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Supervisor’s Foreword

The scope of this thesis is the study of scale invariance in non-equilibrium systems
in statistical physics. Out of equilibrium, systems exhibit a great wealth of scaling
behaviours. Not only new intrinsically non-equilibrium universality classes have
been discovered, but also new behaviours, which have no counter-parts in equi-
librium systems. A typical example is self-organised criticality, in which the
dynamics itself drives the system to a critical state, without fine-tuning any external
parameters, contrary to a standard phase transition. Another intriguing phe-
nomenon, which has been unveiled in active matter systems, is the spontaneous
breaking of a continuous symmetry in dimension less than two, which is not
permitted at equilibrium since it violates the Mermin-Wagner theorem.

To investigate systems out of equilibrium, one cannot rely on the standard tools
of statistical mechanics available for equilibrium systems. New theoretical
approaches have to be developed. A very versatile and powerful one to study
scaling phenomena is the renormalisation group (RG). In particular, in recent
decades, a modern formulation of the RG has emerged, which is both functional
and non-perturbative (NPRG), and has allowed one to address genuinely
strong-coupling problems.

We have initiated the application of these techniques to classical
non-equilibrium systems in the 2000s. We have first focused on single-species
reaction-diffusion processes, which are simple models describing particles that
diffuse randomly on a lattice and interact when they encounter. These systems
exhibit absorbing phase transitions—transitions between an active and a
non-fluctuating state—belonging to non-equilibrium universality classes. Another
important application we have considered concerns stochastic interface growth and
kinetic roughening, as described by the celebrated Kardar-Parisi-Zhang equation.
A randomly growing interface always becomes rough as it grows, and this rough
phase is scale invariant. This is an example of self-organised criticality. The rough
phase corresponds in dimensions greater than one to a strong-coupling fixed point,
unaccessible at any order of perturbation theory, and we have developed a suitable
framework within the NPRG which enables one to describe it.
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Malo’s thesis represents an important contribution in this field, by pushing
further the applications of the NPRG method in two respects: he addresses for the
first time a two species reaction-diffusion process, and he develops a new scheme
within NPRG to address the long-standing problem of turbulence. Let me be more
specific on these two aspects.

In the first part of this thesis, Malo studies a two-species reaction-diffusion
system which is called Diffusive Epidemic Process. This model exhibits an
absorbing phase transition, in which universality class depends on the relative
diffusion rates of the two species. One of these cases is very controversial, since it
has been argued that the transition could be first order, or be continuous but with
debated universal properties. To tackle this problem, Malo develops the first
implementation of NPRG methods for a two-species reaction-diffusion process. He
unveils subtle issues concerning the very definition of the model and the ensuing
symmetries which in fact do not coincide between the different definitions. This
clarifies some of the disagreements present in the literature. He then analyses the
model within the Local Potential Approximation, which is a standard approxima-
tion scheme within NPRG. Although the outcome of this analysis does not bring a
definite answer to the problem—which would require going to a higher-order
approximation—all the framework to address multi-species reaction-diffusion
processes is set up and the main technical issues are discussed. This part constitutes
a useful basis for a reader interested in applying NPRG techniques to other similar
problems.

In my opinion, the most beautiful breakthrough of Malo’s work concerns fully
developed turbulence, in homogeneous, isotropic and stationary conditions. We had
started to work on this subject a few years before Malo started his Ph.D. Our aim
was more or less to transpose our experience with the KPZ equation, which maps to
the Burgers equation and hence can be viewed as a simplified model for turbulence,
to the full Navier–Stokes problem. To our surprise, we found a new time-gauged
symmetry of the Navier–Stokes field theory, related to a shift in the response field
sector. We realised that this symmetry was crucial since it enabled us to close
exactly the flow equation for the two-point correlation function in the limit of large
wave-number. Malo’s thesis reveals the full power of this approach, since he
obtains an analytical expression for any multi-point correlation functions of tur-
bulence, which is exact in the limit of large wave-numbers.

The crux of this derivation is to combine an existing approximation scheme
within NPRG, called the Blaizot-Mendez-Wschebor scheme, with the time-gauged
symmetries of the Navier–Stokes field theory, in a new scheme which can be called
large-momentum expansion. In this expansion, Malo derives a proof showing that
the flow equation of any n-point correlation function can be closed exactly at
leading order in this expansion, and bears a simple expression. He then obtains the
solution of these flow equations at the fixed point, in both regimes of small and
large time delays. These results constitute a milestone for NPRG methods, since
they show that within this framework, the whole hierarchy of flow equations for the
correlation functions can be treated in a systematic and fully analytical way. They
hence pave the way to new types of approaches. Malo’s results are also an
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important contribution in the domain of turbulence, where controlled results derived
directly from the Navier–Stokes equation, without phenomenological inputs, are—
to say the least—scarce. I am sure that the interested reader will find inspiring
materials in this thesis.

Grenoble, France
October 2019

Prof. Léonie Canet Isère

Supervisor’s Foreword ix
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Chapter 1
General Introduction

This manuscript presents the study of two physical systems belonging to the field
of out-of-equilibrium statistical physics: the diffusive epidemic process, and homo-
geneous isotropic fully developed turbulence. The former is a simplified model for
the diffusion of an epidemic in a population. More specifically, we focus on the
continuous phase transition it undergoes when the population density is varied. The
second system is a fluid in a turbulent stationary state, as described by the Navier–
Stokes equation subjected to a random forcing. Both systems, in addition to share
the property of being intrinsically out-of-equilibrium, are examples of critical phe-
nomena. In this work, the study of each system is conducted using the tools coming
from the framework known as the non-perturbative (or functional) renormalization
group. Before delving into the particular physics of each system, let us present in
this introduction the more general context of universal and critical phenomena in
statistical physics, with an emphasis on the case of out-of-equilibrium systems, as
well as the field theoretical methods developed to study them.

Statistical physics is the study of systems containing a large number of degrees
of freedom. Its aim is to give a description of the global macroscopic phenomena
of such system as emerging from the fluctuations of its microscopic elementary,
possibly interacting, constituents. In order to reduce the complexity of the descrip-
tion, one aims at building a minimal microscopic model, in the sense that it should
reproduce all the known macroscopic features of the statistical system under study
in the simplest way and with the least possible amount of ingredients needed. The
rationale behind such approach lies in the fact that macroscopic observables are built
up by the contributions of a large number of microscopic degrees of freedom. Thus
it is reasonable to hope that for well-chosen macroscopic observables, some form
of self-averaging takes place and these quantities are not sensitive to some details
of the microscopic description. The resolution of the model can in turn lead to new
predictions and suggests new experiments. In this back-and-forth process, one hopes
to find unifying pictures or mechanisms which shed light on universal phenomena
in physics.

© Springer Nature Switzerland AG 2020
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2 1 General Introduction

A prominent example of such universality is given by critical phenomena, such
as continuous phase transitions. Indeed, in a critical phenomenon, the degrees of
freedom become correlated over all the range of scales spanned by the system. As
a consequence, the long distance behavior of the system loses memory of most of
the physics at the microscopic scales. This is reflected for example in the appearance
of scaling laws, with universal exponents, at the approach to a continuous phase
transition. Unfortunately, these scaling laws signal the existence of singularities,
which hinder the approaches traditionally applied to derive themacroscopic behavior
from a microscopic model. Critical phenomena in statistical physics were identified
to be closely related to the problem of renormalization in quantum field theory. Thus,
it was tempting to apply the methods developed in this framework (Bogolyubov and
Shirkov 1959; Dyson 1949; Stueckelberg and Petermann 1953), to study the critical
properties of such systems. In the case of equilibrium physics, this bridge was made
by Wilson and Kogut (1974), Fisher (1974), building on earlier work by Kadanoff
(1966). They interpreted the early renormalization schemes developed for quantum
field theory in a new framework, the Renormalisation Group (RG). The general idea
of this method is to construct an effective theory for the macroscopic observable
not by trying to calculate the contributions coming from the degrees of freedom
living at all scales at once, but to do so progressively. One starts with the fluctuations
having as typical scale the scale at which is defined the microscopic physics, named
the ultraviolet (UV) cutoff of the system, and ends at the scale of the macroscopic
observables, the infrared (IR) cutoff. If the system is at a critical point, the integration
of all degrees of freedom from the UV to the IR generates singularities. To do the
integration infinitesimally allows one to understand how these singularities appear.
This operation can be formulated as a differential equation giving the evolution of the
system under a change of the RG scale. An exact equation for the RG flow was given
byPolchinski (1984). In the following decade, this exact RGflowwas reformulated in
terms of the effective action by Wetterich (1993), Morris (1994), Ellwanger (1994).
This approach is now given the standard name of Non-Perturbative (also named
functional) Renormalisation Group (NPRG).

Now, let us emphasize somes specificities of out-of-equilibrium systems in sta-
tistical physics. The most successful framework to take into account microscopic
fluctuations is the theory of systems at equilibrium with a thermal bath. For a system
at equilibrium, the logarithm of the probability of a given microscopic configuration
is assumed to be proportional to the energy associated to the configuration (Gibbs
1902).However, a large part of phenomena in statistical physics donot fit in the frame-
work of equilibrium or perturbation to equilibrium. Indeed in these latter cases, the
statistical correlations exhibited by the system and its statistical response to a pertur-
bation are not independent: they are found to satisfy what is known as the fluctuation-
dissipation theorem. This fact pertaining to systems at equilibrium can be traced back
to a property named detailed balance. Because the dynamics of out-of-equilibrium
systems are not constrained to satisfy detailed balance, they describe a richer physics
than the one accessible to systems at or dissipating to equilibrium. For example,
out-of-equilibrium systems can exhibit continuous phase transitions between fluc-
tuating and non-fluctuating steady states (Hinrichsen 2000), which is impossible at
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equilibrium. Moreover, numerous out-of-equilibrium systems are found to be gener-
ically critical. For systems at equilibrium, critical behaviors are generally associated
to continuous phase transitions. In these cases the critical behavior emerges from a
fine-tuning of some parameters of the theory. However, for many out-of-equilibrium
systems, this critical behavior emerges without any fine-tuning of the parameters.
This phenomenon, sometimes termed self-organized criticality (Bak et al. 1987),
has maybe as most famous example interface growth, modeled by the celebrated
Kardar–Parisi–Zhang equation (Kardar et al. 1986). These peculiarities of classi-
cal out-of-equilibrium systems make it an exciting playground to study the physics
of critical phenomena using the tools of the RG, as pioneered in Janssen (1979).
See Täuber (2014) for a review sticking to perturbative RG and Canet et al. (2004),
Canet et al. (2010) for two modern examples using NPRG.

Unfortunately, contrary to equilibrium systems, for out-of-equilibrium systems
there does not exist an a priori probability distribution for the microscopic configu-
rations. Thus one has to model explicitly the fluctuations within the dynamics of the
microscopic degrees of freedom. There are two traditional ways used by physicists
to generate such stochastic dynamics for classical systems. The first one is to pertub
the deterministic dynamic followed by the microscopic degrees of freedom with a
noise term, which is generally assumed to be Gaussian. This facilitating hypothesis
is justified by viewing the noise as emerging from the sum of many unknown small
independent effects. When the number of degrees of freedom is countable, one can
write a set of Langevin equations. However, it is often more convenient to represent
the degrees of freedom as fields, whose evolution is then given by stochastic par-
tial differential equation (SPDE). The second way to build a dynamics is to assume
that the process can be described by a time-continuous Markov chain and in this
case, the prescription of the dynamics is done by giving the master equation of the
process. However, both of these formulations are not straightforwardly amenable to
the treatment by renormalization methods. This gap led to many developments in
the ’60, notably for applications to turbulence (Kraichnan 1961; Wyld 1961), which
were synthetized and popularized by Martin et al. (1973). It was realized that the
dynamics of a statistical system given by a SPDE could bewritten in formal closeness
with quantum field theory at the price of introducing an extra field for each degree
of freedom of the theory. This breakthrough, named the response field formalism,
enabled the use of the tools of quantum field theory to tackle critical phenomena
in out-of-equilibrium statistical systems. Later it was shown by Janssen (1976), De
Dominicis (1976) that the field theory for the observables and the response fields
could be formulated as a partition function, summing over configurations in space-
time weighted by the exponential of an action. This formulation opens the way to
powerful approximations relying on saddle-point methods, to a systematic way to
account for the symmetries of a model and put out-of-equilibrium field theories on
the same footing as equilibrium ones for a RG treatment à la Wilson. The mapping
from a SPDE to a partition function for a field theory is known collectively as the
Martin–Siggia–Rose–Janssen–de Dominicis (MSRJD) formalism. Although it is not
the focus of this work, let us note that in the case of quantum systems there also exist
a formalism to write a partition function when the system is not at equilibrium. It
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is known as the Schwinger–Keldysh formalism (Schwinger 1960, 1961; Keldysh
1964) and its semi-classical limit gives back the action of MSRJD (Kamenev 2011).
In the same decade, starting directly from the evolution of the probability distribution
of the observables, Doi devised another method to map statistical systems into field
theory akin to the “second-quantization” in quantum systems (Doi 1976a, b). This
method leads to a different field theory from the one obtained by the MSRJD for-
malism and the link between the two is still subject to some discussions. The method
was presented and refined in the case of reaction-diffusion processes (also named
birth-death processes) on a lattice in Peliti (1985) and since then bears the name of
Doi-Peliti formalism. In the present days, out-of-equilibrium statistical physics is
often presented as subdivided in two categories. On the one hand, processes which
are defined in the continuum through their SPDE and casted to a field theory using
theMSRJD formalism. On the other hand, jump processes with countable state space
such as reaction-diffusion processes on a lattice, defined by their master equation and
whose continuum limit is taken at the level of the Lagrangian, after using Doi-Peliti
formalism. This separation is represented in this work, as the forced Navier–Stokes
equation is a SPDE, and the diffusive epidemic process is a originally formulated as
a reaction-diffusion process on a lattice.

In Chap.2 we will present the physics of both systems and the open problems
which motivated our study. In Chap.3, we will make a short presentation of the
framework of the NPRG, with an emphasis on its application to out-of-equilibrium
field theories. Finally, in Chaps. 4 and 5, we will present respectively our take on the
characterization of the phase transition of the diffusive epidemic process, and on the
breaking of scale invariance in homogeneous isotropic fully developed turbulence.
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Chapter 2
Universal Behaviors in the Diffusive
Epidemic Process and in Fully Developed
Turbulence

In this chapter, the phenomenology and challenges of the two systems studied as part
of the thesis work are presented. Firstly, in Sect. 2.1 we give a short account on the
physics of the diffusive epidemic process and in particular of the phase transition
between a fluctuating state and an absorbing state that this system undergoes.We take
the time to present the existing literature on the subject and to uncover some remaining
issues in the established description of this system. Secondly, in Sect. 2.2 after giving
the general phenomenology and challenges of fully developed turbulence influids,we
focus on the two subjects studied here: the time-dependence of correlation functions
in both two- and three-dimensional turbulence, and the existence of intermittency in
two-dimensional turbulence.

2.1 The Absorbing Phase Transition in the Diffusive
Epidemic Process

The first part of the manuscript is devoted to studying the absorbing phase transition
occurring in the diffusive epidemic process. Absorbing phase transitions are phase
transitions to a state from which the system cannot escape, a phenomenon exclusive
to out-of-equilibrium physics. The diffusive epidemic process (DEP), proposed in
van Wijland (1998), is a stochastic process which serves as a streamlined model to
describe the propagation of an epidemy in a population without immunization. The
absorbing phase in this case is the state without any individuals infected such that
the epidemy has disappeared. As announced in the introduction, DEP belongs to the
class of reaction-diffusion processes. Let us first give a brief general introduction to
these models.

The denomination of reaction-diffusion process covers in this work Markov pro-
cesses continuous in time and with countable state space. The process is understood
as describing a set of particles species undergoing random and independent events,
for example the annihilation of two particles when they cohabit on the same site.
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These processes are very simple to formulate in the form of a master equation but
they can encompass an extremely rich set of phenomena. The hoppings and reactions
rates are most often chosen local, in the sense that each individual particle performs
a random walks, with or without exclusion, and the reactions happen between par-
ticles on the same site. Because each reaction can be chosen individually to model
a particular process, reaction-diffusion processes are a rich playground to formulate
and test minimal models. To fix the idea, let us already describe the set of reactions
and diffusions defining DEP. DEP is a process with two species of particles, healthy
and infected individuals, noted respectively A and B. A and B particles can hop to
neighbouring sites, without exclusion effects, at rate DA and DB respectively. Fur-
thermore, when a A and a B individuals are on the same site, B can infect A at the
rate k. Finally, B individuals recover and transform into A at rate 1/τ . This set of
reaction can be summarized symbolically as

Infection A + B
k−→ B + B

Recovery B
1/τ−→ A

Diffusion of A A + ∅ DA−→ ∅ + A

Diffusion of B B + ∅ DB−→ ∅ + B

(2.1)

Let us reviewquickly how the physics of reaction-diffusion processes can be inves-
tigated theoretically. The simplest approximation consists in assuming well-mixing,
meaning that the densities of A and B are homogeneous, and to neglect all correla-
tions, which is called the (homogeneous) mean-field approximation. This gives sim-
ply the generalization of the law of mass action to out-of-equilibrium for the process
considered. Still neglecting correlations but taking into account non-homogeneity,
one obtains partial differential equations which are a subject of study in themselves
(Kolmogorov et al. 1991; Turing 1952). However, the mean-field approximation
may fail to describe the physics at hand. Notably it is known to not be applicable
at a continuous phase transition. In order to theoretically study such systems further
than their mean-field description, we will see later that one generically has to solve
an infinite hierarchy of coupled temporal evolutions obeyed by the moments of the
observables of the system.

A subset of the reaction-diffusion processes are said to be integrable. Formally,
these are systems which possess enough conserved quantities such that one can
decouple all the degrees of freedom of the system. For these systems, one can hope to
find closed analytical expressions for any averaged observables. Integrable stochastic
processes are closely linked to quantum integrable models. In particular, stochastic
processes in one spatial dimension and with exclusion can often be mapped to a
quantum spin chain problem. The methods developed in this field are thus closely
related to their quantum mechanical counterparts (Babelon et al. 2003).
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However, the largest part of physically relevant reaction-diffusion processes do
not satisfy the conditions of integrability. One way to tackle this difficulty is to
turn to numerical studies. Reaction-diffusion processes are conceptually simple to
simulate numerically and can be implemented with cost-effective methods. In gen-
eral, these methods are based on the Monte-Carlo algorithm to explore the phase
space of the system through jumps between states (Marro and Dickman 1999). If
one is not satisfied with numerical simulations, approximations has to be devised in
order to go further. Many approaches to get an approximate picture from the exact
hierarchy of equations have been attempted over the years. Among these and with-
out exhaustivity, let us cite three which have been successful in describing critical
phenomena in reaction-diffusion systems. The first kind of approaches consist in
modifying the reaction rates such as to inhibit the propagation of the correlations.
In this family one finds for example the cluster mean-field method (Gutowitz et al.
1987). Another type of approach aims at devising mesoscopic Langevin equations
for the coarse-grained observables. These Langevin equations are often justified on
phenomenological grounds (Janssen 1981; Wiese 2016), but they can sometimes
be derived rigorously (Gardiner et al. 1976; Kampen 2007; Kurtz 1978). Finally,
reaction-diffusion processes can be mapped to a field theory in order to use the tools
of RG and NPRG. As announced in the introduction, this is our choice in this work.

After this general survey on the different approaches to study reaction-diffusion
processes, let us turn to their phenomenology. In order to do so, before tackling DEP,
we present in the next section the directed percolation process, which is a simpler
and well-studied one-species model.

2.1.1 Directed Percolation

In section, we give a brief summary of the directed percolation process. This will
turn useful because directed percolation (DP) is the most paradigmatic model for
transitions to an absorbing state andDEPcanbe seen as a extension of it. Furthermore,
it can serve as a pedagogical introduction to the framework of reaction-diffusion
processes for unfamiliar readers.

The DP process is given by the evolution of a population of particles, noted X ,
distributed on the sites of a lattice (most generally a d-dimensional hypercubic one).
Each particle can hop to neighbouring sites with diffusion rate D. Moreover each
particle can replicate itself with rate σ and disintegrate with rate μ, and two particles
canmerge with rate 2λ upon encountering. These rules are symbolically summarized
in the following table:
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Branching X
σ−→ X + X

Disintegration X
μ−→ ∅

Coagulation 2 X
2λ−→ X

Diffusion X + ∅ D−→ ∅ + X

(2.2)

The names branching, coagulation, and directed percolation come from an equivalent
formulation of this model in term of a percolation problemwith a preferred direction.
We refer to Hinrichsen (2000) for an extensive review of the subject of DP. The set
of rules above can lead the system to a state with zero particles but do not allow to
escape from it. The zero particle state is the simplest example of what is called an
absorbing state. The natural question at this point is whether and for which initial
conditions and values of the parameters the system will fall into this absorbing state.

Let us give a first rule of thumb answer. In order to do so, we assume well-mixing
and make the mean-field approximation. Namely, we assume that the diffusion rate
is much faster than the branching, disintegration and coagulation rates, such that the
system can be considered as homogeneous and can be described by only one observ-
able: the total number of particles, N . The branching and disintegration rates are
then proportional to N . Furthermore, for N large, the correlations between particles
should be negligible and the coagulation rate should be proportional to N 2, as it is
proportional to the number of pairs. In this approximation, the variation of N is thus
given by

∂t N = (σ − μ)N − λN 2 . (2.3)

A quick stability analysis of this equation tells us that for σ − μ < 0, the only sta-
tionary state is N = 0, which turns out to be stable, while for σ − μ > 0 the only
stable stationary state is N = (σ − μ)/λ ≡ N ∗. The system thus undergoes a phase
transition from a fluctuating occupied state (N = N ∗) to the absorbing extinct state
(N = 0). Furthermore, it is readily calculated that forσ − μ �= 0, (2.3) gives an expo-
nential approach to the stationary state, with a typical time τ = (σ − μ)−1 while it
acquires an algebraic behavior, decaying as t−1, at σ − μ = 0. This critical slowing
down of the dynamics is typical of second-order phase transitions. Of course, this first
approximation has the obvious drawback that it describes a transition to a state with
zero particles by making the assumption of a large number of particles in presence
and by neglecting the pair correlations.

These findings prompt to give a more precise description of the model. The rules
(2.2) has to be interpreted in terms of a Markov process, whose master equation is
given in Appendix A. In that appendix, we explain how the time evolution of the
averaged observables can be derived using the generating function. In particular, the
exact equation for the mean occupation number at the site k reads


