of North America. It was not
until the work of Busacca et al. (2003) and Muhs and Zarate (2001) that comprehen-
sive reviews of dune areas and their context were attempted. The mapping by Thorp
and Smith (1952) was updated by GIS based mapping that covers all northern areas
of North America (Wolfe et al. 2009), and dune and sand sheet areas in the conter-
minous USA are included in the USGS digital surficial deposit map compilation of
Soller et al. (2009). Additional regional studies of dune distribution and chronology
are provided by Halfen and Johnson (2013) for the central and southern Great
Plains; Muhs and Wolfe (1999) and Wolfe et al. (2004) for the northern Great Plains;
and Markewich et al. (2015) for the eastern USA; while dune distribution and char-
acteristics in the deserts of the southwestern USA and northern Mexico are sum-
marized by Lancaster (this volume).
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Studies of dune fields in North America have provided understanding of many
fundamental aspects of dune dynamics and history. Landmark investigations include
studies of the internal sedimentary structure of dunes at White Sands, New Mexico
(McKee 1966); and the pioneering investigations of the Algodones, Salton Sea, and
Kelso Dunes in California (Norris 1966; Norris and Norris 1961; Sharp 1966),
which provided the background for many subsequent investigations of dune dynam-
ics and sediment sources. Although North American dunes were not the primary
focus of the USGS Global Sand Seas project of the 1970s, the approaches inspired
by this group led to many important advances, including work on cold climate dunes
(Ahlbrandt and Andrews 1978), sand sheets (Fryberger et al. 1979), and the sedi-
mentology of Great Sand Dunes, Colorado (Andrews 1981). The recognition of
dunes on Mars provided a great incentive for terrestrial analogue studies of dunes,
including those in the deserts of the southwestern USA (Breed 1977; Greeley 1986)
and also resulted in studies of dune fields using remote sensing data sets (e.g. Blount
et al. 1990; Paisley et al. 1991; Ramsey et al. 1999). Renewed interest in planetary
dunes has come as a result of the data from Mars Science Laboratory Curiosity
Rover, prompting new investigations of terrestrial analogues in North America
(Ewing et al. 2015; Szynkiewicz et al. 2010).

Studies of modern dune sediments as a means to better interpret the characteris-
tics of ancient aeolian sandstones of the Colorado Plateau and elsewhere has moti-
vated multiple studies in the Desert Southwest, (e.g. Havholm and Kocurek 1988;
Hunter 1977; Kocurek and Nielson 1986; Nielson and Kocurek 1986; Simpson and
Loope 1985). The application of geochemical and mineralogical methods to under-
stand dune sand provenance, especially in the Plains and Desert Southwest, was
pioneered by Muhs and colleagues, and is summarized in Muhs (2017).

The creation of better instrumentation, an increased understanding of flow
dynamics, computer modeling, and realization of the importance of climate and
vegetation changes to dune activity has resulted in important investigations of winds
and sediment transport on dunes based on field experiments in North America, (e.g.
Barchyn and Hugenholtz 2012b; Frank and Kocurek 1994; Lancaster 1989;
Lancaster et al. 1996; McKenna Neuman et al. 1997, Pelletier and Jerolmack 2014,
Sweet and Kocurek 1990; Walker and Nickling 2003), with applications to both
inland and coastal dune systems.

1.3 Dune History and Chronology

Understanding of dune field history may provide information on past periods of
aridity and dune building, as exemplified by research into the history of dune accu-
mulation on the Great Plains of the USA and Canada, where the response of these
dune systems to episodes of severe drought and the possible effects of global warm-
ing has prompted many studies (Barchyn and Hugenholtz 2012a; Barchyn and
Hugenholtz 2013; Miao et al. 2007; Muhs and Maat 1993; Wolfe et al. 2000).
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Dune orientations separately, or in combination with data on loess thickness and
particle size trends, provide information on past wind regimes, for the last glacial
maximum period (Markewich et al. 2015; Mason et al. 2011), and for Holocene
drought episodes (Schmeisser et al. 2010; Sridhar et al. 2006). Such data sets are
valuable in making model-data comparisons and to validate paleo-climate models
(Conroy et al. 2019).

Numerical chronologies for periods of dune accumulation and stability in North
America were first developed using conventional “C ages of organic matter from
palaeosols and peat layers (e.g. Filion 1987). Subsequently, chronologies were
developed using accelerator mass spectrometry (AMS) “C dates (Ahlbrandt et al.
1983; Mason et al. 2004). These chronologies not only bracket periods of sand
accumulation, but provide useful information on periods of stability, especially
when the ages are from paleosols. They are, however, limited by the availability of
organic horizons in dunes, which restricts their utility to dunes in more humid areas,
or dunes associated with wetlands (Mehringer and Warren 1976).

With the development and widespread application of luminescence dating tech-
niques that provide a direct age for periods of aeolian sand accumulation,
luminescence-dated numerical chronologies have been developed, beginning with
the work of Forman and Maat (1990) in Colorado and Edwards (1993) at Kelso
Dunes, California. These investigations used TL (Thermoluminesence) and IRSL
(Infra-red stimulated luminescence), respectively. Subsequent studies have mostly
employed OSL (Optically stimulated luminescence) with SAR protocols, especially
on the Great Plains, where quartz-rich sands provide consistent results. In the Great
Basin and Mojave deserts, however, feldspar-rich dune sands favor use of IR stimu-
lated luminescence protocols.

The available chronologic information was summarized for dune areas in Canada
and the USA north of 38°N by Wolfe et al. (2009) and then comprised 163 lumines-
cence and 880 radiocarbon dates. This database provided the basis for a global
chronologic database — the INQUA Dunes Atlas database (Lancaster et al. 2016).
Currently, there are 1286 luminescence dates in the database for North America
(Canada, Mexico, and the USA). Their spatial distribution is shown in Fig. 1.2. A
review and interpretation of these ages is provided by Halfen et al. (2015). It is clear
from Fig. 1.2 that the coverage of dated sites is uneven. In particular, there are rela-
tively fewer published ages from dunes in the southern Great Plains, the intermoun-
tain west, Mexico, and Alaska. The temporal distribution of ages for the region is
complex: multiple periods of Holocene dune accumulation and reworking have
occurred and indicate the sensitivity of dunes in many areas to climate change.

Given the widespread distribution of active and vegetation-stabilized dunes in
North America, it might be expected that the boundary conditions of sediment sup-
ply, availability and mobility (Kocurek and Lancaster 1999) would be similarly
diverse. However, this does not appear to be the case. In areas adjacent to the
Laurentide Ice Sheet, deglaciation provided an abundant source of sand from glacio-
fluvial deposits, leading to the formation of dune fields throughout the northern
Plains and the upper Midwest (Arbogast et al. 2015; Halfen et al. 2015). Elsewhere
formation of dune fields in many areas is clearly linked to enhanced sediment sup-
ply from fluvial sources, as in the Great Plains (Halfen and Johnson 2013) and the
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Fig. 1.2 Luminescence and radiocarbon dated dunes sites in North America. Dune extent as
Fig. 1.1. Sites from INQUA Dunes Atlas Chronologic Database, http://inquadunesatlas.dri.edu

southeast coastal plain (Swezey et al. 2016). The record is more complex in areas of
the southwestern deserts, in part because of the lack of luminescence ages, but flu-
vial sources are clearly indicated for the Algodones and Parker dunes (Muhs
et al. 2003).

1.4 Conclusions

The widespread occurrence of dune fields in North America is indicative of the
importance of aeolian activity in many different landscapes, from the margins of the
boreal forest to hot deserts. The occurrence of the dune fields and their history
reflect a variety of boundary conditions, including increased sediment supply during
the late Pleistocene and Pleistocene-Holocene transition; and mid- to late-Holocene
drought periods. The variety of dune field environments has promoted a range of
investigations, from modern dune dynamics to Quaternary history. These different
approaches are well-exemplified in this volume of studies. They also indicate the
areas in which further research is needed, including application of modern lumines-
cence dating techniques to dunes in the desert southwest.
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Chapter 2
Quaternary Eolian Dunes and Sand Sheets

in Inland Locations of the Atlantic Coastal
Plain Province, USA

Check for
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Christopher S. Swezey

Abstract Quaternary eolian dunes and sand sheets that are stabilized by vegetation
are present throughout many inland locations of the Atlantic Coastal Plain province
(USA). These locations include river valleys, the Carolina Sandhills region, adja-
cent to Carolina Bays, and upland areas of the northern coastal plain. The eolian
dunes are primarily parabolic in river valleys and in upland areas of the northern
coastal plain, linear in the Carolina Sandhills region, and arcuate adjacent to
Carolina Bays. Optically stimulated luminescence (OSL) ages from the eolian sands
range from circa (ca.) 92-5 ka, revealing that they are relict features that are not
active today. These sands have been degraded by vegetation and pedogenic pro-
cesses, and are stabilized under modern environmental conditions. Most of the OSL
ages are approximately coincident with the last glacial maximum (LGM), when
conditions were generally colder, drier, and windier. Various features associated
with these eolian dunes and sand sheets suggest that the winds that mobilized the
sand blew from the northwest in the coastal plain region of Maryland and Delaware,
and from the west in the coastal plain region of North Carolina, South Carolina, and
Georgia. Most of the eolian dunes and sand sheets are composed of fine to medium
sand, although a substantial silt component is present in the northern coastal plain,
and a substantial coarse sand component is present in the Carolina Sandhills region.
Eolian sand mobilization would have been facilitated by conditions of stronger
wind velocity (at least 4-6 m/s), lower air temperature, lower air humidity, and (or)
reduced vegetation cover. Eolian sediment mobilization appears to have occurred
episodically at any given site, although sites that are farther south have preserved a
greater proportion of eolian sands yielding pre-LGM ages (indicating that the south-
ern landscapes farther from the ice sheet have experienced less reworking).
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2.1 Introduction

In the eastern United States (U.S.), the Atlantic Coastal Plain province (Fig. 2.1)
extends from New York to Florida, and contains strata and sediments of Cretaceous
to Quaternary age. Until recently, much of the Quaternary record in this province
has been considered to be relatively sparse, consisting primarily of a few onshore
lacustrine and paludal records, some beach and barrier island complexes, and some
offshore sand and mud. However, with the advent of optically stimulated lumines-
cence (OSL) dating techniques and high-resolution topographic information from
Light Detection and Ranging (LiDAR) data, new studies have revealed that the
Quaternary record of Atlantic Coastal Plain province is much more extensive and
complex than had previously been perceived. Some of these new studies have
focused on fluvial settings (e.g., Leigh 2006, 2008; Suther et al. 2011), whereas oth-
ers have focused on modern coastal settings (e.g., Mallinson et al. 2008; Scott et al.
2010; Timmons et al. 2010; Parham et al. 2013; Seminack and Buynevich 2013;
Peek et al. 2014). One of the more surprising revelations from these new studies is
the recognition of widespread Quaternary eolian sand dunes and sand sheets of
approximately synchronous age throughout many inland locations of the
U.S. Atlantic Coastal Plain province (e.g., Ivester et al. 2001; Ivester and Leigh
2003; Markewich et al. 2009; Swezey et al. 2013, 2016a, b).

Inland locations of the U.S. Atlantic Coastal Plain province are not settings in
which one would typically expect widespread eolian sands because the modern cli-
mate is not conducive to eolian sediment mobilization. Indeed, most of these inland
Quaternary eolian sediments are stabilized by vegetation, and the dune and sand
sheet morphologies have been degraded by erosion and pedogenic processes. In
other words, these eolian sediments are relict features from times when conditions
were different from the modern environment. Although future work will undoubt-
edly reveal additional locations and features, this publication provides a summary
of Quaternary eolian sand dunes and sand sheets in the following four inland set-
tings of the U.S. Atlantic Coastal Plain province: (1) river valleys; (2) the Carolina
Sandhills region; (3) Carolina Bays; and (4) upland areas of the northern Atlantic
Coastal Pain.

2.2 Modern Climate

From northern Delaware to northern Florida, the modern climate of the Atlantic
Coastal Plain province is humid and mesothermal with little or no water deficiency
during any season (climate classification of Thornthwaite 1931, 1948). During
January the mean temperature varies from ~0 °C in northern Delaware to ~12 °C in
northern Florida, whereas during July the mean temperature varies from ~12 °C in
northern Delaware to ~30 °C in northern Florida (Fig. 2.2). Precipitation occurs
throughout the year, and mean annual precipitation ranges from ~110 cm in
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(2001, 2002). Alab. Alabaha River, BB Big Bay, BS Bear Swamp, ChiR Chicomacomico River,
ChoR Choptank River, DP Dukes Pond, FB Flamingo Bay, Great PD Great Pee Dee River, HB
Herndon Bay, Little PD Little Pee Dee River, LM Lake Mattamuskeet, LOR Little Ocmulgee River,
MhR Marsheyhope Creek, MR Magothy River, NR Nanticoke River, PaR Patapsco River, PxR
Patuxent River, PocR Pocomoke River, PotR Potomac River, RR Rhode River, SeR Severn River,
SoR South River, WB Wilson’s Bay, WR Wicomico River



14 C. S. Swezey

TOASTAL o
7S PLAIN sl

Arlantic Ocean

30°N, 30°N]
i 100 miles 100 miles
0 100 km 100 kny

28°N 28°N|

Gulf of Mexico
16
26°N, 26°N|
86°W B2\ W, B67W W, k 78,
January MODERN JULY Modemn

Fig. 2.2 Modern climate data of the southeastern United States. Mean temperature data in degrees
Celsius are from Webb et al. (1993), and mean resultant wind data are from Baldwin (1975). The
mean resultant wind is the vectorial average of all surface wind velocities and wind directions on
the basis of hourly observations at a given place during the specified months for 1951-1960. The
velocity of surface wind in meters per second (m/s) is written inside each circle, and is proportional
to the length of the gray arrows

northern Delaware to ~140 cm in northern Florida (Fig. 2.2). Average annual free
water surface (FWS) evaporation values range from ~92 cm in northern Delaware
to ~122 c¢m in northern Florida (Farnsworth et al. 1982). Average annual potential
evapotranspiration values range from ~74 cm in northern Delaware to ~107 cm in
northern Florida (Fig. 2.2). These values yield ratios of annual precipitation to
potential evapotranspiration (P:PE) that vary from 1.49 in northern Delaware to
1.31 in northern Florida. For reference, a P:PE ratio between 0.50 and 0.75 denotes
a “sub-humid” climate in the UNESCO (1979) classification of arid regions.

The directions of surface winds in the southeastern United States vary seasonally
(Fig. 2.2) and are governed primarily by the following three variables: (1) the west-
erlies; (2) the polar front jet stream; and (3) the Bermuda High. During winter, the
westerlies and the polar front jet stream are stronger, the polar front jet stream
moves to lower latitudes, and the Bermuda High is weaker (Sahsamanoglou 1990;
Harman 1991; Davis et al. 1997). As a result, during winter the surface winds over
the Atlantic Coastal Plain province blow predominantly from the west and
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west-northwest. Most precipitation during winter is frontal in association with the
polar front jet stream where cold and dry continental air from Canada is in contact
with warm and humid maritime air from the Gulf of Mexico (Court 1974; Soulé
1998; Katz et al. 2003). In contrast, during summer the westerlies and the polar
front jet stream are weaker, the polar front jet stream moves to higher latitudes, and
the Bermuda High is stronger (Sahsamanoglou 1990; Harman 1991; Davis et al.
1997). As a result, during summer the surface winds over the U.S. Atlantic Coastal
Plain province blow from the south via the Bermuda High, bringing moisture to the
Atlantic Coastal Plain from the Gulf of Mexico and (or) the Atlantic Ocean (Court
1974; Soulé 1998; Katz et al. 2003). Most precipitation during summer is associated
with convection rather than fronts.

The mean resultant velocity of surface winds in the U.S. Atlantic Coastal Plain
province is <3 m/s during any given month (Fig. 2.2), but there is some variability
(“gustiness”) around the mean. For example, wind velocities of 6 m/s or greater
occurred ~8% of the time per whole year during the interval of 1981-2010 accord-
ing to hourly data from the Metropolitan Airport at the city of Columbia, South
Carolina (www.ncdc.noaa.gov; accessed 18 August 2016). In relatively warm low-
latitude regions, however, typical threshold wind velocities for sustained eolian
mobilization of 0.25-0.50 mm diameter quartz sand are 4—-6 m/s (e.g., Hsu 1974),
and therefore modern surface winds in inland locations of the Atlantic Coastal Plain
province are really not sufficient for much sustained eolian sand transport.

2.3 Age Data

The age data presented in this paper were obtained by radiocarbon techniques and
(or) luminescence techniques. Unless otherwise stated, the radiocarbon ages are
reported in radiocarbon years (**C yr) before present (BP), using the Libby half-life
of 5568 years and with 0 '“C year BP being equivalent to AD 1950. In contrast, the
luminescence ages are reported in calibrated years (cal year) BP with O cal year BP
being the year that a specific luminescence age was determined. The luminescence
ages presented in this paper were compiled from different sources, and different
authors used different statistical models to determine their best estimates of the
ages. Where available, information on these different statistical models is given in
Tables 2.1, 2.2, 2.3, and 2.4. For luminescence ages published for the first time in
this paper (Table 2.2), the choice of statistical model that is thought to yield the most
accurate age follows criteria discussed in Swezey et al. (2016b). In brief, if the dis-
persion was <25% (as determined by the R program radial plot, following Galbraith
and Roberts 2012), then the preferred age was the age obtained by the weighted
mean. If the dispersion was >25%, then the preferred age was the age obtained by
the Minimum Age Model-3.
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