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Prime factors

My heart, it holds a secret prime,
and your heart holds one, too.
I ask you now, will you join hearts,
and multiply them through?
We will make a product so sublime
it overtakes the skies
and stay together all our days
till death us factorize.

(unknown author, see [81])

The theory of groups is a central discipline within the algebra. Not only
specific group theoretical methods but also concepts of other disciplines are
used to analyze groups. The representation and the character theory of finite
groups are two prominent examples of these methods. The exact study of
the group algebra is an effectual source of insights for modules and charac-
ters. Therefor, the analysis of the group algebra has a long tradition within
the theory of associative algebras (S. Jennings [30], 1941 and D.S. Passman
[51], 1977). Whether the group algebra over a field K is semisimple or mod-
ular is – based on the theorem of Maschke – identifiable at the characteristic
of K. Within this work the group of units of the group algebra is analyzed
for a p -group and a field of characteristic p.

The structure of the group of units of the group algebra for an Abelian
p -group and a finite field of characteristic p is analyzed by R. Sandling in
[57], by A. Albrecht in [1] and by A. Bovdi and A. Szakacs in [13]. One main
topic of this work is to determine the structure of the center of the group
of units E(KG) = (1G + rad(KG)) × (K \ {0K}) · 1G of the group algebra
KG for an non-Abelian p -group G and a field K of characteristic p.

We generalize a result of K.R. Pearson [53] at the beginning of the first
chapter: for an arbitrary subgroup U of G the set Z(G)∩U is the core of U
in 1G+ rad(KG) (corollary 1.2.3). The normalizer of U in 1G+ rad(KG) is
determined by NG(U)·C1G+rad(KG)(U) which is proven afterwards (theorem
1.3.6). The special case U = G is contained in the article of D.B. Coleman
(see [19]). His concept of fixed points is analyzed and generalized.

Our concept of analyzing the center of E(KG) is developed within this work
and is called end-commutable ordering of algebra-elements. This method is
presented within the second chapter of this work. We prove (see theorem
2.3.6) that every finite group G is nilpotent if and only if every conjugacy
class of G is end-commutable. In addition, we can obtain within theorem
2.1.5 for end-commutable K-algebra elements a1, . . . , an the important iden-
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tity (
n∑

i=1
ai)

pr =
n∑

i=1
a pr

i (p = char(K), r ∈ N). In the – also for our analysis

– important case that {a1, . . . , an} is a conjugacy class of a p-group also
A.A. Bovdi and Z. Patay have proven this statement in [9] based on a differ-
ent argumentation. We apply our method for determining the exponent of
Z(1G+rad(KG)) – which was also done by the same authors – purely based
on characteristics of the underlying group G (theorem 2.4.8). We finalize
chapter 2 by presenting some bounds for this exponent in preparation of
chapter 3.

The value |G|
p2

is the maximal possible one for the exponent of Z(1G +

rad(KG)) in the case of a non-Abelian p -group G (corollary 2.5.3). Within
section 1 of chapter 3 we determine those groups for which this value occur:
either the center of G is cyclic of order |G|

p2
or G possesses a cyclic maximal

subgroup (theorem 3.1.6).
Groups for which the center of 1G+rad(KG) is elementary-Abelian are char-
acterized in section 2 of chapter 3: the center of G is elementary-Abelian
and for all g ∈ G \ Z(G) the identity CG(g) < CG(g

p) is valid (theorem
3.2.1). For example, the p -Sylow subgroups of GL(n,GF (pk)) are of this
kind (corollary 3.2.2.6).
In diverse interesting cases the exponent of Z(1G + rad(KG)) is identical
to the one of Z(G): we prove this for p -groups G for which the identity
exp(G/Z(G)) ≤ exp(Z(G)) is valid (theorem 3.3.1) and – by using a com-
plete different argument – for regular p -groups (corollary 3.3.3).
In the following sections of this chapter we analyze the exponent for group
constructions. For central products of two p -groups G,H we obtain the
same exponent as for their direct product which is
max{exp(Z(1G + rad(KG))), exp(Z(1G + rad(KH)))} (theorem 3.4.7).
We proceed the analysis by determining the exponent for an arbitrary wreath
product G �δ H: the exponent can be calculated based on the ingredients
G,H and δ (theorem 3.5.11). As a consequence, we can bound the exponent
for an arbitrary action δ by the lower bound exp(Z(1G+ rad(KG))) and by
the upper bound exp(Z(1G×H + rad(G×H))) (corollary 3.5.18). The lower
value is valid for a faithful (corollary 3.5.16) and the upper bound for the
trivial action (remark 3.5.17).
For dihedral, semi-dihedral and quaternion groups of the same order the ex-
ponent of the center of 1G+rad(KG) is identical. We generalize this results
to two group extensions by Abelian p -groups with equivalent action and a
special additional characteristic (theorem 3.6.6).

The concept of end-commutable orderings allows us not only to determine
the exponent of Z(1G + rad(KG)) but also the description of the p -power
structure of Z(1G+rad(KG)) and henceforth – for a finite field – to calculate
the invariants of this Abelian p -group. We can reduce the problem to the di-
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rect factor 1G+rad(KZ(G)) and its co-factor 1G+〈{ ∑
x∈gG

x | g ∈ G\Z(G)}〉K
of the center of 1G + rad(KG) related to the conjugacy class sums (corol-
lary 4.1.5). The invariants of the first factor are – as already mentioned
for Abelian group algebras – completely known, and the ones of the second
factor are described in two different ways (by using the chain of Frattini
subgroups and the chain of socles) only by using the field K and the group
G (theorem 4.3.1.3, theorem 4.3.2.6). Another description is included in
the analysis of A. Bovdi and Z. Patay in [10]. The determination of the
invariants and the exponent is described by using a special graph: the class-
graph. The class-graph visualizes the p-power structure of the co-factor
1G + 〈{ ∑

x∈gG
x | g ∈ G \ Z(G)}〉K . The exponent of the co-factor is related

to the longest path within this graph, the invariants can be calculated by
counting the number of special paths within it. Groups with isomorphic
class-graphs possess isomorphic co-factors. We determine the invariants for
some examples: we prove that the centers of 1G + rad(KG) for quaternion,
dihedral and semi-dihedral groups of the same order over a finite field of
characteristic 2 are isomorphic (example 4.5.2.2). The last section is ded-
icated to isoclinic groups. We prove that the exponents of the co-factors
of the center of the radicals of two isoclinic groups are identical. We use
the result to describe the structure of the center of the radical for semi
extra-special groups, ultra-special groups, VZ-groups, Camina and general-
ized Camina groups.

In chapter 5 of this work we prove at first that the derived subgroup of
1G + rad(KG) is cyclic only for Abelian G (theorem 5.1.4). Afterwards we
prove that (1G+ rad(KG)) p is cyclic if and only if G is elementary-Abelian
or G is Abelian and p = | G 2 |= | K 2 |= 2 is valid (corollary 5.2.11).
The group 1G + rad(KG) is special only for an extra-special 2 -group G
(proposition 5.3.9). For such a group G the elementary-Abelian center of
1G + rad(KG) is identical to the Frattini subgroup of 1G + rad(KG) and
contains all squares (lemma 5.3.2, theorem 5.3.3). Within this work we do
not give a description of all groups G such that 1G + rad(KG) is a special
2 -group. But in the smallest relevant case we prove that the derived sub-
group of 1G + rad(KG) is of index 2 in Z(1G + rad(KG)) (example 5.3.10).

Within chapter 6 we focus on the chain of iterated p-groups defined by
G0 := G and Gn+1 := 1 + rad(KGn) for all n ∈ N over a finite field K
of characteristic p and a non-Abelian p-group G. The previous chapters
are linked to G1 = 1 + rad(KG). Now we want to study the behavior of
this chain. Several parameters of this chain turn out to be increasing resp.
unbounded (see proposition 6.1.2, e.g. the corresponding chain of derived
subgroups, of breadth, of nilpotency classes, of strong derived length, of
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class numbers, of Baer-length). As a consequence the corresponding chain
of degrees of commutativities converges against zero.

But the structure of the centers related to this chain can be described differ-
ently: the exponents are stable after the second step because the direct factor
related to the class sums is elementary-p-Abelian. This result is generalized
to arbitrary radical algebras (see theorem 6.2.11 and corollary 6.2.12). As
a consequence we can prove that the chain of corresponding exponents and
the chain of Engel-length of (Gn)n∈N0 are unbounded (see theorem 6.3.3).

Some applications are also transferred to the exercises at the end of each
chapter. Some exercises are included enhancing the theory presented so far.
In addition, at the beginning of each exercise series some open-ended topics
are included which can be used by the reader – and also by the author – to
do additional researches within this theory. The author has included some
graphics – mostly so called Hasse diagrams – to visualize the main results
of this work.

The author has prepared some slides which can be used as a basic for a
presentation of this work. These slides are available and can be requested
at the Anchor Academic Publishing service by using the email address
info@anchor-publishing.com.
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Chapter 1

Cores and normalizers

1.1 A first reduction

Within this work a K-algebra is an algebra defined based on a commutative
unitary ring K.

1.1.1 Definition (star composition)

Let A be a K-algebra. For all a, b ∈ A we define

a ∗ b := a+ b+ ab.

B.L. van der Waerden calls ∗ the star composition on A.�

1.1.2 Remark (� versus ·)
For every associative K-algebra A the following statements are valid:

(i) (A; ∗) is a monoid possessing the unit element 0A.

(ii) If A is unitary, then the function A → A, a �→ 1A + a is a monoid
isomorphism between (A; ∗) and (A; ·).�

1.1.3 Definition (star group)

If A is an associative K-algebra, then we denote by Q(A) the group of units
of the monoid (A; ∗) and for every a ∈ Q(A) by a

′
the inverse of a in Q(A).

The elements of Q(A) are called star regular or quasi regular and the group
Q(A) is called the star or quasi regular group of A. If A is unitary, then
E(A) is called the group of units of A.�

The following remark shows us that the star group is a generalization of
the group of units in the context of non-unitary associative algebras.

11
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1.1.4 Remark

For every K-algebra A the following statements are valid:

(i) For all a, b, c, d ∈ A the identity (a+ b) ∗ (c+ d) = a ∗ c+ b ∗ d+ad+ bc
is true.

(ii) If A is associative, then for all a, t ∈ Q(A) the identity a
′ ∗ t ∗ a =

t+ a
′
t+ ta+ a

′
ta is valid.

(iii) If A is associative and unitary, then the restriction of the function
A → A, a �→ 1A + a to Q(A) is a group isomorphism between Q(A)
and E(A).�

1.1.5 Proposition

For every associative K-algebra A the following statements are valid:

(i) For every subalgebra T of A the set Q(T ) is a subgroup of Q(A).

(ii) For every ideal I of A the set Q(I) = Q(A) ∩ I is a normal subgroup
of Q(A).

Proof. ad(i): This statement is straightforward to prove.

ad(ii): Because of part (i) the set Q(I) is a subgroup of Q(A). For all
a ∈ Q(A) ∩ I the identity a

′
= −a− aa

′ ∈ I is valid, and hence Q(A) ∩ I =
Q(I) is deduced. If t ∈ Q(I) and a ∈ Q(A) are valid, then we use part
(ii) of remark 1.1.4 to conclude a

′ ∗ t ∗ a = t + a
′
t + ta + a

′
ta. Thus,

a
′ ∗ t ∗ a ∈ Q(A) ∩ I = Q(I) is proven.�

1.1.6 Definition (semidirect decomposition)

If A is a K-algebra, then we call a pair (I, T ) a semidirect resp. direct
decomposition of A, if A is the inner direct sum of the ideal I and the
subalgebra resp. the ideal T of A.
For a group G a pair (N,U) is called a semidirect resp. direct decomposition
of G, if G is the product of the normal subgroup N and of the subgroup
resp. the normal subgroup U of G and N ∩ U = {1G} is valid.�

1.1.7 Proposition

If A is an associative K-algebra and (I, T ) a semidirect decomposition of A,
then (Q(I), Q(T )) is a semidirect decomposition of Q(A).

Proof. By using proposition 1.1.5 the set Q(I) is a normal subgroup and
Q(T ) is a subgroup of Q(A) such that their intersection is exactly {0A}.
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Let q ∈ Q(A). Elements i, j ∈ I and t, s ∈ T exist such that q = i + t and
q
′
= j + s are valid. Because of 0A = q ∗ q

′
and part (i) of remark 1.1.4

we deduce 0A = t ∗ s + i ∗ j + tj + is, and thus t ∗ s = 0A is valid. The
identity 0A = q

′ ∗ q is used to prove s ∗ t = 0A in a similar way. Hence,
t ∈ Q(T ) and t

′
= s are true. We use part (i) of remark 1.1.4 to conduct

(i+ is)∗ t = i∗ t+ is+ ist = i+ t+ it+ is+ ist = i+ t+ i (s∗ t) = q. Because
of q ∈ Q(A) and t ∈ Q(T ) we deduce i + is ∈ Q(A) ∩ I, and by using part
(ii) of proposition 1.1.5 the proof is finished.�

1.1.8 Corollary

Let (I, T ) be a semidirect decomposition of an associative K-algebra A. The
following statements are valid:

(i) If T is an ideal of A or T is central in A, then (Q(I), Q(T )) is a direct
decomposition of Q(A).

(ii) If A is unitary, then (1A +Q(I), 1A +Q(T )) is a semidirect decompo-
sition of E(A).

(iii) If A is unitary and (Q(I), Q(T )) is a direct decomposition of Q(A),
then (1A +Q(I), 1A +Q(T )) is a direct decomposition of E(A).

Proof. ad(i): This statement is a direct consequence of proposition 1.1.7
and part (ii) of proposition 1.1.5 because Q(T ) is a normal subgroup of Q(A)
in the mentioned scenarios.

ad(ii) and (iii): These statements are a consequence of proposition 1.1.7
and part (iii) of proposition 1.1.5.�

1.1.9 Definition

(i) If K is a field and n ∈ N0, then we define nK :=
n∑

i=1
1K .

(ii) For every finite subset M of a K-algebra A we define M :=
∑

m∈M
m.

For a group G, a finite and non-empty subset H of G and a field K such
that char(K) is not dividing | H | we define eH := 1

|H|K H.�

1.1.10 Proposition (idempotents and subgroups)

Let G be a group, H a finite and non-empty subset of G and K a field such
that char(K) is not dividing | H |. eH is an idempotent of KG if and only
if H is a subgroup of G.

Proof. If H is a subgroup of G, then for all h ∈ H the identity hH = H
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is valid, and thus H
2
= | H |K H and (eH)2 = eH are valid.

If eH is an idempotent of KG, then H
2
= | H |K H is true. Let x, y ∈ H.

Elements k ∈ K and h ∈ H exist such that kxy = | H |K h is valid. If
xy �= h would be true, then | H |K = 0K would be valid which is a contra-
diction. Therefor xy = h ∈ H is proven, and by using the finiteness of H
we deduce that H is a subgroup of G.�

1.1.11 Definition (isomorphism and span)

(i) If K is a field, then ∼=K , 〈. . . 〉K etc. are called the isomorphism, the span
etc. within the class of K-spaces.
By A, A1, L resp. G we denote the class of associative algebras over K, the
class of associative unitary algebras over K, the class of Lie algebras over
K resp. the class of groups. If X is one of these classes, then we denote by
∼=X, 〈. . . 〉X etc. the isomorphism, the span etc. within the class X.

(ii) For all n ∈ N we define n := N≤n and n 0 := n ∪ {0}.�

1.1.12 Definition (augmentation)

Let K be a field and V a finite-dimensional K-space. For every K-basis B of
V we define AugB(V ) := 〈{b1 − b2 | b1, b2 ∈ B}〉K . If v ∈ V , then for every
b ∈ B exactly one kb ∈ K exists such that v =

∑
b∈B

kbb is valid, and we define

augB(v) :=
∑
b∈B

kb. For a finite magma M we use the notation Aug(KM) :=

AugM (KM) and call Aug(KM) the augmentation ideal ofKM . If x ∈ KM ,
then aug(x) := augM (x) is defined and called the augmentation of x.�

1.1.13 Remark (augmentation ideal)

Let K be a field, M a finite non-empty magma and aug : KM → K the
K-linear extension of the function M −→ K, m �→ 1K . The augmentation
function aug is an algebra-epimorphism such that ker( aug) = Aug(KM)
is valid. In particular, Aug(KM) is an ideal of codimension 1 (and hence a
maximal ideal) of KM . For every m ∈ M the set {x−m | x ∈ M \ {m}} is
a K-basis of Aug(KM).�

1.1.14 Definition and remark (kernel of the augmentation
map)

Let K be a field, G a finite group, N a normal subgroup of G and pN :
KG −→ K(G/N) the linearization of the G-epimorphism G −→ G/N, g �→
Ng. By using lemma 1.8 of chapter 1 in [51] the kernel of pN is exactly
KGAug(KN) = Aug(KN)KG.�
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For the following lemma several proofs are existing (see e.g. D.A.R. Wallace
in [74], L.E. Dickson1 in [23] or R.L. Kruse and D.T. Price in [37]). We

1Leonard Eugene Dickson (January 22, 1874 to January 17, 1954) was an American
mathematician. He was one of the first American researchers in abstract algebra, in
particular the theory of finite fields and classical groups, and is also remembered for a
three-volume history of number theory, History of the Theory of Numbers.

Dickson considered himself a Texan by virtue of having grown up in Cleburne, where
his father was a banker, merchant, and real estate investor. He attended the University
of Texas at Austin, where George Bruce Halsted encouraged his study of mathematics.
Dickson earned a B.S. in 1893 and an M.S. in 1894, under Halsted’s supervision. Dickson
first specialised in Halsted’s own specialty, geometry.

Both the University of Chicago and Harvard University welcomed Dickson as a Ph.D.
student, and Dickson initially accepted Harvard offer, but chose to attend Chicago instead.
In 1896, when he was only 22 years of age, he was awarded Chicago’s first doctorate in
mathematics, for a dissertation titled The Analytic Representation of Substitutions on a
Power of a Prime Number of Letters with a Discussion of the Linear Group, supervised
by E. H. Moore.

Dickson then went to Leipzig and Paris to study under Sophus Lie and Camille Jordan,
respectively. On returning to the USA, he became an instructor at the University of
California. In 1899 and at the extraordinarily young age of 25, Dickson was appointed
associate professor at the University of Texas. Chicago countered by offering him a position
in 1900, and he spent the balance of his career there. At Chicago, he supervised 53 Ph.D.
theses; his most accomplished student was probably A. A. Albert. He was a visiting
professor at the University of California in 1914, 1918, and 1922. In 1939, he returned to
Texas to retire.

Dickson married Susan McLeod Davis in 1902; they had two children, Campbell and
Eleanor.

Dickson was elected to the National Academy of Sciences in 1913, and was also a member
of the American Philosophical Society, the American Academy of Arts and Sciences, the
London Mathematical Society, the French Academy of Sciences and the Union of Czech
Mathematicians and Physicists. Dickson was the first recipient of a prize created in 1924 by
The American Association for the Advancement of Science, for his work on the arithmetics
of algebras. Harvard (1936) and Princeton (1941) awarded him honorary doctorates.

Dickson presided over the American Mathematical Society in 1917 to 1918. His Decem-
ber 1918 presidential address, titled ’Mathematics in War Perspective,’ criticized American
mathematics for falling short of those of Britain, France, and Germany: ’Let it not again
become possible that thousands of young men shall be so seriously handicapped in their
Army and Navy work by lack of adequate preparation in mathematics.’ In 1928, he was
also the first recipient of the Cole Prize for algebra, awarded annually by the AMS, for
his book Algebren und ihre Zahlentheorie.

It appears that Dickson was a hard man: ’A hard-bitten character, Dickson tended to
speak his mind bluntly; he was always sparing in his praise for the work of others. ...
he indulged his serious passions for bridge and billiards and reportedly did not like to
lose at either game. He delivered terse and unpolished lectures and spoke sternly to his
students. ... Given Dickson’s intolerance for student weaknesses in mathematics, however,
his comments could be harsh, even though not intended to be personal. He did not aim
to make students feel good about themselves. Dickson had a sudden death trial for his
prospective doctoral students: he assigned a preliminary problem which was shorter than
a dissertation problem, and if the student could solve it in three months, Dickson would
agree to oversee the graduate student’s work. If not the student had to look elsewhere for
an advisor.’

Dickson had a major impact on American mathematics, especially abstract algebra.
His mathematical output consists of 18 books and more than 250 papers. The Collected
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present another approach.

Mathematical Papers of Leonard Eugene Dickson fill six large volumes.
In 1901, Dickson published his first book Linear groups with an exposition of the Galois

field theory, a revision and expansion of his Ph.D. thesis. Teubner in Leipzig published the
book, as there was no well-established American scientific publisher at the time. Dickson
had already published 43 research papers in the preceding five years; all but seven on
finite linear groups. Parshall (1991) described the book as follows: ’Dickson presented
a unified, complete, and general theory of the classical linear groups – not merely over
the prime field GF (p) as Jordan had done – but over the general finite field GF (pn), and
he did this against the backdrop of a well-developed theory of these underlying fields.
His book represented the first systematic treatment of finite fields in the mathematical
literature.’ An appendix in this book lists the non-Abelian simple groups then known
having order less than 1 billion. He listed 53 of the 56 having order less than 1 million.
The remaining three were found in 1960, 1965, and 1967. Dickson worked on finite fields
and extended the theory of linear associative algebras initiated by Joseph Wedderburn
and Cartan. He started the study of modular invariants of a group. In 1905, Wedderburn,
then at Chicago on a Carnegie Fellowship, published a paper that included three claimed
proofs of a theorem stating that all finite division algebras were commutative, now known
as Wedderburn’s theorem. The proofs all made clever use of the interplay between the
additive group of a finite division algebra A, and the multiplicative group. Karen Parshall
noted that the first of these three proofs had a gap not noticed at the time. Dickson
also found a proof of this result but, believing Wedderburn’s first proof to be correct,
Dickson acknowledged Wedderburn’s priority. But Dickson also noted that Wedderburn
constructed his second and third proofs only after having seen Dickson’s proof. She
concluded that Dickson should be credited with the first correct proof.

Dickson’s search for a counterexample to Wedderburn’s theorem led him to investigate
non-associative algebras, and in a series of papers he found all possible three and four-
dimensional (non-associative) division algebras over a field.

In 1919 Dickson constructed Cayley numbers by a doubling process starting with quater-
nions. His method was extended to a doubling of the real numbers to produce the complex
numbers, and of the complex numbers to produce the real quaternions by A. A. Albert in
1922, and the procedure is known now as the Cayley-Dickson construction of composition
algebras.

Dickson proved many interesting results in number theory, using results of Vinogradov
to deduce the ideal Waring theorem in his investigations of additive number theory.
He proved the Waring’s problem for k = 7 k ≥ 7k ≥ 7 under the further condition of
(3k + 1)/(2k − 1) = [1.5k] + 1(3k + 1)/(2k − 1) ≤ [1.5k] + 1(3k + 1)/(2k − 1) ≤ [1.5k] + 1
independently of Subbayya Sivasankaranarayana Pillai who proved it for k = 6 k ≥ 6k ≥ 6
ahead of him.

The three-volume History of the Theory of Numbers (1919 to 1923) is still much con-
sulted today, covering divisibility and primality, Diophantine analysis, and quadratic and
higher forms. The work contains little interpretation and makes no attempt to contex-
tualize the results being described, yet it contains essentially every significant number
theoretic idea from the dawn of mathematics up to the 1920s except for quadratic reci-
procity and higher reciprocity laws. A planned fourth volume on these topics was never
written. A. A. Albert remarked that this three volume work ’would be a life’s work by
itself for a more ordinary man.’


