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Preface

In the field of mobile robotics, navigation is the building block of any

autonomous mission. It involves several competencies, which are perception
of the environment, localization of the robot with respect to a given reference

frame, the cognition leading to a set of trajectory decisions and control of the

actuators to achieve these decisions. The localization problem has given a

tremendous impetus to the development of new technologies and algorithms,

such as global navigation satellite systems (GNSSs) or a variety of Kalman

filters. The challenges raised by this localization imply a wide variety of

contexts, sensors and uncertainties that still gather a large part of the robotic

community today.

This book focuses on a new approach to deal with the localization

problem. It finds its inspiration in the challenges raised by strong uncertainties

and perception difficulties present in underwater robotics. Furthermore, for

safety reasons related to surface navigation or risks of collision with the

seabed, it is crucial to consider the quality of position estimates. Emergent

set-membership methods allow us to define reliable bounds on uncertainties

in computations; this book explains how to apply these tools to mobile robots.

The illustrations are related to underwater robotics, but the concepts remain

fully valid for other applications involving dynamical systems.

This book is expected to be useful for students and researchers in the areas

of mobile robotics, nonlinear control systems, underwater robotics, interval

analysis and constraint programming.
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Notations

To facilitate the reader’s understanding of this book, the mathematical

notations that will be used are listed here in Notations. All of these will be

introduced within the chapters. Vectors, matrices and vectorial functions will

be represented in bold while intervals will be indicated by brackets [ ]. The

blackboard bold convention is used to represent other classical sets, for

example X, Y.

Modelization

x : state vector, x ∈ R
n

: (or an arbitrary variable)

p : 2D position vector, p = (x1, x2)
ᵀ

u : input vector, u ∈ R
m

f : evolution function, f : Rn × R
m → R

n

: (or an arbitrary function)

z : vector of observations, z ∈ R
p

g : observation function, g : Rn → R
p

h : drifting function (clock problem, Chapter 4)

: configuration function (SLAM method, Chapter 6)

τ : drifting time reference

φ, θ, ψ : roll, pitch, yaw (heading)
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Intervals and sets

∅ : empty set

IR : set of all intervals of R

IR
n : set of all boxes of Rn

[x] : interval [x−, x+], [x] ∈ IR

x− : lower bound of the interval [x]

x+ : upper bound of the interval [x]

x∗ : actual (unknown) value enclosed by [x]

[x] : box or interval vector, [x] ∈ IR
n

[f ] : inclusion function of f

[f ]∗ : minimal inclusion function of f
⊔

: squared union, envelope of the following terms

Lf : constraint related to a function f

Cf : contractor related to Lf

[X] : box enclosing the set X

∂X : boundary of the set X

#E : cardinality (number of items) of the set E

Trajectories and tubes

t : time variable

(·) : (dot) system independent variable

a(·) : trajectory, R → R

a(t) : evaluation of a(·) at t

ȧ(·) : derivative of a(·)
[a](·) : tube of trajectories, R → IR

[a](t) : interval value of [a](·) at t

∅(·) : empty tube

p(·) : horizontal robot trajectory, R → R
2

C d
dt

: differential tube contractor
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Ceval : evaluation tube contractor

Ct1,t2 : inter-temporal evaluation tube contractor

Cp⇒z : inter-temporal implication tube contractor

d : thickness function, diagonal of a slice, d : IR2 → R

δ : time discretization of a tube

Loops

t : t-pair defining a loop, also denoted by (t1, t2)

T
∗ : set of all t

T : set of feasible t in a bounded-error context

Ti : compact and connected subset of T

Ω : outer approximation of T made of subpavings

Ωi : compact and connected subset of Ω

N : Newton test

T : topological degree test

λ : number of loops along a trajectory p(·)

Other notations

ε : precision of a SIVIA algorithm

deg (f ,Ω) : topological degree of f over Ω

Jf : Jacobian matrix of f

det ([J]) : enclosure of interval matrix’s determinant
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AUV Autonomous Underwater Vehicle
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CN Constraint Network
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GNSS Global Navigation Satellite System
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Introduction

I.1. Underwater challenges

“On peut braver les lois humaines, mais non résister aux lois
naturelles.”

We may brave human laws, but we cannot resist natural ones.

Twenty Thousand Leagues Under the Sea, Jules Verne

I.1.1. In the vastness of the unknown

95%. This striking figure, stated1 by the American National Oceanic and

Atmospheric Administration (NOAA), tells us how little we know about

oceans: about 95% of this underwater realm remains unseen by human eyes.

Yet, it covers two-thirds of the Earth’s surface. It is even said that we know

the Moon’s surface better than our oceans’ depths. Nevertheless, marine

technologies have changed dramatically over the last 100 years, discovering

ways to explore bodies of water that previously would have been

unimaginable.

We could say that the underwater exploration started with the Challenger
Expedition (1872, Figure I.1) by probing the depths from the surface with

lead lines. The Challenger Deep, which is the deepest known point on Earth2,

1 http://www.noaa.gov/oceans-coasts.

2 Challenger Deep: the depth was estimated at 10916m in situ by submersibles.
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was discovered during this expedition. Yet, it was not until the start of the

1960s that this spot was visited by humans, during the dive of the manned

submersible Trieste (Figure I.2). Ever since, the place has been reached by

very few expeditions, mainly unmanned descents.

Figure I.1. The HMS Challenger, a British corvette that took part in the
first global marine research expedition: the Challenger Expedition,

1872–1876. Painting by William Frederick Mitchell. For a color version
of the figures in this chapter see www.iste.co.uk/rohou/robot.zip

Figure I.2. Trieste is a Swiss-designed and Italian-built
deep-diving research bathyscaphe. It was able to reach any

point of the Earth’s abysses, such as the Mariana Trench
in 1960. Photo: U.S. Naval Historical Center
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The dive of the Trieste revealed the capacity to build vehicles that are able

to resist colossal pressures. However, the cost of this endeavor is huge when

compared to the range of the explored area: only a few square meters around

the submersible. If exploration techniques have evolved considerably over the

years, the ratio of exploration/cost or exploration/time remains a major

impediment to the discovery of our oceans.

I.1.2. Hostile environments

Withstanding the high pressures of the column water, corrosive salinity,

unpredictable currents, etc. is one thing; perceiving the environment is another.

Figure I.3 provides an example of poor visibility that can be encountered under

the surface. Strong opacities in shallow waters, or lack of light in the deepest

ones, make it difficult to gather information from cameras. Other conventional

means of exploration or communication suffer from strong attenuations of their

electromagnetic waves through the water column.

Underwater acoustics

Underwater acoustics is the only technology left with sufficient

performances to increase the range of visibility. A telling experiment is the

Heard Island test performed in 1991 (Munk et al. 1994), which was planned

in order to test the emission of an artificial acoustic signal in the world’s

oceans. A special phase-modulated signal of 57 Hz, emitted from an island

located in the southern Indian Ocean, was received by 16 sites around the

world, some of them were based on the two coasts of North America. This

experiment demonstrated that great distances can be reached by acoustics.

Considering an estimation of the sound celerity profile along the

propagation, an acoustic wave is even well suited to perceive distances

between the emitter and any obstacle in the environment. In practice, ranges

of a few dozen meters are affordable to maintain precision at a reasonable

energy cost. However, we should note that an acoustic signal rarely

propagates in a straight line. This has an impact on estimation of distances

and may even generate blind zones3. Underwater acoustics nonetheless

3 In the Atlantic Ocean, for example, due to the physical properties of the environment, two

vehicles on the same layer of water, which are separated by 60 meters, may not be able to

perceive each other.
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remains the most suited approach for wide explorations, but the related

solutions are far from being straightforward.

(a) An orange buoy dimly visible at 3m. (b) Unstructured environments.

(c) A lost wireless router. (d) Sea life, leading to outliers.

Figure I.3. In the shallow waters of La Spezia (Italy) during the SAUC-E competitions
in the NATO Centre for Maritime Research and Experimentation (CMRE, formerly
NURC), 2013–2014. These images were taken by the ENSTA Bretagne’s autonomous
robot Vici. Designing algorithms to automatically analyze these observations remains
a challenging task

A needle in a haystack

The work presented in this book started on the very same day that the

underwater search began for the lost MH370 aircraft operated by Malaysia

Airlines, which presumably disappeared in the southern Indian Ocean in

2014. Despite a tremendous deployment of maritime means, making this

multinational search effort the largest and most expensive in aviation history,
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the aircraft remains unfound. From October 2014 to January 2017, an overall

survey of 120,000 km2 of the seafloor was performed with unsuccessful

results. Given the vast areas involved, this search sadly reveals the difficulty

we still have in exploring the extent of the seabed.

(a) Overview of the survey. (b) Zoomed area.

Figure I.4. Extract from the bathymetric survey conducted during the search for MH370
aircraft off the west coast of Australia. Gray areas represent the bathymetry that was
indirectly estimated using satellite-derived gravity data. In contrast, colored data were
acquired by marine means, highlighting the need to undertake surveys in situ for higher
precisions. ©Copyright 2014, Commonwealth of Australia

The unfruitful research nonetheless improved the knowledge we had on

this part of the oceans, providing a level of details that had rarely been

reached in the deep environment (Picard et al. 2017). Figure I.4 shows a

comparison between the previous mapping of the seabed, which had an

average spatial resolution of about 5 km2, and the new digital elevation model

(DEM) obtained with a resolution of less than 0.01 km2. During the search,

the vessels equipped with acoustic means, such as side-scan sonars or

multibeam echosounders, were not able to scan the entire extent of the search
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area. Indeed, the seabed parts with the most complex and challenging

topography could only be reached by autonomous underwater vehicles

(AUVs), equipped with similar technology and specifically designed for

high-resolution survey operations in remote deep water locations. These

vehicles lend a helping robotic hand in such exploration efforts.

I.1.3. Autonomous underwater vehicles

Owing to the difficulties posed by complex environments and vast areas

that are still uncovered, the use of autonomous vehicles appears to be a durable

solution to face these challenges and push the boundaries of the knowledge of

the oceans. Indeed, even with efficient methods such as underwater acoustics,

the footprint of marine sensors is still modest in view of the extent of what has

to be explored. Multiplying the number of vessels equipped with sensors is

expensive due to the involvement of crew. In addition, surface vehicles are not

sufficient to provide the details of deep waters. Marine robots (Creuze 2014)

are an attractive alternative to increase the exploration means at a reasonable

cost.

Furthermore, global supervision of an underwater robot performing an

exploration task is rarely affordable due to the opacities of the environment

mentioned previously. The low rate of underwater communications and the

latency during the propagation of messages require the robot to possess a full

degree of autonomy. For these reasons, new marine robots are designed to

make unsupervised decisions in order to achieve a given task. They can be

involved in several marine applications such as hydrography, oceanography,

climate change monitoring, military operations in mine hunting (Toumelin

and Lemaire 2001), wreck searches (L’Hour and Creuze 2016), etc.

Because they sail underwater without receiving orders from the surface,

AUVs need to sense their environment and act accordingly; thus, they are

equipped with sensors such as sonars or cameras. In addition, they estimate

their own position by themselves (Leonard et al. 1998), which is always a

complicated task in the underwater world. The localization problem will be

presented in section I.2, which is the main motivation of this book. The
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contributions of this work will be presented through actual experiments

involving two AUVs4, Redermor and Daurade, which are introduced below.

The Redermor AUV

The Redermor5 AUV, shown in Figure I.5, was an experimental robot

designed during the Franco-British collaborative project Remote Mine
Hunting System. Built during the 1990s at DGA Techniques Navales Brest

(formerly GESMA), it served as a platform for several studies (Quidu et al.
2007). The main characteristics of the vehicle are summarized in Table I.1,

(Toumelin and Lemaire 2001).

Figure I.5. The Redermor AUV before a sea trial. The thrusters’ layout allows it to
circumnavigate a point such as a mine to be identified, its front-looking sonar providing
different viewing angles of the target. Photo: DGA-TN Brest

During a mission, the position of the robot is provided by an inertial

navigation system (INS) coupled with a Doppler Velocity Log (DVL) sensing

the robot’s speed. The positioning error is estimated at some meters per hour.

4 The main characters of this book will be drawn by the following as a reference to the

MOOS-IvP middleware (Benjamin et al. 2010) from which this symbol comes. MOOS-IvP

is a set of open source modules for providing autonomy on robotic platforms, particularly

autonomous marine vehicles. This framework was used during this work as the basis of actual

experiments.

5 Redermor means rider of the seas in the Breton language.
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It is difficult to provide the reader with accurate figures about this error as it is

related to the pattern followed by the vehicle, its altitude or its speed6.

Weight : 3400 kg

Length : 6.40 m

Speed : up to 10 knots (5.14 m/s)

Max depth : 200 m

Table I.1. Redermor’s main characteristics

The Daurade AUV

Today, Redermor is retired and has left its place to the new Daurade AUV

(see Figure I.6). This vehicle was built by the ECA group, which has been

performing many experiments on the shores of France since 2005. It is still

used by DGA-TN Brest, in collaboration with the Service Hydrographique et

Océanographique de la Marine (SHOM) for survey purposes or mine hunting

applications. Its main characteristics are given in Table I.2.

Figure I.6. Daurade AUV managed by the crew of the Aventurière II,
during an experiment in the Rade de Brest, October 2015.

Photo: S. Rohou

6 The DVL accuracy depends among other things on its distance from the seabed and the

sensed velocity. For a 1200 kHz Teledyne DVL, the errors are given as follows: ±0.3 cm/s at

1 m/s, ±0.4 cm/s at 3 m/s, ±0.5 cm/s at 5 m/s.
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Weight : 1010 kg

Length : 5 m

Speed : up to 8 knots (4.11 m/s)

Max depth : 300 m

Autonomy : 10 h at 4 knots, 2 h at 8 knots

Sonar coverage range : 150 m

Table I.2. Daurade’s main characteristics

It is equipped with an INS Phins from iXblue, which is connected to a

DVL7 in the same way as for the Redermor. Its positioning accuracy is 3 m/h

at 2 knots, or 0.1% of the traveled distance, based on a hybridization

INS/DVL. In contrast, 20 meters of positioning error are obtained after

5 minutes of navigation in pure inertial mode.

Redermor and Daurade are heavy vehicles with high costs of handling and

maintenance. Furthermore, the embedded navigation systems cannot be easily

changed, which is a limitation when it comes to try new algorithms for

autonomous navigation. This motivated the design of smaller and cheaper

units.

The Toutatis AUVs project
A new class of autonomous underwater vehicles was designed during this

work. The term class refers to a group of several units of the same type. The

aim of the Toutatis8 (Team Of Underwater roboTs for Autonomous Tasks of

Inspection and Survey) project was to apply the tools presented in this book in

realistic scenarios. The project has been paused and will resume later.

Figure I.7 presents some modeling views of the vehicles. The units are

modular in order to be fit with the mission requirements. The aluminum cage

protects the tube, sensors and thrusters. It is also convenient to arrange the

devices everywhere on the frame without difficulty. In addition, the cage is

used to carry, transport and store the vehicles; then, all AUVs can be stowed

on top of each other in a reduced place. Finally, landing on the seabed will not

present any risk.

7 The vehicle can be configured with either a 300 or 1200 kHz Workhorse Teledyne RDI DVL.

8 Toutatis is a Celtic god in ancient Gaul and Brittany. It was seen as the tribe’s leader: this

name illustrates the future behavior of these robots which will act as members of a team based

on communication and collaboration.


