Kai-Uwe Schmitt · Peter F. Niederer Duane S. Cronin · Barclay Morrison III Markus H. Muser · Felix Walz

Trauma-Biomechanik

Einführung in die Biomechanik von Verletzungen

3. Auflage

Trauma-Biomechanik

Kai-Uwe Schmitt · Peter F. Niederer · Duane S. Cronin · Barclay Morrison III · Markus H. Muser · Felix Walz

Trauma-Biomechanik

Einführung in die Biomechanik von Verletzungen

3. Auflage

Kai-Uwe Schmitt ETH Zürich Institut Biomedizinische Technik Zürich, Schweiz

Duane S. Cronin
Department of Mechanical and Mechatronics
Engineering, University of Waterloo
Waterloo, Kanada

Markus H. Muser AGU Zürich Zürich, Schweiz Peter F. Niederer Prof.em ETH Zürich Zürich, Schweiz

Barclay Morrison III Columbia University New York USA

Felix Walz AGU Zürich Zürich, Schweiz

ISBN 978-3-662-60935-4 ISBN 978-3-662-60936-1 (eBook) https://doi.org/10.1007/978-3-662-60936-1

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2010, 2014, 2020

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Planung/Lektorat: Thomas Lehnert

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer-Verlag GmbH, DE und ist ein Teil von Springer Nature.

Die Anschrift der Gesellschaft ist: Heidelberger Platz 3, 14197 Berlin, Germany

Geleitwort

Die Verbesserung der Fahrzeugsicherheit ist seit Jahrzenten ein gesellschaftliches Ziel der weltweiten Verkehrssicherheitsarbeit. Während hierbei zunächst insbesondere die Reduzierung der Anzahl der Verkehrstoten in den Fokus genommen wurde, hat sich das Entwicklungsziel inzwischen auch auf Schwerstverletzte erweitert. Im gleichen Zuge haben sich die Methoden bei der Entwicklung der Fahrzeugsicherheit weiter entwickelt. In den Anfangsjahren konnten die meisten Erfolge durch die Verbesserung der passiven Sicherheit (Maßnahmen zur Unfallfolgenminderung) erzielt werden, während heutzutage viele Aktivitäten in Richtung der aktiven Sicherheit (Maßnahmen zur Unfallprävention bzw. zur Senkung der Unfallschwere) gelenkt werden. Des Weiteren wurden Dummys weiter entwickelt, die Werkzeuge für die numerische Simulationen deutlich verbessert, Menschmodelle eingeführt und durch die Entwicklung von "Handlingtools" nutzbar gemacht. Trotz der Fortschritte in der aktiven Sicherheit und der bevorstehenden Automatisierung des Kraftfahrzeugverkehrs wird die passive Sicherheit auf absehbare Zeit nicht vernachlässigbar sein. Im Gegenteil, der positive Trend in Bezug auf die Anzahl der getöteten Unfallopfer stagniert seit Jahren. Durch eine größere Diversifikation des Verkehrs zum Beispiel durch elektrifizierte Fahrräder oder Kleinstfahrzeuge sowie durch den demografischen Wandel und ein geändertes Mobilitätsverhalten stellen sich auch in Bezug auf die passive Sicherheit immer wieder neue Herausforderungen.

Hierbei ist es wichtig zu begreifen, dass nicht der Dummy, das Dummymodell oder das Menschmodell geschützt werden soll, sondern der real lebende Mensch. Das Buch Trauma-Biomechanik hilft durch eine nach Körperregionen strukturierte Behandlung der Anatomie, der Verletzungen und Verletzungsmechanismen, Verletzungskriterien sowie Präventionsmaßnahmen, dem Ziel des Schutzes von lebenden Menschen näher zu kommen. Hierfür wird die Herkunft der Grenzwerte für die einzelnen Normen und deren Wirkbereiche erläutert, sodass eine Erarbeitung der Übertragbarkeit der eigenen Dummyergebnisse auf den Menschen ermöglicht wird.

Allgemeine Ausführungen zur Biomechanik, die Behandlung von Schädigungen und Verletzungen durch eine chronische Belastung und Aufgaben mit Lösungen zu den einzelnen Kapiteln runden das Buch ab. Des Weiteren werden nicht nur Verletzungen infolge von Verkehrsunfällen, sondern auch Sportverletzungen und Traumata in Folge

VI Geleitwort

von Explosionen und ballistischen Belastungen adressiert. Während sich das Buch hauptsächlich an Einsteiger richtet, bietet es sich auch als Nachschlagewerk für den Experten bei spezifischen Fragestellungen an.

Gegenüber der Vorgängerversion wurde neben einer generellen Überarbeitung und Aktualisierung insbesondere das Thema zelluläre Aspekte bei mechanischer Belastung (im Wesentlichen in Bezug auf Hirn- und Nervenverletzungen) hinzugefügt. Des Weiteren wurden die Kapitel zu Simulationsmodellen inklusive der Menschmodelle erweitert.

Dr. Heiko Johannsen Unfallforschung der Medizinischen Hochschule Hannover Hannover, Deutschland

Vorwort

Die unterschiedlichsten biomechanische Belastungen können zu Verletzungen führen. Die neue Auflage des Buches umfasst nun das Spektrum von zellulären Aspekten mechanischer Belastung des Gehirns über Verletzungen im Straßenverkehr und Sport bis zu solchen durch Explosionen.

Trotz der Erweiterung des Buchs – sowie der Überarbeitung aller anderen Kapitel – bleibt die ursprüngliche Intention unverändert. Das Buch richtet sich in erster Linie an Einsteigerinnen und Einsteiger in die Trauma- bzw. Verletzungsbiomechanik. Es soll dabei nicht nur einen strukturierten Zugang zur Materie ermöglichen, sondern auch zu weiterführender Beschäftigung anregen. Die globale, sozio-ökonomische Bedeutung von Verletzungen rechtfertigt jedenfalls eine ausgiebige Beschäftigung mit den verschiedenen Aspekten; sei es mit Verletzungsmechanismen oder mit Möglichkeiten zur Verletzungsprävention. Daraus und aus den vielen, damit zusammenhängenden menschlichen Tragödien ergibt sich die Motivation, zur Reduktion des Verletzungsrisikos beizutragen.

Den Ko-Autoren sei für ihre Beiträge zur neuen Auflage herzlich gedankt und ein besonderer Dank gilt Frau Dr. med. Sylvia Schick für ihre Unterstützung bei der Erstellung dieser deutschen Ausgabe.

Kai-Uwe Schmitt

Vorwort zur zweiten Auflage

Die Verbesserung der Fahrzeugsicherheit hat in den letzten Jahren enorme Fortschritte erzielt. So hat sich in der EU während der letzten 10 Jahre die Zahl der Verkehrstoten um zirka 40 % verringert. Wenn man nur die Insassen von Personenkraftfahrzeugen betrachtet, beträgt die Reduktion sogar mehr als 50 %.

Dieser Fortschritt wurde sowohl durch eine Verbesserung der Fahrzeugstrukturen, der Rückhaltesysteme, sowie durch eine optimierte Verkehrserziehung verbunden mit einer stärkeren Überwachung des Verkehrsgeschehens, sowie durch eine Verbesserung der Infrastruktur erreicht. Ein großes Potenzial bildet aber weiter die passive Fahrzeugsicherheit.

Bei einer detaillierten Analyse der Verkehrsunfälle zeigt sich, dass nur bei sogenannten Katastrophenunfällen derart große Intrusionen auftreten, dass für die Insassen kein ausreichender Überlebensraum verbleibt. Immer häufiger verursachen die auftretenden Beschleunigungen und Krafteinleitungen in den Körper die Ursache für schwerste oder tödliche Verletzungen. Im Fahrzeug gilt es hier die Rückhaltesysteme weiter zu optimieren und an die unterschiedlichsten Kollisionsszenarien anzupassen.

Vor allem durch die zunehmende Überalterung der Bevölkerung stellen sich aber neue Anforderungen an die Fahrzeugsicherheit. So können ältere Menschen vielfach nur wesentlich geringere Beschleunigungen ertragen ohne Verletzungen.

All diese Effekte verlangen aber ein detailliertes Verständnis der Biomechanik des Menschen und die aus den eingeleiteten Kräften resultierenden Verletzungsmechanismen. Nur so ist es möglich, alle Potenziale auszuschöpfen. Dies gilt gleichermaßen für den Schutz der Fahrzeuginsassen sowie der so genannten "Vulnerable Road User", also Radfahrer und Fußgänger.

Das gegenständliche Buch bildet hierbei eine wesentliche Grundlage, die bei Unfällen auftretenden Belastungs- und Verletzungsmechanismen besser zu verstehen. Es hilft auch dem Einsteiger in dieses Metier das Grundlagenwissen über den anatomischen Aufbau des Körpers zu erlangen.

Das Buch ist so aufgebaut, dass die einzelnen Körperregionen mit den jeweils auftretenden Verletzungsmechanismen beschrieben und diskutiert werden. Ebenso sind

bekannte Grenzwerte, bei deren Überschreitung Verletzungen zu erwarten sind, für viele Körperregionen enthalten. Es werden hierbei auch die unterschiedlichsten Verletzungsmechanismen diskutiert. So ist es möglich das Basiswissen aber auch später in Form eines Nachschlagewerkes biomechanische Fragestellungen leichter und besser beantworten zu können.

Die sinnvolle Anwendung des in diesem Buch beinhalteten Wissens ermöglicht, über reine Dummy Grenzwerte hinaus, ein tieferes Verständnis für diese Verletzungsmechanismen aufzubauen. So können neue Rückhaltesysteme und Rückhaltemethoden entwickelt und deren Potenzial untersucht werden. Aber auch existierende Rückhaltesysteme können nur mithilfe dieses Wissens effizient und nachhaltig verbessert werden.

Somit empfehle ich dieses Buch sowohl dem Einsteiger in dieses Wissensgebiet, um das Grundlagenwissen aufzubauen, aber auch dem Experten als Nachschlagewerk. Das Buch ist auch so verfasst, dass es für den Nichtmediziner gut verständlich ist. Für den Fahrzeugsicherheitsexperten bildet das vorliegende Buch eine wesentliche Grundlage für seine tägliche Arbeit.

Prof. Dr. Hermann Steffan Technische Universität Graz Graz, Österreich

Vorwort zur ersten Auflage

Auf dem Gebiet der Verkehrssicherheit wurden in den vergangenen Jahren große Fortschritte erzielt. Dazu haben zahlreiche Maßnahmen beigetragen. Verbesserte Straßen sind ebenso zu nennen, wie die Gurtanlegepflicht und ein gesellschaftlicher Lernprozess bezüglich des individuellen Umgangs mit Risiken bei der Verkehrsteilnahme. Fahrwerksregelsysteme wie ABS und ESP gehören mittlerweile zur Serienausstattung und helfen viele Unfälle zu vermeiden und anderen eine mildere Verlaufsform zu geben. Wenn es dennoch zum Aufprall kommt, sorgen zunehmend verbesserte Karosseriestrukturen in den meisten Fällen für einen Überlebensraum ohne bedrohliche Intrusionen und bauen die kinetische Energie ab. Die Insassen werden durch vielfältige, aufeinander abgestimmte Rückhaltesysteme kontrolliert verzögert, sodass die biomechanischen Grenzen ihrer Belastbarkeit möglichst nicht erreicht werden. Schließlich können Unfallopfer auf eine rasche Alarmierung von Helfern, eine effiziente Rettungskette und eine hoch entwickelte Notfallmedizin rechnen. Tatsächlich ist die Zahl der im Straßenverkehr Getöteten in Deutschland, Österreich und der Schweiz und auch in der EU insgesamt trotz steigenden Verkehrsaufkommens seit Jahren rückläufig. Dennoch müssen noch mehr Fortschritte erreicht werden, wenn das Leitbild eines nahezu opferfreien Straßenverkehrs realisiert werden soll.

Es gibt zahlreiche weitere Ansätze zur Verbesserung der Passiven Fahrzeugsicherheit. Bei gegebener, sehr guter Karosserie müssen die Rückhaltesysteme so ausgelegt werden, dass sie der Vielfalt der tatsächlich auftretenden Unfallsituationen und den interindividuellen Unterschieden der Fahrzeuginsassen gerecht werden können. Eine Voraussetzung dafür ist es, dass die biomechanischen Bedingungen für das Auftreten von Verletzungen bekannt sind.

Der Nachweis der Schutzwirkung bei einem Unfall erfolgt für ein Kfz heute an Hand von Versuchen mit Anthropomorphic Test Devices, also Dummys. Dazu wurden biomechanisch begründete Schutzkriterien definiert, die den Zusammenhang zwischen den Messwerten am Dummy und der Wirkung auf den Menschen erfassen. Ergänzend werden inzwischen im Entwicklungsprozess in großem Umfang rechnerische Methoden mit numerischen Modellen von Fahrzeug, Rückhaltesystemen, Dummys und gegnerischen Objekten eingesetzt.

In Zukunft werden nicht nur die standarisierten Tests mit durchschnittlichen Personen zu bewerten sein, auch wenn diese für den Nachweis eines Mindestniveaus an Passiver Sicherheit für die Fahrzeugtypprüfung entscheidend bleiben. Zusätzlich ist eine Vielzahl von Unfallsituationen mit unterschiedlich großen, schweren, alten und gesunden Fahrzeuginsassen zu optimieren und zu überprüfen. Auf experimentellem Weg ist das unmöglich. Die Rolle der numerischen Simulation wird daher weiter zunehmen. Dazu sind aussagefähige, numerische Modelle der Biomechanik unter Berücksichtigung der Verschiedenheit der Menschen erforderlich. Untersuchungen zur Verletzungsentstehung können helfen, sie durch konstruktive Verbesserungen zu vermeiden oder in ihrer Schwere zu verringern. Von der Unfallbiomechanik sind also weiterhin wichtige Beiträge zur Verbesserung der Fahrzeugsicherheit zu erbringen.

Prof. Dr. Volker Schindler Technische Universität Berlin Berlin, Deutschland

Inhaltsverzeichnis

1	Einle	eitung	1		
	1.1	Zum vorliegenden Buch	3		
	1.2	Geschichte	9		
	Liter	atur	15		
2	Metl	hoden der Trauma-Biomechanik	17		
	2.1	Statistik, Feldstudien, Datenbanken	17		
	2.2	Grundlagen der Biomechanik	21		
	2.3	Verletzungskriterien, Verletzungsindizes und Verletzungsrisiko	26		
	2.4	Unfallrekonstruktion	29		
	2.5	Experimentelle Untersuchungen	33		
	2.6	Standardisierte Testverfahren	38		
		2.6.1 Crashtest-Dummys	46		
	2.7	Numerische Simulationen und Computermodelle des Menschen	54		
	2.8	Aufgaben	68		
	Liter	atur	69		
3	Zellı	uläre Trauma-Biomechanik: Verletzungen des zentralen			
	Nerv	vensystems	73		
	3.1	Grundlagen der zellulären Trauma-Biomechanik des zentralen			
		Nervensystems	74		
		3.1.1 Zellphysiologie	74		
		3.1.2 Anatomie von Nervenzellen	78		
	3.2	Mechanoporation	78		
		3.2.1 Calcium- und Natriumeinstrom und Kaliumausstrom	80		
	3.3	Energieverbrauch und Exzitotoxizität	82		
		3.3.1 Mitochondriale Funktionsstörungen	84		
	3.4				
	3.5	Calpain-bedingter Proteinabbau	87		

XIV Inhaltsverzeichnis

	3.6	Störung	g der Blut-Hirn-Schranke	88
	3.7	Aufgab	oen	92
	Liter	atur		93
4	Kop	fverletzu	ngen	101
	4.1		nie des Kopfes	102
	4.2		ungen und Verletzungsmechanismen	104
	4.3		nisches Verhalten des Kopfes	109
	4.4		ungskriterien für Kopfverletzungen	114
		4.4.1	Head Injury Criterion (HIC)	115
		4.4.2	Head Protection Criterion (HPC)	116
		4.4.3	3 ms Kriterium (a _{3 ms})	117
		4.4.4	Generalized Acceleration Model for Brain Injury	
			Threshold (GAMBIT)	117
		4.4.5	Brain Injury Criterion (BrIC)	118
	4.5	Kopfve	erletzungen im Sport	119
	4.6	-	tion von Kopfverletzungen	125
		4.6.1	Prävention von Kopfverletzungen bei Fußgängern	126
	4.7	Aufgab	pen	129
	Liter	_		130
_				
5			der Wirbelsäule	135
	5.1		nie der Wirbelsäule	136
	5.2		rungsmechanismen.	139
	5.3		chanisches Verhalten und Toleranzen	148
	5.4		rungskriterien	152
		5.4.1	NIC.	154
		5.4.2	N_{ij}	155
		5.4.3	N _{km}	156
		5.4.4	Verletzungskriterien in ECE und FMVSS	159
		5.4.5	Weitere Verletzungskriterien	160
		5.4.6	Korrelation zwischen Verletzungskriterien und -risiko	162
	5.5		säulenverletzungen im Sport	164
	5.6		tion von HWS-Verletzungen	166
		5.6.1	Kopfstützen-Geometrie und -Material	168
			Systeme zur Optimierung der Kopfstützen-Position	168
		5.6.3	Systeme mit kontrollierter Bewegung des Sitzes	169
	5.7		pen	170
	Liter	atur		171
6	Tho	raxverlet	zungen	179
	6.1	Anaton	nie des Thorax	179
	6.2	Verletz	rungsmechanismen	181

Inhaltsverzeichnis XV

		6.2.1	Rippenfrakturen	183
		6.2.2	Lungenverletzungen	184
		6.2.3	Verletzungen anderer Organe des Thorax	185
	6.3	Biomed	chanisches Verhalten	188
		6.3.1	Frontale Belastungen	188
		6.3.2	Laterale Belastungen	194
	6.4	Verletz	ungstoleranzen und - kriterien	196
		6.4.1	Beschleunigung und Kraft	196
		6.4.2	Thoracic Trauma Index (TTI)	196
		6.4.3	Compression Criterion (C).	197
		6.4.4	Viscous Criterion (VC)	198
		6.4.5	Combined Thoracic Index (CTI)	198
		6.4.6	Weitere Kriterien	199
	6.5	Thorax	-Verletzungen im Sport	199
	6.6	Aufgab	oen	200
	Liter	atur		202
7	Verl	etzungen	des Abdomens	205
	7.1		nie des Abdomens	205
	7.2		rungsmechanismen	206
	7.3		mung des biomechanischen Verhaltens	209
	7.4		ungstoleranzen	212
		7.4.1	Verletzungskriterien	213
	7.5	Einflus	s des Sicherheitsgurtes	214
	7.6		rungen des Abdomens im Sport	215
	7.7		pen	216
				216
8	Vorl	atzungen	des Beckens und der unteren Extremitäten	219
U	8.1	_	nie der unteren Extremitäten	219
	8.2		rungsmechanismen	222
	0.2	8.2.1	Verletzungen des Beckens und des proximalem Femurs	223
		8.2.2	Bein-, Knie- und Fußverletzungen	227
	8.3		ingstoleranzen für Becken und untere Extremitäten	230
	8.4		rungskriterien	234
	0.4		Kompressionskraft	235
		8.4.2	Femur-Kraft-Kriterium (Femur Force Criterion, FFC)	235
		8.4.3	Tibia-Index (TI)	235
		8.4.4	Weitere Kriterien	236
	8.5		rungen von Becken und unteren Extremitäten im Sport	237
	8.6		tion	241
	8.7		pen	244
				245
	Littl			273

XVI Inhaltsverzeichnis

9	Verle	tzungen der oberen Extremitäten	251
	9.1	Anatomie	251
	9.2	Verletzungsmechanismen	253
	9.3	Verletzungstoleranzen	254
	9.4	Verletzungskriterien und Bewertung des	
		Verletzungsrisikos durch Airbags	256
	9.5	Verletzungen der oberen Extremitäten im Sport	257
	9.6	Aufgaben	262
	Litera	atur	263
10	Schä	digungen und Verletzungen durch chronische Belastung	267
	10.1	Arbeitsmedizin	270
	10.2	Sport	273
		10.2.1 Sportarten ohne Körperkontakt	273
		10.2.2 Sportarten mit Körperkontakt	276
	10.3	Hausarbeit	276
	Litera	atur	277
11	Ballis	stisches Trauma und Verletzungen durch Explosionen	281
	11.1	Ballistisches Trauma	282
		11.1.1 Wundballistik und Verletzungen durch	
		eindringende Projektile	284
		11.1.2 Persönliche Schutzausrüstung	287
		11.1.3 Performance und Prüfung von Schutzausrüstung	291
		11.1.4 Verletzungen trotz Schutzausrüstung:	
		stumpfe Thoraxtraumen	294
	11.2	Verletzungen durch Explosionen	296
		11.2.1 Sprengstoffe und Detonation	296
		11.2.2 Wellen und Impedanz	299
		11.2.3 Explosionen in Luft und im Boden	302
		11.2.4 Verletzungen	305
	11.3	Aufgaben	314
	Litera	atur	316
12	Lösu	ngen	321
Stic	hwart	verzeichnis	325
Sill	11 W U1 t	ter zereming	243

1

Einleitung 1

Der menschliche Körper wird täglich mechanischen Belastungen ausgesetzt. Einerseits wirken Kräfte, die allgegenwärtig sein können wie die Schwerkraft oder die über große Distanzen übertragen werden können wie elektromagnetische Feldkräfte. Andererseits wirkt eine Vielzahl von Kräften, die durch direkten Kontakt mit unserer Umwelt entstehen. Auch durch physiologische Prozesse im Körper selbst werden Kräfte auf Organe und das Gewebe ausgeübt. Im Laufe der Evolution war die Entwicklung immer von solchen mechanischen Wechselwirkungen geprägt, teilweise sind solche Kräfte sogar notwendig, damit der Körper einzelne Funktionen – wie beispielsweise den Knochenumbau – überhaupt erst ausüben kann. Bereits in der Gebärmutter wird die Zell-Entwicklung durch mechanische Kräfte moduliert [Knothe Tate et al. 2008] [5].

Die Biomechanik bezieht sich in erster Linie auf die Analyse, die Messung und die Modellierung von Auswirkungen verschiedener mechanischer Belastungen auf den menschlichen Körper, untersucht werden diese Aspekte aber auch bei Tieren und Pflanzen. Ein quantitativer Ansatz steht dabei im Vordergrund. Die zu untersuchenden mechanischen Belastungen umfassen innere wie äußere Kräfte. Beispiele für innere Kräfte finden sich im molekularen Bereich, dazu gehören auch Kräfte, welche durch kontraktile Fasern auf zellulärem Niveau entstehen wie auch makroskopisch wirkende Muskelkräfte oder Drücke und Schubspannungen, die durch Körperflüssigkeiten oder andere aktive biologische Transportprozesse einschließlich der Osmose entstehen. Äußere Kräfte beinhalten Kräfte, die in unserem Alltag auf uns wirken. Dementsprechend umfassen die in der Biomechanik untersuchten Kräfte Größenordnungen von pN bis MN (kleinere bzw. größere Kräfte sind dabei nicht von Interesse, da diese entweder kaum einen Effekt auf den Körper haben oder zu dessen vollständiger Zerstörung führen). Die relevanten Zeitdauern, während welcher die Kräfte wirken, reichen von Picosekunden bis Jahre.

Eine mögliche unerwünschte Folge von inneren wie äußeren auf den Körper wirkenden Kräfte ist das Entstehen von Verletzungen. Solche werden üblicherweise mit

dem Auftreten von übermäßigen äußeren Kräften und/oder dem Auftreten von Kräften in ungünstigen Konstellationen, insbesondere im Rahmen von Unfällen, in Verbindung gebracht. Tatsächlich stellen Unfälle die häufigste Todesursache von jüngeren Menschen dar. Tab. 1.1 fasst die entsprechende US Todesursachen-Statistik zusammen, die für Industrieländer als repräsentativ betrachtet werden kann. Bei inneren Kräfte hingegen geht man meist davon aus, dass diese durch anatomische oder physiologische Gegebenheiten derart begrenzt werden, dass sie nicht zu Verletzungen führen. Dies muss jedoch nicht immer der Fall sein: Rippenbrüche als Folge intensiver Hustenanfälle, Muskelfaserrisse durch Krämpfe oder endokardiale Blutungen im Falle eines hypovolämischen Schocks sind Beispiele für Verletzungen, die durch den Körper selbst verursacht werden können.

Der Teilbereich der Biomechanik, der sich mit dem Entstehen von Verletzungen durch mechanische Einwirkungen beschäftigt, wird als Verletzungsbiomechanik oder Trauma-Biomechanik bezeichnet. Das vorliegende Buch konzentriert sich auf diesen Aspekt der Biomechanik.

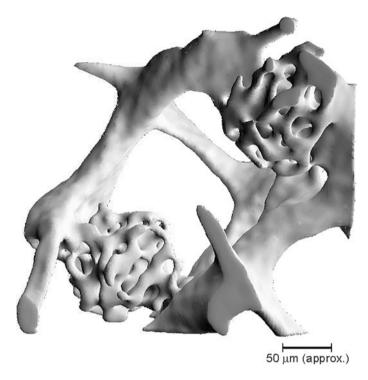
Dabei gilt es viele verschiedene Arten von Verletzungen, unterschiedliche Verletzungsmechanismen und eine Vielzahl von verletzungsinduzierenden Belastungen zu betrachten. Um dieses Spektrum mit der nötigen Tiefe behandeln zu können, ist die Trauma-Biomechanik ein stark interdisziplinär ausgerichtetes Fach. Es umspannt makroskopische Bewegungsanalysen im Sport genauso wie sub-mikroskopische Modellierungen von molekularen Transportvorgängen in Zellmembranen. Da hier lebendes Gewebe mit den ihm eigenen aktiven Prozessen wie Muskelkontraktionen oder elektrochemischen Prozessen im Mittelpunkt steht, sind biologische Aspekte involviert. Zudem

Tab. 1.1 Die 10 häufigsten Todesursachen in den USA im Jahr 2016 (Altersgruppe 35–44 Jahre) [Heron 2018] [3]

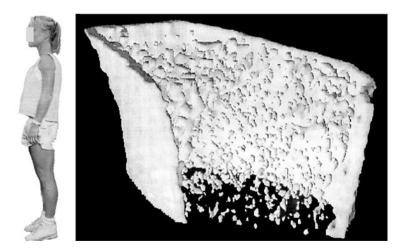
Todesursache	Rang	Anzahl	[%]
Alle Todesfälle		77.792	100,0
Unfälle (unbeabsichtigte Verletzungen)	1	20.975	27,0
Bösartiger Tumor	2	10.903	14,0
Herzerkrankung	3	10.477	13,5
Selbst zugeführte Verletzung (Suizid)	4	7030	9,0
Körperverletzung (Tötungsdelikt)	5	3369	4,3
Chronische Lebererkrankung/-zirrhose	6	2851	3,7
Diabetes mellitus (Zuckerkrankheit)	7	2049	2,6
Kardiovaskuläre Erkrankungen	8	1854	2,4
Humanes Immunschwäche-Virus (HIV)	9	971	1,2
Sepsis (Blutvergiftung)	10	897	1,2

ist natürlich die klinische Medizin relevant, beispielsweise im Zusammenhang mit der Verletzungsschwere.

Das über Jahrzehnte gesammelte vielfältige Wissen aus der Mechanik und der Biologie trägt somit erheblich zum Verständnis der Trauma-Biomechanik, dem Verständnis von Verletzungen auf makroskopischem wie subzellulärem Niveau bei. Daher ist ein Grundwissen aus Mechanik, Anatomie, Physiologie und Medizin erforderlich, um ein systematisches Grundverständnis der Trauma-Biomechanik entwickeln zu können.


1.1 Zum vorliegenden Buch

Nachfolgend sind einige Vorbemerkungen zum Inhalt, zur Intention sowie zum Aufbau des Buches aufgeführt:


- 1. Es ist zu unterscheiden zwischen Verletzungen, die durch unvorhergesehene, plötzliche und einmalige Ereignisse also durch Unfälle im engeren Sinne entstehen und Verletzungen infolge chronischer Überbelastung, d. h. durch Belastungen über einen längeren Zeitraum. Der Kopfanprall, den ein Fußgänger im Rahmen einer Kollision durch Anprall an der Fahrzeugfront erfährt und die graduelle Zerstörung von Haarzellen im Innenohr durch chronische Beschallung mit Lärm sind beides Beispiele für Verletzungen, wobei sich jedoch die Art der Verletzung, der Verletzungsmechanismus, die Belastungsgrenzen und Verletzungskriterien, die Methoden zur Rekonstruktion und Analyse der Ereignisse wie auch die Schutzmaßnahmen grundsätzlich unterscheiden. Auch im Hinblick auf Versicherungs- und Haftungsfragen sind beide Fälle sehr unterschiedlich zu bewerten.
- 2. Der Zeitraum, der typischerweise im Rahmen eines Straßenverkehrsunfalls für das Entstehen von Verletzungen relevant ist, beträgt zwischen 100 und 200 ms, wobei die frühe Phase oftmals entscheidend ist. Häufig ist sich die involvierte Person der Unfallsituation nicht bewusst, sodass sie nicht im Vorfeld auf die drohende Gefahr reagiert (bzw. reagieren kann). Demnach können Muskelreaktionen, die mit einer Zeitverzögerung von 60 ms bis 80 ms auftreten, oftmals als zweitrangig betrachtet und daher vernachlässigt werden. Dieser Aspekt ist bei chronischen Belastungen grundsätzlich verschieden, da hier physiologische wie auch psychische Reaktionen immer im Vordergrund stehen.
- 3. Das Alter stellt einen weiteren wichtigen Aspekt dar. Die mechanischen Eigenschaften und insbesondere die Verletzungstoleranzen menschlichen Gewebes, der Organe bzw. des Körpers als Ganzes, verändern sich durch das Altern deutlich hin zu geringeren Toleranzen. Dies wird unter anderem durch einen reduzierten Wasseranteil im Körper einhergehend mit zunehmender Steifigkeit des Gewebes sowie einer fortschreitenden Demineralisierung von Knochen ab einem Alter von 30–40 Jahren begünstigt. Deutlich häufigere Verletzungen im Alter, vor allem Knochenbrüche, sind die Folge. In diesem Zusammenhang sind auch spontane

Brüche bekannt, bei denen der Knochen bereits unter normalen physiologischen Belastungen bricht. In Anbetracht der in den Industrienationen alternden Gesellschaft, verdienen solche Aspekte besondere Aufmerksamkeit.

- 4. Auch am anderen Ende der Altersspanne, den Heranwachsenden, bestehen bezüglich Trauma-Biomechanik große Herausforderungen, da sich die mechanischen und biologischen Eigenschaften von der Geburt bis zum Erwachsenenalter stark verändern. Experimente mit Kindern sind kaum vorstellbar und auch entsprechende Leichenversuche sind weder üblich noch einfach durchzuführen. Das Skalieren von an Erwachsenen bestimmten Eigenschaften auf Kinder ist schwierig ("Kinder sind keine kleinen Erwachsenen"). Die Entwicklung von Kinder-Crashtest-Dummys (Abschn. 2.6.1) ist daher nicht einfach. Wegen des Mangels an experimentellen Daten basieren die meisten Arbeiten zu Verletzungen bei Kindern auf statistischen Analysen. Ein signifikanter Beitrag zu diesem Themengebiet wurde beispielsweise durch "The Center for Injury Research and Prevention at The Children's Hospital of Philadelphia" geleistet (http://injury.research.chop.edu/).
- 5. Pathologische Veränderungen können die mechanischen Eigenschaften des Gewebes erheblich verändern. Aus der Urologie sind beispielsweise Nierenverletzungen als Folge von Spannungskonzentrationen im Bereich einer Zyste bekannt. Auch die Verstärkung von vorbestehenden Nackenbeschwerden durch ein zusätzliches "Schleudertrauma" (siehe auch Kap. 5) wurde mehrfach beschrieben.
- 6. Unter ganz bestimmten Umständen könnten Mikro-Verletzungen auf zellulärem Niveau zumindest bis zu einem gewissen Grade vorteilhaft sein. Abb. 1.1 zeigt als Beispiel die Mikro-Kallusbildung in Folge von Mikro-Verletzungen in spongiösem Knochen; die Verletzung stimuliert hier die Knochenbildung. Nach langen, anstrengenden Bergwanderungen sind solche Mikro-Verletzungen auch im gesunden Fuß nicht außergewöhnlich. Chronische Überbelastung hingegen kann zu einer gegenteiligen Entwicklung führen. Abb. 1.2 zeigt eine Marathonläuferin, deren Skelett durch exzessives Training stark demineralisiert wurde.
- 7. Verletzungen werden meistens im Zusammenhang mit Bewegung (Sport, Haushalt usw.) oder Mobilität (Verkehr) erlitten. Während in der Biologie Tierexperimente (unter entsprechenden Auflagen) üblich sind, verhindert die mit Bewegungen und den entsprechenden Verletzungsmechanismen einhergehende Nicht-Linearität die Skalierung von Ergebnissen, die beispielsweise an Ratten gewonnen wurden, auf den Menschen. Abgesehen von grundlegenden Aspekten (u. a. zur Physiologie) finden Tierexperimente in der Trauma-Biomechanik heute nur noch selten Anwendung.
- 8. Betrachtet man das gesamte Spektrum rund um "Verletzungen" einschließlich deren Ursachen, Häufigkeit, Prävention, Heilung, Rehabilitation, Langzeitfolgen und den sozioökonomischen Folgen, so sind auch klinische Aspekte der Behandlung von Verletzungen zu berücksichtigen. Häufig wird vergessen, dass die Reduktion der spezifischen Mortalität (d. h. des Sterberisikos pro Fall) auch durch Entwicklungen der Notfall- und Intensivmedizin sowie der Rettungsdienste positiv beeinflusst wird. Als ungünstig fällt hingegen auf, wenn Verletzungsmechanismen oder Unfälle durch

Abb. 1.1 Mikrokallus Bildung. Das Bild zeigt eine 3D Aufnahme (Mikro-Computertomografie, μ -CT) einer Biopsie aus dem menschlichen Beckenkamm. Mikrofrakturen haben die Neubildung von Knochen initiiert [Prof. R. Müller, ETH Zürich]

Abb. 1.2 28jährige Frau (links) und μ -CT Aufnahme deren Radius (Elle) nahe dem Handgelenk (rechts). Die extreme Demineralisierung des Knochen ist auf exzessives Training als Marathonläuferin zurückzuführen [Prof. Dr. med. M. Dambacher, Universitätsklinik Balgrist, Zürich]

Ärzte untersucht und beurteilt werden, obwohl ihnen nicht alle relevanten Fakten vorliegen. Die objektive, wissenschaftlich fundierte Beurteilung von Unfällen – insbesondere im Zusammenhang mit Verletzungsschwere und Kausalität von Verletzungen – erfordert einen multidisziplinären Ansatz. Zusätzlich zu medizinischen Informationen, die durch klinische Ärzte erhoben werden, sind die technischen und biomechanischen Umstände bei der Untersuchung und Rekonstruktion von Unfällen zu berücksichtigen. Dies ist insbesondere im Bereich der Gerichtsgutachten relevant. Eine spezialisierte Ausbildung sowie ausreichende Erfahrung sind Voraussetzungen für eine entsprechende Gutachtertätigkeit.

- 9. Dieses Buch beschäftigt sich in erster Linie mit unbeabsichtigt entstandenen Verletzungen. Grundsätzlich können Verletzungen jedoch auch bewusst verursacht bzw. in Kauf genommen werden – beispielsweise im Rahmen von Verbrechen, Suiziden, Terrorakten oder kriegerischen Auseinandersetzungen. Wundballistik, Schutzausrüstung für Soldaten oder spezielle, wenig verletzungsinduzierende Waffen für Einsätze der Polizei sind in diesem Zusammenhang relevante Themen. In Kap. 11 finden sich hierzu entsprechende Ausführungen. Interessierte Leser seien zudem auf Veröffentlichungen des Internationalen Komitees des Roten Kreuzes (http://www. icrc.org) verwiesen. Grundsätzlich sollte die Signifikanz von absichtlich zugeführten Schussverletzungen (außerhalb kriegerischer Auseinandersetzungen) nicht unterschätzt werden. Zu diesem kontroversen Thema gibt es z. T. sehr unterschiedliche Angaben. Gemäß Medienberichten wurden im Jahr 2013 in den USA 37.200 Personen durch Schusswaffen getötet (10,3 Getötete pro 100.000 Personen; inkl. Suizide und Unfälle mit Schusswaffen). Zum Vergleich: im Straßenverkehr starben im gleichen Jahr 32.893 Personen. Für das Jahr 2017 wurde die Anzahl der weltweit durch Schusswaffen verursachten Todesfälle auf rund 250.000 geschätzt, wobei die Situation je nach Land sehr verschieden ist. Laut Statistik der Vereinten Nationen (UN) wurden 2009 in den USA 3,0 Tötungsdelikte pro 100.000 Einwohner mit einer Schusswaffe verübt. In Großbritannien hingegen war die Zahl mit 0,07 pro 100.000 Einwohner etwa 40mal kleiner, in Deutschland betrug sie 0,02. Auch in der Schweiz war die Anzahl der mit Schusswaffen verübten Tötungsdelikte im Jahr 2010 mit 0,52 pro 100.000 Einwohner recht klein, obwohl die Schweiz bezogen auf die Anzahl Waffen pro Einwohner weltweit auf Rang 3 steht. Selbstmord ist sodann eine weitere häufige Todesursache (Tab. 1.1 und 1.2). In diesem Zusammenhang sind insbesondere nicht-technische (u. a. soziale, politische, psychologische, allgemeine gesellschaftsbezogene) Aspekte in Betracht zu ziehen. Studien zum Einfluss physischer Gewalt in der Kindheit beinhalten beispielsweise die intensive Analyse sozio-psychologischer Faktoren [z. B. Paradis et al. 2009] [8].
- 10. Am besten ist es, wenn Verletzungen erst gar nicht auftreten. Dementsprechend genießt die Verletzungsprävention hohe Priorität. Im Straßenverkehr sind Maßnahmen zur Vermeidung von Unfällen bereits seit langem implementiert und als staatliche Aufgabe anerkannt. Im Gegensatz dazu wird die Prävention im Sportbereich primär als Aufgabe nationaler und internationaler Sportverbände bzw. als Teil der

Todesursache	Rang	Anzahl	[%]
Alle Todesfälle		2.744.248	100,0
Herzerkrankung	1	635.260	23,1
Bösartiger Tumor	2	598.038	21,8
Unfälle (unbeabsichtigte Verletzungen)	3	161.374	5,9
Chronische Erkrankungen der unteren Atemwege	4	154.596	5,6
Kardiovaskuläre Erkrankungen	5	142.142	5,2
Alzheimer-Krankheit	6	116.103	4,2
Diabetes mellitus (Zuckerkrankheit)	7	80.058	2,9
Influenza (Grippe) und Pneumonie (Lungenentzündung)	8	51.537	1,9
Nierenerkrankungen	9	50.046	1,8
Selbst zugeführte Verletzung (Suizid)	10	44.965	1,6

Tab. 1.2 Todesursachen in den USA (alle Altersgruppen, 2016) [Heron 2018] [3]

Sportmedizin betrachtet. Restriktive Regelwerke, Verbote besonders gefährlicher Formen des Sports, die Entwicklung von Schutzausrüstung wie auch Training und Ausbildung sind Elemente der Prävention. Zudem unterstützen Versicherungsgesellschaften die Verletzungsprävention, wobei hier oftmals die Bereiche Arbeit und Haushalt im Mittelpunkt stehen. Während die Prävention auf potenziell verletzungsinduzierende Situationen abzielt, steht nach erlittener und behandelter Verletzung die Rehabilitation im Vordergrund. Auch diesbezüglich werden von staatlichen Stellen, Sportverbänden, Arbeitnehmervereinigungen, der klinischen Medizin wie auch von Versicherungsunternehmen erhebliche Anstrengungen unternommen. Da sich dieses Buch auf die Trauma-Biomechanik beschränkt, werden Aspekte der Prävention und Rehabilitation nur am Rande bzw. nur im Zusammenhang mit ausgewählten Verletzungen behandelt.

In der Trauma-Biomechanik wurden bisher vor allem Straßenverkehrsunfälle systematisch und quantitativ erforscht, obschon auch im Sport, am Arbeitsplatz oder im Haushalt viele Verletzungen auftreten (Statistiken zu Arbeitsunfällen finden sich u. a. auf der Homepage der International Labor Organization unter http://laborsta.ilo.org). Hierfür können insbesondere zwei Aspekte verantwortlich gemacht werden:

Erstens geschehen im Straßenverkehr mehr schwere und tödliche Unfälle als in den anderen Bereichen (Tab. 1.1), sodass die damit verbundenen gesellschaftlichen Kosten höher sind. Rechtlicher Aspekte (Haftungsfragen), politische Interventionen und Gesetzgebungsinitiativen erzeugen entsprechenden Druck auf die Automobilindustrie (das 1965 erschienene Buch "Unsafe at any Speed" von Ralph Nader erlangte eine unglaubliche öffentliche Resonanz) und spornten bzw. nötigten sie zu Forschungs- und Entwicklungsarbeiten an. Ein Unfalltod in jüngerem Alter ist besonders tragisch und rechtfertigt

entsprechende Anstrengungen zur Prävention; betrachtet man jedoch die Todesursachen allgemein (Tab. 1.2) so übersteigen Krankheiten die Unfälle bei weitem. Dies ist überhaupt nicht überraschend, da das Leben meist in fortgeschrittenem Alter bei (altersentsprechend) reduziertem Gesundheitszustand endet.

Zweitens können Verkehrsunfälle, wenngleich sie natürlich wie andere Unfälle auch in einer Vielzahl von Variationen vorkommen, in einige typische bzw. repräsentative Arten eingeteilt werden (z. B. Frontalkollisionen gegen ein Hindernis oder ein 90°-Seitenanprall), sodass es möglich wird, für diese Typen standardisierte Testverfahren und Prüfprotokolle zu entwickeln. Im Gegensatz dazu ist es in den Bereichen Sport, Arbeitsplatz oder Haushalt ungleich schwerer, typische Situationen zu definieren, die häufig zu Verletzungen führen.

Verglichen mit Publikationen zu Straßenverkehrsunfällen ist die Literatur zu Verletzungen im Sport usw. – obschon reichlich vorhanden – aus biomechanischer Sicht weniger stringent. Sie beschränkt sich häufig auf allgemeine Statistiken, qualitative Beschreibungen von Verletzungsmechanismen, medizinische Therapieansätze oder praktischen Empfehlungen für Sporttrainings oder zur Arbeitsplatzsicherheit. Quantitative Untersuchungen sind hingegen nur relativ wenige vorhanden. Stattdessen werden quantitative Aussagen zu Verletzungsgrenzen oder Verletzungskriterien auch in diesen Bereichen meistens aus Untersuchungen zu Straßenverkehrsunfällen abgeleitet bzw. übernommen. Zudem fällt auf, dass Untersuchungen zu Sportunfällen vor allem in denjenigen Disziplinen durchgeführt wurden, in denen große Geldsummen umgesetzt werden wie beispielsweise Fußball, American Football oder Skifahren. Weniger prominente Sportarten wurden auch in der Forschung weniger oft behandelt.

Verglichen mit Unfällen sind bei Verletzungen durch chronische mechanische (Über-) Belastung die individuellen anatomischen und physiologischen Gegebenheiten von größerer Bedeutung. Die Unterscheidung zwischen einer Schädigung durch chronische Belastung und einer Invalidität durch eine Erkrankung, die nicht mit einer entsprechenden Belastung in Verbindung steht, ist oftmals schwierig oder gar unmöglich. Psychische Einflüsse sind in diesem Zusammenhang sehr wichtig; quantitative Informationen hierzu sind dünn gesät. Bestimmungen zu Belastungen durch Schwingungen von Baumaschinen oder hinsichtlich des Lärmpegels in Fabriken basieren primär auf Langzeitstatistiken und nicht auf physiologischen Experimenten.

Aus den oben dargelegten Gründen beschäftigt sich dieses Buch hauptsächlich mit Trauma-Biomechanik im Bereich der Straßenverkehrsunfälle. Nach einem allgemeinen Kapitel zu Grundlagen widmen sich die nachfolgenden Kapitel je einer Körperregion. Diese Kapitel sind systematisch aufgebaut und beginnen mit einer kurzen Zusammenfassung der im Zusammenhang mit Verletzungsmechanismen relevanten anatomischen Strukturen. Zudem werden je Körperregion mögliche Verletzungen, die zugrunde liegenden Verletzungsmechanismen sowie das biomechanische Verhalten unter Belastung beschrieben. Grenzwerte für verletzungsinduzierende Belastungen und davon abgeleitete Verletzungskriterien, mit denen das Verletzungsrisiko beurteilt werden kann, werden vorgestellt. Zu Sportverletzungen finden sich jeweils eigene Abschnitte, in denen die

1.2 Geschichte 9

relevanten Verletzungen, Verletzungsmechanismen und Verletzungstoleranzen für diesen Bereich dargestellt werden. Zu ausgewählten Teilbereichen werden zudem Möglichkeiten der Verletzungsprävention diskutiert. Für vertiefendes bzw. weiterführendes Lesen schließt jedes Kapitel mit einer Literaturliste ab. Ferner finden sich am Ende eines Kapitels Übungsaufgaben sowie eine Zusammenfassung.

Verletzungen auf zellulärem Niveau spielen insbesondere bei Verletzungen des zentralen Nervensystems (d. h. des Gehirns und des Rückenmarks) eine wichtige Rolle. Daher wurde diesen Verletzungen ein eigenes Kapitel gewidmet (Kap. 3). Ferner finden sich zwei Kapitel zu speziellen Arten von mechanischen Belastungen und Verletzungen. Einerseits werden Verletzungen durch ballistisches Trauma und Explosionen dargestellt und entsprechende Möglichkeiten der Prävention diskutiert (Kap. 11). Zudem findet sich ein Kapitel zu Verletzungen durch chronische, mechanische Belastungen (Kap. 10). Solche verletzungsinduzierenden Belastungssituationen können im Sport (z. B. Boxen), am Arbeitsplatz (z. B. Bauarbeiten) oder im Haushalt (z. B. längere Arbeit in gebückter Haltung) vorkommen. In diesem Zusammenhang sind insbesondere Aspekte der Ergonomie und der allgemeinen Arbeitsplatzsicherheit bzw. dem Berufsrisiko relevant. Eine auf einem Langstreckenflug erlittene Thromboembolie steht vor allem im Zusammenhang mit der Ergonomie des Sitzes und dem Verhalten des Flugpassagiers und hat weniger Bezug zur Trauma-Biomechanik. Da sich dieses Buch jedoch auf letztgenanntes Fachgebiet beschränkt, werden die anderen Bereiche hier nicht behandelt (weiterführende Informationen finden sich beispielsweise auf der Internetseite der US Occupational Safety and Health Administration, http://www.osha.gov).

1.2 Geschichte

Biomechanik als Wissenschaft ist so alt wie die Mechanik selbst. Während sich Giovanni Alfonso Borelli (1608–1679; gelegentlich auch als "Vater der Biomechanik" bezeichnet) als einer der ersten Wissenschaftler mit profunder Kenntnis der Biomechanik mit dem Vogelflug und dem Schwimmen der Fische beschäftigte, schrieb Leonhard Euler (1707–1783), der die Grundlagen der Kontinuumsmechanik erarbeitete, eine ausführliche Abhandlung über den Blutfluss in Arterien ("Principia pro motu sanguinis per arterias determinando", op. posth.) [2]. Bis zur Mitte des 19. Jahrhunderts wurde die Mechanik von Verletzungen bzw. die Trauma-Biomechanik jedoch nicht systematisch erforscht. Dies könnte daran gelegen haben, dass Gefahren allgegenwärtig waren und Verletzungen einfach als zum Leben gehörend betrachtet wurden. Man sollte nicht vergessen, dass es in Europa vor 1945 für 2000 Jahre quasi keine Periode von mehr als 15 Jahren ohne Krieg gab. Verletzungsprävention wurde direkt und pragmatisch umgesetzt, z. B. in Form von Ritterrüstungen.

Der erste bekannte systematische und wissenschaftliche Ansatz in Richtung Trauma-Biomechanik stammt vom deutschen Anatomen Otto Messerer aus München, der im Jahr 1880 die Ergebnisse seiner Forschung unter dem Titel "Über Elastizität

und Festigkeit der menschlichen Knochen" veröffentlichte [7]. In der Forensik ist der sogenannte "Messerer-Keil" (die Beschreibung eines speziellen Frakturbildes) heute noch bekannt.

Wie bereits erwähnt, konzentriert sich die Trauma-Biomechanik heute hauptsächlich auf Verkehrsunfälle. Historisch liegen die Wurzeln jedoch in der Aviatik. Anlässlich der "1st National Conference on Street and Highway Safety" (USA 1924) standen vor allem einfache und praktische Aspekte der Verkehrssicherheit, wie beispielsweise die Farbe von Lichtsignalanlagen (Ampeln) oder die Fahrerausbildung im Vordergrund, während die Trauma-Biomechanik keine besondere Rolle spielte. Im Gegensatz dazu war die Trauma-Biomechanik zu dieser Zeit bereits im Bereich der militärischen Fliegerei, in der der menschliche Körper extremen mechanischen Belastungen ausgesetzt ist, ein wichtiges Thema. Insbesondere Hugh DeHaven, von manchen - in Anlehnung an Borelli - als "Vater der Trauma-Biomechanik" bezeichnet, begann mit der Analyse von Flugzeugabstürzen und den involvierten Verletzungsmechanismen. 1942 publizierte er seine Arbeit "Mechanical Analysis of Survival in Falls from Heights of 50-100 Feet" ("Mechanische Untersuchung zum Überleben von Stürzen aus Höhen von 15,2–30,5 m"). Auch in den darauffolgenden Jahren stand die Militäraviatik im Zentrum der Trauma-Biomechanik-Forschung. Die Belastungen bei Überschallflügen oder der Ausstieg mittels Schleudersitz waren wichtige Forschungsthemata. Zudem wurden grundlegende Methoden im Bereich der Trauma-Biomechanik eingeführt, z. B. die Durchführung von Freiwilligenversuchen zur Untersuchung des biomechanischen Verhaltens des Körpers unter subkritischen Belastungen oder die Entwicklung von anthropometrischen Testpuppen (Crashtest-Dummys). Auch die Grundidee des "airbags" stammt aus der Aviatik.

Der wahrscheinlich berühmteste Pionier der Trauma-Biomechanik in der Aviatik ist Colonel John Paul Stapp. Er wurde insbesondere für seine experimentellen Arbeiten bekannt. Zu diesen gehören unter anderem verschiedene Selbstversuche, in denen er sich unterschiedlichen, z. T. enorm hohen Belastungen aussetzte. In einer seiner spektakulären Testreihen Anfang der 1950er Jahre "setzte" (er war umfassend gesichert) sich Stapp auf einen von einer Rakete angetriebenen Schlitten und ließ sich ausgehend von einer Geschwindigkeit von ca. 1000 km/h in 1,4 s bis zum Stillstand abbremsen. Er erfuhr dadurch eine Beschleunigung (Abbremsung) von etwa dem 40fachen der Erdbeschleunigung (Abb. 1.3). Schwere Verletzungen zog er sich bei diesem Experiment nicht zu. Stapp, von der Zeitschrift Time zu "the fastest man on earth and No. 1 hero of the Air Force" gekürt (Time, September 12/1955), gründete zudem die jährlich stattfindenden Stapp Car Crash Conference, einer Konferenz zu Trauma-Biomechanik-Themen. John P. Stapp starb 1999 im Alter von 89 Jahren.

Auch Entwicklungen aus dem Bereich der Astronautik – obschon dort Untersuchungen zum Einfluss der Schwerelosigkeit im Mittelpunkt standen – haben die Trauma-Biomechanik beeinflusst. Das erste Computermodell zur dreidimensionalen Simulation von Bewegungen des Menschen (R.D. Young, Texas A&M, 1970) wurde im Zusammenhang mit der Analyse von Bewegungsmustern unter Schwerelosigkeit

1.2 Geschichte 11

Abb. 1.3 Colonel Stapp auf dem Raketen getriebenen Schlitten "Sonic Wind No. 1" sitzend, mit dem er sich einer Beschleunigung von 40 g aussetzte [Stapp Car Crash Conference 2018] [10]

(d. h. beim Wegfall äußerer Kräfte) entwickelt. McHenry (Calspan Corp., Buffalo) erstellte das erste Computermodell zur Bewegungsanalyse im Falle einer Frontal-kollision im Straßenverkehr. Da in diesem Fall der Einfluss äußerer Kräfte wichtig ist, beschäftigte sich ein großer Teil der Modellbildung mit der Wechselwirkung bzw. dem Kontakt zwischen dem menschlichen Körper und den ihn umgebenden (Fahrzeug-) Strukturen. Dadurch wurden die Modelle für damalige Verhältnisse derart komplex, dass anfangs nur zweidimensionale Berechnungen möglich waren.

In den Anfängen des Straßenverkehrs wurde Sicherheit primär mit dem Fahrer bzw. dem Fahrstil in Verbindung gebracht. Die Sicherheit des Fahrers und seiner Passagiere wie auch die der anderen Verkehrsteilnehmer war quasi ausschließlich eine Frage des Fahrstils des Fahrers. Rückhaltesysteme wurden angedacht (Abb. 1.4) waren aber vor dem 2. Weltkrieg nicht sehr verbreitet. Nichtsdestotrotz verbesserte sich die Konstruktion der Fahrzeuge zwischen den 1920er und 1930er Jahren auch zum Vorteil der Sicherheit. Beispielsweise wurden zuverlässige Bremssysteme und laminierte Frontscheiben eingeführt. Weitere Entwicklungen betrafen die Beleuchtung sowie die Räder (z. B. schlauchlose Reifen). Fahrzeugstrukturen aus Stahl ersetzten Holzbauteile und erhöhten somit die Steifigkeit der Fahrzeuge.

Nach dem 2. Weltkrieg nahm die Mobilität schnell zu, womit auch eine dramatische Zunahme der im Straßenverkehr erlittenen Verletzungen einherging. Folglich wurden diese Gegenstand detaillierter Untersuchungen. Das "Automotive Crash Injury Research Programme" (ACIR, Cornell University, 1951) war ein früher systematischer Ansatz zur Untersuchung von Verletzungen im Straßenverkehr. Ein entscheidender Fortschritt war

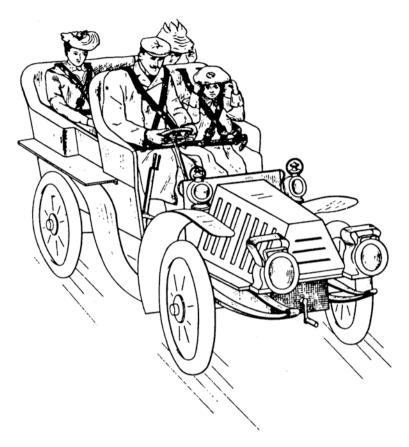


Abb. 1.4 Patent über Sicherheitsgurte von Gustave D. Lebau (1903). Statt zur Sicherheit im Falle einer Kollision dienten die Gurte in erster Linie dazu, die Passagiere während der Fahrt (über unebene Straßen und ohne Stoßdämpfer) in den Sitzen zu halten

die Umsetzung der Kombination aus steifer Fahrgastzelle und vorgelagerter Knautschzone. Auch das Lenkrad wurde als mögliche Quelle für Verletzungen identifiziert und stand daher im Mittelpunkt verschiedener Forschungs- und Entwicklungsprojekte, die beispielsweise zur Einführung von energieabsorbierenden Lenksystemen führten. Weitere Verbesserungen betrafen das Crash-Verhalten des Armaturenbretts, die Entwicklung von Rückhaltesystemen wie dem 3-Punkt-Gurt und dem Airbag. Die Begriffe "passive" und "aktive" Sicherheit wurden eingeführt und Fahrzeughersteller begannen mit der Durchführung von systematischen Crashtests und entsprechenden Computersimulationen. Eine umfangreiche Zusammenfassung der Forschung zur Fahrzeugsicherheit bis 1970 findet sich im International Automobile Safety Conference Compendium (1970, SAE, New York) [9].

Im Rahmen der passiven Fahrzeugsicherheit können Maßnahmen auf verschiedenen Ebenen ergriffen werden. Erstens können Verletzungen konstruktiv durch verbesserte 1.2 Geschichte 13

Crash-Eigenschaften des Fahrzeugs reduziert werden. Dies beinhaltet insbesondere die Entwicklung von Energie absorbierenden Strukturen. Zweitens kann die Insassenbewegung im Falle einer Kollision kontrolliert werden. Rückhaltesysteme wie der Sicherheitsgurt zielen darauf ab, die Insassen in der vorgesehenen Position zu halten und koppeln die Bewegung der Insassen an das Fahrzeug. Drittens kann der eigentliche Anprall, d. h. der Kontakt zwischen dem menschlichen Körper und den ihn umgebenden Strukturen, beeinflusst werden. Hierbei spielen Energieabsorption und die Verteilung der Aufprallkräfte auf der Kontaktfläche eine große Rolle.

Aktive Sicherheit wiederum beschreibt hier Systeme, die den Fahrer unterstützen, um einen Anprall zu verhindern bzw. Systeme, die vor dem Anprall aktiv werden. Beispiele sind ABS-Bremssysteme, Abstandsradar und diverse Fahrassistenzsysteme. Die aktuelle Entwicklung von höher automatisierten Fahrzeugen treibt die Entwicklung weiterer sicherheitsrelevanter Systeme voran bzw. bringt neue Herausforderungen im Bereich der Fahrzeugsicherheit.

In Ergänzung zu (fahrzeug-) technischen Möglichkeiten bemühen sich auch staatliche Stellen um eine Verbesserung der Sicherheit auf den Straßen. Nach dem 2. Weltkrieg richteten sich erste Programme an die Ausbildung von Fahrern, Verkehrsregeln oder die Entwicklung der Verkehrswege um die Sicherheit zu erhöhen. Die Gestaltung sowie der Bau von Straßen oder die Überwachung von Verkehrsvorschriften und Geschwindigkeitsbegrenzungen sind wichtige Beiträge des Staates zur Verbesserung der Verkehrssicherheit.

Die Reduktion der im Straßenverkehr verletzten und getöteten Personen, die die amtlichen Statistiken der letzten Jahre in vielen Staaten ausweisen (Abb. 1.5), kann teilweise mit den Anstrengungen im Bereich der Trauma-Biomechanik erklärt werden, die sich auf die lebensbedrohlichen Verletzungen konzentrierten. Wie bereits erwähnt, ist der Straßenverkehr jedoch nur ein Teilgebiet, in dem Verletzungen auftreten. Verletzungen, die bei Arbeitsunfällen, im Sport oder sonst im Alltag erlitten werden, sind ebenfalls bedeutend. In Industriestaaten wie den USA ist bei jungen, bis Menschen mittleren Alters die Anzahl der im Straßenverkehr Getöteten ähnlich hoch wie die Anzahl der in anderen Unfallereignissen getöteten Personen (Tab. 1.1). Mit zunehmendem Alter verschieben sich die Todesursache dann von Unfällen hin zu Krankheiten (Tab. 1.2).

Globale Statistiken zeigen, dass vor allem Verkehrsunfälle bei den tödlich verlaufenden Unfällen überwiegen: während die Weltgesundheitsorganisation (WHO) die Anzahl der im Straßenverkehr Getöteten im Jahr 2013 weltweit auf 1,25 Mio. Personen schätzt, geht die International Labour Organisation (ILO) derzeit von 2,78 Mio. Arbeitsunfällen pro Jahr aus. Die Expositionszeit, d. h. die Zeitdauer, in der man die verschiedenen Aktivitäten ausübt, kann ein entsprechender Indikator für das mit der jeweiligen Tätigkeit verbundene Risiko sein. Tab. 1.3 zeigt, dass die Teilnahme am Straßenverkehr – dank den unternommenen Anstrengungen zur Sicherheit – nicht per se übermäßig risikoreich ist, wenn man sie anderen Aktivitäten gegenüberstellt. Die hohe Expositionszeit im Straßenverkehr macht diesen Effekt jedoch zunichte.

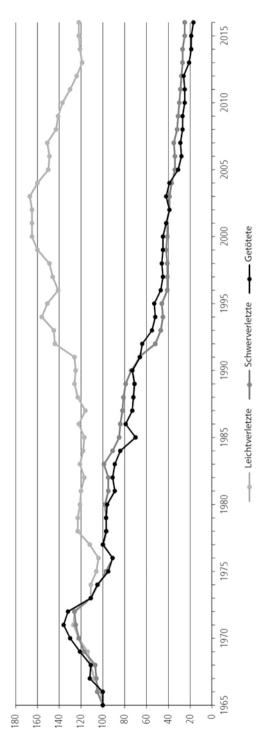


Abb. 1.5 Entwicklung der Anzahl von im Straßenverkehr verletzten und getöteten Personen in der Schweiz. Die Anzahl der leicht Verletzten stagniert auf hohem Niveau [bfu 2018] [1]

Literatur 15

Tab. 1.3 Geschätztes Risiko eines tödlichen Unfalls (Fatal Accident Rate, FAR) je nach Expositionszeit und individuellem Risiko pro Person und Jahr [McDonald 2004] [6]

Tätigkeit	FAR pro 108 h Exposition	Individuelles Sterberisiko pro Person und Jahr (x10 ⁻⁴)
Reisen im:		
- Flugzeug	na	0,02
- Zug	3–5	0,03
- Bus	4	2,00
- Auto	50-60	2,00
Tätigkeit/Arbeit in der:		
- Chemischen Industrie	4	0,50
- Produktion	8	na
- Schifffahrt	8	9,00
– (Kohle-) Bergbau	10	2,00
- Landwirtschaft	10	na
- Boxen	20.000	na
- Klettern	4.000	1,40

Während der letzten Jahrzehnte haben die Forschung zu Verletzungen sowie entsprechende wissenschaftliche Publikationen zu diesem Thema stark zugenommen; auch die Spezialisierung innerhalb des Fachgebiets ist weitervorangeschritten. Aktuelle Forschungsergebnisse werden beispielsweise an der Konferenz des International Research Council on Biomechanics of Injury (Ircobi) sowie der Stapp Car Crash Conference vorgestellt [4, 10]. Auch erhalten Fachzeitschriften zu Sportmedizin, Arbeits- und Umweltmedizin und Arbeitssicherheit, zu Verletzungen und insbesondere zur Verletzungsprävention zunehmend mehr Aufmerksamkeit.

Literatur

- 1. bfu Swiss council for accident prevention (2018) www.bfu.ch. Zugegriffen: 7. Okt. 2018
- Euler L (1862) E 855 Principia pro motu sanguinis per arterias determinando. Op Postuma 2:814–823
- 3. Heron, M (2018) Deaths: leading causes for 2016. National Vital Statistics Reports 67(6)
- IRCOBI International Research Council on Biomechanics of Injury (2018) annual conference proceedings published online. www.ircobi.org. Zugegriffen: 7. Okt. 2018
- Knothe Tate ML, Falls TD, McBride SH, Atit R, Knothe UR (2008) Mechanical modulation of osteochondroprogenitor cell fate. Int J Biochem Cell Biol 40:2720–2738
- MacDonald D (2004) Practical industrial safety, risk assessment and shutdown systems. Elsevier, Oxford (ISBN 07506 58045)