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Preface

When we wrote the Preface to the first edition of ‘Atmospheric Science for Environmental Scientists’ in
2008, we noted that never before had the teaching, learning, and researching of atmospheric science
been so important. We said that society must face up to the realities of global atmospheric change, includ-
ing global warming and poor air quality, and that the education of students and provision of accessible
information to policy makers and the public were priorities.

More than a decade later, we can only reiterate these sentiments. In 2018, the Intergovernmental Panel
on Climate Change warned that the planet will reach the crucial threshold of 1.5 °C above pre-industrial
levels by as early as 2030, precipitating the risks of extreme drought, wildfires, floods, and food shortages
for hundreds of millions of people. And in 2018, the World Health Organization reported that 90% of the
world’s population lived in places where air quality exceeded WHO guideline limits, and that more than
4 million people a year died prematurely from outdoor air pollution and a further 3 million a year from
indoor air pollution.

What further warnings are needed? To help society cope with the unprecedented changes that human-
kind is causing to our fragile atmosphere, education must be key and policy makers must act. We hope
this book helps both causes.

In putting this book together, we have drawn on some of the best experts and educators in the field of
atmospheric science. We hope their knowledge and enthusiasm shines through in these chapters. Our
aim is to provide succinct but detailed information on all the important aspects of atmospheric science
for students of environmental science and to others who are interested in learning how the atmosphere
works, how humankind is changing its composition, and what effects these changes might lead to.

We are grateful to all the experts who have contributed to this book, for all reviewers’ comments, and
to all our students over the years who have demonstrated the need for this volume.

October 2019 Nick Hewitt
Andprea V. Jackson
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The Climate of the Earth
John Lockwood

Formerly University of Leeds, Leeds, United Kingdom

The causes, history, and distributions of the Earth’s climates are introduced in this chapter. The combination
of the distribution of incoming solar radiation across the Earth’s surface and the Earth’s rotation both
drive and shape the observed atmosphere-ocean circulation. Important factors determining changes
in climate include palaeogeography, greenhouse gas concentrations, changing orbital parameters, and
varying ocean heat transport. One of the major controls of climatic changes is the greenhouse gas con-
centration of the atmosphere, in particular that of carbon dioxide. Before the Eocene-Oligocene boundary
(=34 Myr ago) the atmosphere-ocean circulation supported a warm atmosphere and ocean, with both
poles free of permanent ice. At the Eocene-Oligocene boundary, the atmosphere-ocean circulation
changed to a form similar to the present, and the first evidence of an Antarctic ice sheet is found. Falling
atmospheric carbon dioxide levels probably caused this change. The waxing and waning of massive
temperate latitude continental ice sheets characterize the climate of the past million years. This chapter
discusses recent climate changes and evidence that they are largely driven by anthropogenic generated
atmospheric carbon dioxide. In particular, recent climate changes are causing the expansion of the tropical
zone and a retreat of the polar zones.

The major climate zones of the world are described, with particular attention to interannual variability,
and the causes of droughts and heavy rainfalls. This includes discussions of the climatic effects of the
North Atlantic Oscillation (NAO) and El Nifio-Southern Oscillation (ENSO).

For more specific information on global warming and climate change science, the reader is referred to
Chapter 11 in this book and to the latest reports of the Intergovernmental Panel on Climate Change,
available at www.ipcc.ch.

1.1 Basic Climatology

The climate of a particular place is the average state of the atmosphere observed as the weather over a
finite period (e.g. a season) for a number of different years. The so-called climate system, which deter-
mines the weather, is a composite system consisting of five major interactive adjoint components: the

Atmospheric Science for Environmental Scientists, Second Edition. Edited by C.N. Hewitt and Andrea V. Jackson.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.


https://www.ipcc.ch

2

Atmospheric Science for Environmental Scientists

- Thermal
Solar (shortwave) radiation (longwave)
radiation
Stratosphere
————————————— Atmosphere - - -----=-=---- - - - m o
Troposphere
Volcanic Winds
gases and — >
Atmosphere— particles
land interaction s
RS
Precipitation Atmosphere—
Run-off i .. /Atmosphere— ice interaction
| B Gas Heat Thermal
,’,/’/,’/ interaction exchange Friction transfer radiation ¢
rfete, ¢ I
Evaporation Floating
ice
Currents
> Ocean
Ice—ocean
interaction

Figure 1.1 The climate system (Houghton 2005).

atmosphere, the hydrosphere, including the oceans, the cryosphere, the lithosphere, and the biosphere
(Figure 1.1). All the subsystems are open and not isolated, as the atmosphere, hydrosphere, cryosphere,
and biosphere act as cascading systems linked by complex feedback processes. The climate system is
subject to two primary external forcings that condition its behaviour: solar radiation and the Earth’s
rotation. Solar radiation must be regarded as the primary forcing mechanism, as it provides almost all the
energy that drives the climate system.

The distribution of climates across the Earth’s surface is determined by its spherical shape, its rotation,
the tilt of the Earth’s axis of rotation in relation to a perpendicular line through the plane of the Earth’s
orbit around the Sun, the eccentricity of the Earth’s orbit, the greenhouse gas content of the atmosphere,
and the nature of the underlying surface. The spherical shape creates sharp north-south temperature
differences, whilst the tilt is responsible for month-by-month changes in the amount of solar radiation
reaching each part of the planet, and hence the variations in the length of daylight throughout the year
at different latitudes and the resulting seasonal weather cycle.

The present orbit of the Earth is slightly elliptical with the Sun at one focus of the ellipse, and as a
consequence the strength of the solar beam reaching the Earth varies about its mean value. At present,
the Earth is nearest to the Sun in January and farthest from the Sun in July. This makes the solar beam
near the Earth about 3.5% stronger than the average mean value in January, and 3.5% weaker than aver-
age in July. The gravity of the Sun, the Moon, and the other planets causes the Earth to vary its orbit
around the Sun (over many thousands of years). Three different cycles are present, and when combined,
produce the rather complex changes observed. These cycles affect only the seasonal and geographical
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distribution of solar radiation on the Earth’s surface, yearly global totals remaining constant. Surplus
in one season is compensated by a deficit during the opposite one; surplus in one geographical area is
compensated by simultaneous deficit in some other zone. Nevertheless, these Earth orbital variations
can have a significant effect on climate and are responsible for some major long-term variations.

Firstly, there are variations in the orbital eccentricity. The Earth’s orbit varies from almost a complete
circle to a marked ellipse, when it will be nearer to the Sun at one particular season. A complete cycle
from near circular through a marked ellipse back to near circular takes between 90000 and 100000 years.
When the orbit is at its most elliptical, the intensity of the solar beam reaching the Earth must undergo
a seasonal range of about 30%. Second, there is a wobble in the Earth’s axis of rotation causing a phenom-
enon known as the precession of the equinoxes. That is to say, within the elliptical orbits just described,
the distance between Earth and Sun varies so that the season of the closest approach to the Sun also
varies. The complete cycle takes about 21 000years. Lastly, the tilt of the Earth’s axis of rotation relative to
the plane of its orbit varies at least between 21.8° and 24.4° over a regular period of about 40 000 years.
At present, it is almost 23.44° and is decreasing. The greater the tilt of the Earth’s axis, the more pronounced
the difference between winter and summer. Technically, these three mechanisms are known as the
Milankovitch mechanism.

If the Earth did not rotate relative to the Sun - that is, it always kept the same side towards the Sun - the
most likely atmospheric circulation would consist of rising air over an extremely hot, daylight face and
sinking air over an extremely cold, night face. The diurnal cycle of heating and cooling obviously would
not exist, since it depends on the Earth’s rotation. Surface winds everywhere would blow from the cold
night face towards the hot daylight face, whilst upper flow patterns would be the reverse of those at lower
levels. Whatever the exact nature of the atmospheric flow patterns, the climatic zones on a nonrotating
Earth would be totally different from anything observed today. Theoretical studies suggest that if this
stationary Earth started to rotate, then as the rate of rotation increased, the atmospheric circulation
patterns would be progressively modified until they resembled those observed today. In very general
terms, these circulation patterns take the form of a number of meridional overturning cells in the atmos-
phere, with separate zones of rising air motion at low and middle latitudes, and corresponding sinking
motions in subtropical and polar latitudes.

1.2 General Atmospheric Circulation

A schematic representation of the mean meridional circulation between Equator and pole is shown in
Figure 1.2. A simple direct circulation cell, known as the Hadley cell, is clearly seen equatorward from
30° latitude (Lockwood 2003). Eastward angular momentum is transported from the equatorial latitudes
to the middle latitudes by nearly horizontal eddies, 1000 km or more across, moving in the upper tropo-
sphere and lower stratosphere. This transport, together with the dynamics of the middle latitude atmos-
phere, leads to an accumulation of eastward momentum between 30° and 40° latitude, where a strong
meandering current of air, generally known as the subtropical westerly jet stream, develops (Figure 1.3).
The cores of the subtropical westerly jet streams in both hemispheres and throughout the year occur at
an altitude of about 12km. The air subsiding from the jet streams forms the belts of subtropical anticy-
clones at about 30° to 40° N and S (Figure 1.4). The widespread subsidence in the descending limb of the
Hadley cell should be contrasted with the rising limb, where ascent is restricted to a few local areas of

3
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Figure 1.2 Schematic representation of the meridional circulation and associated jet-stream cores in winter. The
tropical Hadley cell and middle latitude Ferrel cell are clearly visible. Source: from Palmen 1951.
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intense convection. More momentum than is necessary to maintain the subtropical jet streams against
dissipation through internal friction is transported to these zones of upper strong winds. The excess is
transported downwards and polewards to maintain the eastward-flowing surface winds (temperate lati-
tude westerlies) against ground friction. The middle latitude westerly winds are part of an indirect circu-
lation cell known as the Ferrel cell. The supply of eastward momentum to the Earth’s surface in middle
latitudes tends to speed up the Earth’s rotation. Counteracting such potential speeding up of the Earth’s
rotation, air flows from the subtropical anticyclones towards the equatorial regions, forming the so-
called trade winds. The trade winds, with a strong flow component directed towards the west (easterly
winds), tend to retard the Earth’s rotation, and in turn gain eastward momentum.

The greatest atmospheric variability occurs in middle latitudes, from approximately 40° to 70° N and S,
where large areas of the Earth’s surface are affected by a succession of eastward-moving cyclones (frontal
depressions) and anticyclones or ridges. This is a region of strong north-south thermal gradients with
vigorous westerlies in the upper air at about 10km, culminating in the polar-front jet streams along the
polar edges of the Ferrel cells (Figure 1.2). The zone of westerlies is permanently unstable and gives rise
to a continuous stream of large-scale eddies near the surface, the cyclonic eddies moving eastward and
poleward and the anticyclonic ones moving eastward and equatorward. In contrast, at about 10km, in the
upper westerlies, smooth wave-shaped patterns are the general rule. Normally, there are four or five major
waves around the hemisphere, and superimposed on these are smaller waves that travel through the
slowly moving train of larger waves. The major waves are often called Rossby waves, after Rossby who first
investigated their principal properties. Compared with the Hadley cells, the middle latitude atmosphere is
highly disturbed and the suggested meridional circulation shown in Figure 1.2 is largely schematic.

The extension into very high latitudes and the northward narrowing of the northern North Atlantic
have consequences on the Atlantic Ocean circulation, which in turn has a series of unique effects on the
climate system. This is in complete contrast to the much more benign North Pacific Ocean. Warm, saline
surface water flows into the northern North Atlantic, after travelling from the Caribbean Sea, via the Gulf
Stream and the North Atlantic Drift. This inflowing water, which is more saline than anywhere else in the
high-latitude oceans, is finally advected to sites in the Greenland and Norwegian Seas, where extreme
cooling to the atmosphere occurs and surface water sinks to the ocean depths. When cooled, water with
the salinity normal in the world’s oceans becomes denser, but unlike fresh water does not reach its maxi-
mum density until near its freezing point, at about —2°C. Thus, the saltwater of the deep oceans, when
cooled at the surface, goes into convective patterns, the coldest and densest portions gradually sinking
from the surface to the ocean depths. Low-density surface layers in the oceans can arise either because of
surface heating, or the addition of relatively fresh continental runoff or precipitation onto the ocean sur-
face. In the cold oceans, sea-ice will form only when a layer of the ocean close to the surface has a rela-
tively low salinity. The existence of this layer allows the temperature of the surface water to fall to freezing
point, and ice to form, despite the lower levels of the ocean having a higher temperature.

1.3 Palaeoclimates

The major controls of very long-term climatic change include palaeogeography, greenhouse gas concen-
trations, changing orbital parameters, and varying ocean heat transport. One of the major controls on
long-term climatic changes is the greenhouse gas concentration of the atmosphere and in particular that
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of carbon dioxide. Atmospheric carbon dioxide concentration has varied markedly during the Earth’s
history. Atmospheric CO, concentrations are controlled by the carbon cycle, and the net effect of slight
imbalances in the carbon cycle over tens to hundreds of millions of years has been to reduce atmospheric
CO,. Atmospheric CO, concentrations remained relatively high up to about 60 Myr ago when there was
a very marked fall. Atmospheric concentrations continued to fall after about 60 Myr ago, and there is
geochemical evidence that concentrations were less than 300 ppm by about 20 Myr ago.

Available evidence is that during the Mesozoic Era, temperatures ranged from 10° to 20 °C at the poles
to 25-30°C at the Equator - that is, the poles were free of permanent ice fields, and the atmosphere-
ocean circulation was different in some important aspects from that observed today. Slight cooling took
place at the start of the Jurassic Period and marked high-latitude warming during the first half of the
Cretaceous Period. Global cooling again took place towards the end of Cretaceous time, and a long-term
cooling trend commenced at the start of the Eocene Epoch, some 55Myr ago.

The sudden, widespread glaciations of Antarctica and the associated shift towards colder temperatures
at the Eocene-Oligocene boundary (approximately 34 Myr ago) is one of the most fundamental reorgani-
zations of global climate and ocean circulation known in the geological record. Prior to the Eocene-
Oligocene boundary, there is little evidence of the deep cold water in the world ocean that is so common
today. Indeed, before the boundary, atmospheric, and particularly oceanic circulation conditions were
probably different from those observed today. After the boundary they are probably rather similar to
present-day conditions. Oceanic bottom water is formed in small regions by convective buoyancy plumes
that transfer relatively dense ocean water from near the surface to the ocean depths. Deep-ocean tem-
peratures are therefore closely related to ocean surface temperatures in key regions. The surface density
and salinity is usually increased by evaporation and heat transfer to the atmosphere; therefore, virtually
all deep-water formation seems to be over continental shelves in low latitudes or at high latitudes. During
the Cretaceous Period and up to the end of the Eocene Epoch, the ocean bottom-waters were warm,
saline, and formed in shallow subtropical marginal seas. At the Eocene-Oligocene boundary, ocean bottom-
water temperatures decreased rapidly to approximately present-day levels. Deep-sea cores suggest that
this change occurred within 100 000years, which is remarkably abrupt for preglacial Tertiary times, and
is considered to represent the time when large-scale freezing conditions developed at sea-level around
Antarctica, forming the first significant sea-ice. At this time, cold-water plumes forming off Antarctica
started to dominate ocean bottom-water formation, and together with Arctic Ocean plumes they have
dominated until the present day. Thus, from early Oligocene times onwards it may be considered that
world climates were in the present cold or semi-glacial state.

The initial growth of the East Antarctic Ice Sheet near the Eocene-Oligocene boundary is often attrib-
uted to the opening by continental drift of ocean gateways between Antarctica and Australia (Tasmanian
Passage) and Antarctica and South America (Drake Passage), leading to the organization of the Antarctic
Circumpolar current and the ‘thermal isolation’ of Antarctica. This notion has been challenged because
although most tectonic reconstructions place the opening of the Tasmanian Passage close to the Eocene-
Oligocene boundary, the Drake Passage may not have provided a significant deep-water passage until
several million years later. Recent model simulations (DeConto and Pollard 2003) of the glacial inception
and early growth of the East Antarctic Ice Sheet suggest that declining Cenozoic carbon dioxide first
leads to the formation of small, highly dynamic ice caps on high Antarctic plateaux. At a later time, a
carbon dioxide threshold is crossed, initiating various feedbacks that cause the ice caps to expand rapidly
with large orbital variations, eventually coalescing into a continental-scale East Antarctic Ice sheet.
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According to this simulation, the opening of the two Southern Ocean gateways plays a secondary role in
this transition, relative to changing carbon dioxide concentration.

1.3.1 Quaternary Glaciations

Continental ice-sheets probably appeared in the Northern Hemisphere about 3 Myr ago, occupying lands
adjacent to the North Atlantic Ocean. The time of the formation of the Greenland ice-sheet is not well
known from terrestrial evidence, but the presence of glacial marine sediments in North Atlantic marine
cores first appeared around 3 Myr ago. The oldest glacial moraines in Iceland are dated to approximately
2.6 Myr ago. For at least the past million years, the Earth’s climate has been characterized by an alterna-
tion of glacial and interglacial episodes, marked in the Northern Hemisphere by the waxing and waning
of continental ice-sheets and in both hemispheres by rising and falling temperatures (Figure 1.5). The
present dominant cycle is one of about 100kyr and is seen in the growth and decay of the continental
ice-sheets. The last major glacial episode started about 110kyr ago and finished only about 10kyr ago.
These fluctuations or cycles are found in a large number of proxy data records, analysis of which suggests
that Antarctic air temperature, atmospheric CO, content, and deep-ocean temperatures are dominated
by variance with a 100 kyr period and vary in phase with orbital eccentricity. In contrast, global ice vol-
ume lags changes in orbital eccentricity (Shackleton 2000). Hence, the 100-kyr ice-sheet cycle does not
arise from ice-sheet dynamics; instead, it is probably the response of the global carbon cycle to changes
in orbital eccentricity that generates the eccentricity signal in the climate record by causing changes in
atmospheric carbon dioxide concentrations.

Proxy data records can be grouped into two climatic regimes with the transitional zone about 430kyr
ago (Figure 1.5). The earlier shows higher-frequency cycles (dominance of 40-kyr cycles), with less
coherence amongst the various proxy climatic records than the later one (dominance of 100-kyr cycles). This
may be due to a decrease in average atmospheric CO, levels over the past two million years (Brook 2005).
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Figure 1.5 The figure shows measurements deduced from ice-cores drilled from the Antarctic ice-sheet, and
analysed by the British Antarctic Survey and others as part of the European programme EPICA. The actual
measurement is of the concentration of deuterium in air bubbles, and this can be related to local temperatures.
The figure shows that temperature rise between the depth of the last ice age 20000years ago and the current
interglacial is about 9 °C. Source: Hadley Centre for Climate Prediction and Research. From EPICA Community
Members (2004).
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There are differences in the amplitudes of deuterium and CO, oscillations before and after 430kyr ago.
The atmospheric concentration of CO, did not exceed 300 ppmv for the 650000years before the begin-
ning (around 1750) of the industrial era. Since the Industrial Revolution, atmospheric carbon dioxide
concentrations have increased by 33%. Before 430 kyr ago concentrations of CO, did not exceed 260 ppmv.

The transition from glacial to interglacial conditions about 430kyr ago resembles the transition into
the present interglacial period at about 10kyr ago in terms of the magnitude of changes in temperature
and greenhouse gases. As commented above, the transition 430kyr ago also delimits the frontier between
two different patterns of climate, and has been identified by recent investigations as a unique and excep-
tionally long interglacial. Some workers (see Brook 2005) suggest that because the orbital parameters
(low eccentricity and consequently weak precessional forcing) are similar to those of the present and
next tens of thousands of years, the interglacial 430kyr ago may be the best analogue available for
present and future climate without human intervention. Long interglacials with stable conditions are
not, therefore, exceptional, short interglacials such as the past three are not the rule and hence cannot
serve as analogues of the present Holocene interglacial.

Sudden and short-lived climate oscillations giving rise to warm events occurred many times during the
generally colder conditions that prevailed during the last glacial period between 110000 and 10000 years
ago (Lockwood 2001). They are often known as interstadials to distinguish them from the cold phases or
stadials. Between 115000 and 14000years ago there were 24 of these oscillations, as recognized in the
Greenland ice-core records where they are called Dansgaard-Oeschger oscillations. These can be viewed
as oscillations of the climate system about an extremely ill-defined mean state. Each oscillation contains
a warm interstadial, which is linked to and followed by a cold stadial. Ice-core and ocean data suggest
that the oscillations began and ended suddenly, although in general the jump’ in climate at the start of
an oscillation was followed by a more gradual decline that returned conditions to the colder ‘glacial’
state. Warming into each oscillation occurred over a few decades or less, and the overall duration of some
of these warm phases may have been just a few decades, whereas others vary in length from a few centu-
ries to nearly 2000 years.

Of totally different nature to Dansgaard—Oeschger oscillations are extreme and short-lived cold events,
known as Heinrich events. These events occurred against the general background of the glacial climate
and represent the climatic effects of massive surges of fresh water and icebergs from melting ice sheets
into the North Atlantic, causing substantial changes in the thermohaline circulation (Lockwood 2001).
Several massive ice-rafting events show up in the Greenland ice-cores as a further 3—-6 °C drop in tempera-
ture from already cold glacial conditions. Many of these events have also been picked up as particularly
cold and arid intervals in European and North American pollen records. The most recent Heinrich event
is known as the Younger Dryas and appears as a time of glacial re-advance in Europe after the end of the
main ice-age.

1.3.2 The Recent Climate Record

Extensive instrumental temperature records exist only for the period after about 1860, but recently multi-
proxy data networks (e.g. Mann et al. 1999; Intergovernmental Panel on Climate Change Fifth Assessment
Report, 2014) have been used to reconstruct Northern Hemisphere temperatures back to AD 1000 or
earlier (Figure 1.6). These reconstructions and simulations show a long-term cooling trend in the Northern
Hemisphere prior to industrialization of —0.02 °C per century, possibly related to orbital forcing, which is
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Figure 1.6 Simulated (lines) and reconstructed (grey shading) Northern Hemisphere average surface temperature
changes since the Middle Ages. All data are expressed as anomalies from their 1500-1850 mean and smoothed
with a 30-year filter. Source: data from,and more details available at, http;//www.ipcc.ch/report/ar5/syr.

See colour plate section for the colour representation of this figure.

thought to have driven long-term temperatures downward since the mid-Holocene at a rate within the
range from —0.01 to —0.04 °C per century. The temperature reconstruction also shows that the late elev-
enth, twelfth and fourteenth centuries rival mean twentieth century temperature levels, whilst cooling
following the fourteenth century can be viewed as the initial onset of the cold period known as the Little
Ice Age. There is general agreement that the Little Ice Age came to an abrupt end around 1850, whilst
studies in Switzerland indicate that overall the coldest conditions of the past 500years were in the late
seventeenth and early nineteenth centuries. The early nineteenth century was especially cold and can be
considered as the ‘climatic pessimism’ of the past 1000years.

Global mean surface temperature has increased dramatically during the last one hundred years or so,
but not in a uniform manner (Figure 1.7). The global increase in temperature since about 1880 occurred
during two sustained periods, one beginning around 1910 and another beginning in the 1970s and con-
tinuing to the present day. Best available estimates (Jones and Moberg 2003) give global temperature
trends from 1910 to 1945 of 0.11 °C per decade, —0.01 °C per decade from 1946 to 1975 and 0.22°C per
decade from 1976 to 2000. In the period 2001 to 2010 warming was again ~0.11 °C per decade. Nine of the
10 warmest years observed globally since reliable observations were begun over a century and a half ago
have occurred since the year 2000, and all 10 warmest years have occurred since 1998. The 20 warmest
years on record have all occurred since 1995, with the five warmest years occurring since 2010. The
warmest year of all (prior to 2018) was 2016.

The largest recent warming is in the winter extratropical Northern Hemisphere, with a faster rate of
warming over land compared with the ocean. Using satellite-borne microwave sounding units, Qiang
Fu et al. (2006) have examined atmospheric temperature trends for 1979-2005. They found that rela-
tive to the global-mean trends of the respective layers, both hemispheres have experienced enhanced
tropospheric warming and stratospheric cooling in the 15-45° latitude belt. This suggests a widening
of the tropical circulation zone and a poleward shift of the subtropical jet streams and their associated
subtropical dry zones.
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