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Preface

The aim of this book is not to let the readers drowned into a sea of computa-
tions. More hopefully, it aims to inspire the readers with mind and strength
to make full use of the MATLAB and PSpice softwares so that they can feel
comfortable with mathematical equations without caring about how to solve
them and further can enjoy developing their ability to analyze/design electronic
circuits. It aims also to present the readers with a steppingstone to radio
frequency (RF) circuit design from junior–senior level to senior-graduate
level by demonstrating how MATLAB can be used for the design and imple-
mentation of microstrip filters. The features of this book can be summarized
as follows:

1) For representative examples of designing/analyzing electronic circuits, the
analytical solutions are presented together with the results of MATLAB
design and analysis (based on the theory) and PSpice simulation (similar to
the experiment) in the form of trinity. This approach gives the readers not
only information about the state of the art, but also confidence in the
legitimacy of the solution as long as the solutions obtained by using the two
software tools agree with each other.

2) For representative examples of impedance matching and filter design, the
solution using MATLAB and that using Smith chart have been presented
for comparison/crosscheck. This approach is expected to give the readers
not only confidence in the legitimacy of the solution, but also deeper
understanding of the solution.

3) The purposes of the two softwares, MATLAB and PSpice, seem to be
overlapped and it is partly true. However, they can be differentiated since
MATLAB is mainly used to design circuits and perform a preliminary
analysis of (designed) circuits while PSpice is mainly used for detailed and
almost real-world simulation of (designed) circuits.

4) Especially, it presents how to use MATLAB and PSpice not only for
designing/analyzing electronic and RF circuits but also for understanding
the underlying processes and related equations without having to struggle
with time-consuming/error-prone computations.
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Load Line Analysis and Fourier Series

CHAPTER OUTLINE

1.1 Load Line Analysis, 1
1.1.1 Load Line Analysis of a Nonlinear Resistor Circuit, 3
1.1.2 Load Line Analysis of a Nonlinear RL circuit, 7

1.2 Voltage-Current Source Transformation, 10
1.3 Thevenin/Norton Equivalent Circuits, 11
1.4 Miller’s Theorem, 18
1.5 Fourier Series, 18

1.5.1 Computation of Fourier Coefficients Using Symmetry, 20
1.5.2 Circuit Analysis Using Fourier Series, 29
1.5.3 RMS Value and Distortion Factor of a Non-Sinusoidal Periodic Signal, 35

Problems, 36

1.1 Load Line Analysis

The v-i characteristic of a nonlinear resistor such as a diode or a transistor is
often described by a curve on the v-i plane rather than by a mathematical rela-
tion. The v-i characteristic curve can be obtained by using a curve tracer for
nonlinear resistors. To analyze circuits containing a nonlinear resistor, we
should use the load line analysis. To grasp the concept of the load line, consider
the graphical analysis of the circuit in Figure 1.1(a), which consists of a linear
resistor R1, a nonlinear resistor R2, a DC voltage source Vs, and an AC voltage
source of small amplitude vδ Vs. Kirchhoff’s voltage law (KVL) can be applied
around the mesh to yield the mesh equation as

1
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Jaekwon Kim, Kyung W. Park, Donghyun Baek, Sungjoon Lim, Jingon Joung, Suhyun Park,
Han L. Lee, Woo June Choi, and Taeho Im.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/yang/electroniccircuits



R1 i+ v2 i = Vs (1.1.1)

where the v-i relationship of R2 is denoted by v2(i) and represented by the char-
acteristic curve in Figure 1.1(b). We will consider a graphical method, which
yields the quiescent, operating, or bias point Q = (IQ, VQ), that is, a pair of
the current through and the voltage across R2 for vδ = 0.
Since no specific mathematical expression of v2(i) is given, we cannot use any

analytical method to solve this equation and that is why we are going to resort to
a graphical method. First, we may think of plotting the graph for the LHS (left-
hand side) of Eq. (1.1.1) and finding its intersection with a horizontal line for the
RHS (right-hand side), that is, v =Vs as depicted in Figure 1.1(b). Another way is
to leave only the nonlinear term on the LHS andmove the other term(s) into the
RHS to rewrite Eq. (1.1.1) as

v2 i =Vs−R1i (1.1.2)

(c)

Graphical analysis method 2 using load line

The characteristic curve 
of the nonlinear resistor

0

(Load line)

Q
Operating point

Slope

v[V]

v = Vs – R1i

Vs / R1

VQ

Vs

– R1

v2(i)

i[A]
IQ

(b)

Graphical analysis method 1
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Vs

IQ
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i2

i1 = i2

Vs

v2(i2)
= i
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v = v2( i ) + R1i

v2(IQ) = Vs – R1IQ

Figure 1.1 Graphical analysis of a linear/nonlinear resistor circuit.
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and find the intersection, called the operating point and denoted byQ (quiescent
point), of the graphs for both sides as depicted in Figure 1.1(c). The straight line
with the slope of −R1 is called the load line. This graphical method is better than
the first one in the aspect that it does not require us to plot a new curve for v2(i)
+ R1i. That is why it is widely used to analyze nonlinear resistor circuits in the
name of ‘load line analysis’. Note the following:

•Most resistors appearing in this book are linear in the sense that their voltages
are linearly proportional to their currents so that their voltage-current
relationships (VCRs) are described by Ohm’s law

v=R i (1.1.3)

and consequently, their v-i characteristics are described by straight lines pass-
ing through the origin with the slopes corresponding to their resistances on
the i-v plane. However, they may have been modeled or approximated to be
linear just for simplicity and convenience, because all physical resistors more
or less exhibit some nonlinear characteristic. The problem is whether or not
themodeling is valid in the range of practical operation so that it may yield the
solution with sufficient accuracy to serve the objective of analysis and design.

• A curve tracer is an instrument that displays the v-i characteristic curve of an
electric element on a cathode-ray tube (CRT) when the element is inserted
into an appropriate receptacle.

1.1.1 Load Line Analysis of a Nonlinear Resistor Circuit

Consider the circuit in Figure 1.1(a), where a linear load resistor R1 = RL and a
nonlinear resistor R connected in series are driven by a DC voltage source Vs

in series with a small-amplitude AC voltage source producing the virtual voltage
as

vs t =Vs + vδ sinωt (1.1.4)

The VCR v(i) of the nonlinear resistor R is described by the characteristic curve
in Figure 1.2.
As depicted in Figure 1.2, the upper/lower limits as well as the equilibrium

value of the current i through the circuit can be obtained from the three oper-
ating points, that is, the intersections (Q1, Q, and Q2) of the characteristic curve
with the following three load lines.

v =Vs + vδ−RLi (1.1.5a)

v =Vs−RLi (1.1.5b)

v =Vs−vδ−RLi (1.1.5c)

1.1 Load Line Analysis 3



Although this approach gives the exact solution, we gain no insight into the
solution from it. Instead, we take a rather approximate approach, which consists
of the following two steps.

• Find the equilibrium (IQ, VQ) at the major operating point Q, which is the
intersection of the characteristic curve with the DC load line (1.1.5b).

• Find the two approximate minor operating points Q1 and Q2 from the inter-
sections of the tangent to the characteristic curve at Q with the two minor
load lines (1.1.5a) and (1.1.5c).

Then we will have the current as

i t = IQ + iδ sinωt (1.1.6)

With the dynamic, small-signal, or AC resistance rd defined to be the slope of
the tangent to the characteristic curve at Q as

rd =
dv
di Q

(1.1.7)

let us find the analytical expressions of IQ and iδ in terms of Vs and vδ, respec-
tively. Referring to the encircled area around the operating point in Figure 1.2,
we can express iδ in terms of vδ as

QC cos θ

vδ = vδ

iδ = QB

(F.5)

ΔAQCQQ1́cos θ
cos(90° –  θL –  θ)

cos θL cos θ
tan θL+ tan θsin θL cos θ + cos θL sin θ

sin(θL +  θ)
AQ cos θL cos θ

1v[V]

i[A]
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–
θ

Slope
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Figure 1.2 Variation of the voltage and current of a nonlinear resistor around the operating
point Q.
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iδ =QB =
ΔQQ1BQQ1cosθ =

ΔQCQ1 QCcosθ
cos 90 −θL−θ

=
ΔAQC AQcosθLcosθ

sin θL + θ

=
F 5

vδ
cosθLcosθ

sinθLcos θ+ cosθLsin θ
= vδ

1
tanθL+ tanθ

(1.1.8)

This corresponds to approximating the characteristic curve in the operation
range by its tangent at the operating point. Noting that

• the load line and the tangent to the characteristic curve at Q are at angles of
(180 − θL) and θ to the positive i-axis,

• the slope of the load line is tan (180 − θL) =−tan θL and it must be −RL, which
is the proportionality coefficient in i of the load line Eq. (1.1.2); tan θL =RL, and

• the slope of the tangent to the characteristic curve at Q is the dynamic resist-
ance rd defined by Eq. (1.1.7); tan θ = rd,

we can write Eq. (1.1.8) as

iδ =
vδ

RL + rd
(1.1.9)

Now we define the static orDC resistance of the nonlinear resistor R to be the
ratio of the voltage VQ to the current IQ at the operating point Q as

Rs =
VQ

IQ
=
Vs−RLIQ

IQ
(1.1.10)

so that the DC component of the current, IQ, can be written as

IQ =
Vs

RL +Rs
(1.1.11)

Finally, we combine the above results to write the current through and the
voltage across the nonlinear resistor R as follows.

i t = IQ + iδ sinωt =
Vs

RL +Rs
+

vδ
RL + rd

sinωt (1.1.12)

v t = Rs IQ + rdiδ sinωt =
Rs

RL +Rs
Vs +

rd
RL + rd

vδ sinωt (1.1.13)

This result implies that the nonlinear resistor exhibits twofold resistance, that is,
the static resistance Rs to a DC input and the dynamic resistance rd to an AC
input of small amplitude. That is why rd is also called the (small-signal) AC
resistance, while Rs is called the DC resistance.

1.1 Load Line Analysis 5



Remark 1.1 Operating Point and Static/Dynamic Resistances
of a Nonlinear Resistor

1) For a nonlinear resistor R2 connected with linear resistors in a circuit excited
by a DC source and a small-amplitude AC source, its operating point Q =
(VQ, IQ) is the intersection of its characteristic curve v(i) and the load line.

2) The v-intercept of the load line (v =Vs − RLi) is determined by the DC com-
ponent (Vs) of the voltage source. The slope of the load line is determined by
the equivalent resistance (RL) of the linear part seen from the pair of term-
inals of the nonlinear resistor (see Problem 1.2).

3) The static orDC resistance (Rs) is the ratio of the voltage VQ to the current IQ
at the operating point Q.

4) The dynamic, small-signal, AC, or incremental resistance (rd) is the slope of
the tangent to the characteristic curve at Q.

5) Once we have RL, Rs, and rd, we can use Formulas (1.1.12) and (1.1.13) to find
approximate expressions for the voltage and current of the nonlinear
resistor.

6) As for linear resistors, we do not say the static or dynamic resistance, since
they are identical.

7) The relationship between the AC (small-signal) components of voltage
across and current through the nonlinear resistor can be attributed to the
Taylor series expansion of its VCR v(i) up to the first-order term around
the operating point Q =(VQ, IQ).

v i ≈ VQ +
dv
di Q

i− IQ =VQ + rdiδ with rd =
dv
di Q

(1.1.14)

Remark 1.2 DC Analysis and Small-Signal (AC) Analysis

1) The procedure to analyze a circuit (which contains nonlinear resistors like a
diode or a transistor and is driven by a high DC voltage sourceVs [for biasing]
and a low AC voltage source vδ sin ωt [for amplification]) consists of two
steps. The first step, called DC analysis, is to remove the AC voltage source
vδ sin ωt and find the operating point Q = (VQ, IQ) of the nonlinear resistor,
which corresponds to the load line analysis. The second step, called small-
signal (AC) analysis, is to find the dynamic resistance rd of the nonlinear
resistor (from the slope of its i-v characteristic curve or the derivative of
its VCR equation at Q-point), remove the DC voltage source Vs, regard
the nonlinear resistor as a linear resistor rd (corresponding to a linear
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1.1.2 Load Line Analysis of a Nonlinear RL circuit

As an example of applying the load line analysis for a nonlinear first-order cir-
cuit, consider the circuit of Figure 1.3.1(a), which consists of a nonlinear resis-
tor, a linear resistor R = 2Ω, and an inductor L = 14 H, and is driven by a DC
voltage source of Vs = 12 V and an AC voltage source vδ sin ωt = 2.8 sin t[V].
The v-i relationship of the nonlinear resistor is v(i) = i3 and described by the
characteristic curve in Figure 1.3.1(b). Applying KVL yields the following mesh
equation:

L
di t
dt

+Ri t + i3 t =Vs + vδ sin t;

14
di t
dt

+ 2i t + i3 t = 12 + 2 8 sin t

(1.1.15)

approximation of the characteristic curve), and find the AC components (iδ
sin ωt, rdiδ sin ωt) of the current through and voltage across the nonlinear
resistor. The DC solution and AC solution can be added up to yield the com-
plete solution.

2) As the magnitude vδ of the AC voltage becomes large, the large-signal model
(see Section 2.1.1 for a diode) or the characteristic curve itself might have to
be used for analysis since the nonlinear behavior of the nonlinear resistor
may become conspicuous, leading to unignorable distortion of the volt-
age/current waveforms obtained using the small-signal analysis.

+

+

+

+

Q

(a) (b)

Nonlinear RL circuit The v-i characteristic curve and the load line 

2.8sinωt RL =
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Figure 1.3.1 A nonlinear RL circuit and its load line analysis.
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First, we can draw the load line on the graph of Figure 1.3.1(b) to find the
operating pointQ from the intersection of the load line and the v-i characteristic
curve of the nonlinear resistor. If the function v(i) = i3 of the characteristic curve
is available, we can also find the operating point Q as the DC solution to
Eq. (1.1.15) by removing the AC source and the time derivative term to write

2IQ + I3Q = 12 (1.1.16)

and solving it as

IQ = 2A,VQ = v2 IQ = I3Q = 8V Q= IQ,VQ = 2A,8V (1.1.17)

Eq. (1.1.16) can be solved by running the following MATLAB statements:

>>eq_dc=@(i)2*i+i.^3-12; I0=0; IQ=fsolve(eq_dc,I0)

Then, as a preparation for analytical approach, we linearize the nonlinear
differential equation (1.1.15) around the operating point Q by substituting
i = IQ + δi = 2 + δi into it and neglecting the second or higher degree terms in
δi as

14
d 2 + δi

dt
+ 2 2 + δi + 2 + δi 3 = 12 + 2 8sin t

;
d
dt

δi t = − δi t + 0 2 sin t
(1.1.18)

Note that we can set the slope of the characteristic curve as the dynamic resist-
ance rd of the nonlinear resistor:

rd =
dv
di Q

= 3I2Q = 12 Ω (1.1.19)

and apply KVL to the circuit with the DC source Vs removed and the nonlinear
resistor replaced by rd to write the same linearized equation as Eq. (1.1.18):

14
di t
dt

+ 2i t + i3 t =Vs + 2 8 sin t

i3 t rdi t

Vs 0
14

di t
dt

+ 2 + 12 i t = 2 8sin ωt
(1.1.20)

We solve the first-order linear differential equation with zero initial condition
δi(0) = 0 to get δi(t) by running the following MATLAB statements:

>>syms s

dIs=2.8/(s^2+1)/14/(s+1); dit_linearized=ilaplace(dIs)

dit1_linearized=dsolve('Dx=-x+0.2*sin(t)','x(0)=0') % Alternatively

This yields

dit_linearized = exp(-t)/10 - cos(t)/10 + sin(t)/10

1 Load Line Analysis and Fourier Series8



which means

δi t =
1
10

e− t −
1
10

cos t +
1
10

sin t (1.1.21)

We add this AC solution to the DC solution IQ to write the approximate ana-
lytical solution for i(t) as

i t = IQ + δi t =
1 1 17

1 1 21
2 + 0 1 e− t−cos t+ sin t (1.1.22)

Now, referring to Appendix D, we use the MATLAB numerical differential
equation (DE) solver ‘ode45()’ to solve the first-order nonlinear differential
equation (1.1.15) by defining it as an anonymous function handle:

>>di=@(t,i)(12+2.8*sin(t)-2*i-i.^3)/14; % Eq.(1.1.15)

and then running the following MATLAB statements:

>>i0=IQ; tspan=[0 10]; % Initial value and Time span

[t,i_numerical]=ode45(di,tspan,i0); % Numerical solution

We can also plot the numerical solution together with the analytical solution
as black and red lines, respectively, by running the following MATLAB
statements:

>>i_linearized=eval(IQ+dit_linearized); % Analytical solution (1.1.22)

plot(t,i_numerical,'k', t,i_linearized,'r')

2.2

2.1

2

i(
t)

1.9

1.8
0 1 3 4 5 6 7 8 9

Time

10

Nonlinear solution i(t)

Linearized solution i(t)

2

Figure 1.3.2 The linearized solution and nonlinear solution for the nonlinear RL circuit of
Figure 1.3.1.
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%elec01f03.m – for the analysis of a nonlinear RL Circuit

clear, clf

global RL L Vs vd

N=1000; i_step=0.003; i=[0:N]*i_step; % Range on the current axis

RL=2; L=14; Vs=12; vd=2.8;

eq_dc=@(i,RL,Vs)Vs-RL*i-i.^3; % Eq.(1.1.16): DC part of Eq.(1.1.20)

IQ=fsolve(eq_dc,0,optimset('fsolve'),RL,Vs) %Currentat operatingpointQ

VQ=IQ^3; % Voltage at the Q-point

v= Vs - RL*i; % Load line

v2= i.^3; % Characteristic curve

i1=1.7:i_step:2.3; % Range on which to plot the tangent line

v4 = 3*IQ^2*(i1-IQ)+VQ; % Tangent line to the characteristic curve at Q

subplot(211), plot(i,v,'k', i,v2,'b', i1,v4,'r', IQ,VQ,'mo')

% Use the Laplace transform to solve the linearized differential eq.

syms s

dIs=0.2/(s^2+1)/(s+1); dit_linearized=ilaplace(dIs)

% This yields 0.1*(exp(-t) -cos(t) +sin(t)) +2; Eq.(1.1.22).

% Alternatively, use the symbolic differential solver dsolve() as

dit1_linearized = dsolve('Dx=-x+0.2*sin(t)','x(0)=0')

% Use nonlinear ODE solver ode45() to solve Eq.(1.1.15).

di=@(t,i)(12+2.8*sin(t)-2*i-i.^3)/14; % Eq.(1.1.15)

[t,i]=ode45(di,[0 10],IQ); % Numerical sol to Eq.(1.1.15)

i_linearized=eval(IQ+dit_linearized); % Eq.(1.1.22) for time range t

% Plot the Analytical (linearized) and Numerical (nonlinear) solutions.

subplot(212), plot(t,i,'k', t,i_linearized,'r'), ylabel('i(t)')

legend('Nonlinear solution i(t)','Linearized solution i(t)')

title('Analytical (linearized) and Numerical (nonlinear) solutions')

This will yield the plots of the numerical solution i(t) and the approximate
analytical solution (1.1.22) for the time interval [0,10 s] as depicted in
Figure 1.3.2.
Overall, we can run the above MATLAB script “elec01f03.m” to get

Figure 1.3.1(b) (the load line together with the characteristic curve) and
Figure 1.3.2 (the numerical nonlinear solution together with the analytical lin-
earized solution) together.

1.2 Voltage-Current Source Transformation

Two electric circuits are said to be externally equivalentwith respect to a pair of
terminals if their terminal voltage-current relationships are identical so that
they are indistinguishable from outside. The source transformation refers to
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the conversion of a voltage source in series with an element like a resistor
(Figure 1.4(a)) to a current source in parallel with the element (Figure 1.4(b)),
or vice versa in such a way that the two circuits are (externally) equivalent
w.r.t. their terminal characteristics. What is the relationship among the values
of the voltage source Vs, the current source Is, the series resistor Rs, and the
parallel resistor Rp required for the external equivalence of the two source
models? To find it out, we write the VCR of each circuit as

v = Rs i +Vs (1.2.1a)

v = Rp i+ Is =Rp i+Rp Is (1.2.1b)

where the current through Rp is found to be (i + Is) by applying KCL at the top
node of the resistor Rp in Figure 1.4(b). In order for these two polynomial equa-
tions (in i) to be identical for any value of v and i, their coefficients (including the
constant term) should be the same:

Rp =Rs =R (1.2.2a)

Vs = Rp Is or, equivalently, Is =
Vs

Rs
(1.2.2b)

This source equivalence condition is used for voltage-to-current or current-to-
voltage source transformation.

1.3 Thevenin/Norton Equivalent Circuits

Thevenin’s theorem says that any network consisting of linear elements and
independent/dependent sources as shown in Figure 1.5(a) may be replaced at
a pair of its terminals (nodes) by the Thevenin equivalent circuit, which consists
of a single element of impedance ZTh in series with a single independent voltage
source VTh (see Figure 1.5(b)), where the values of ZTh and VTh are determined
as follows:

+

+ +i + Is

(a) (b)

Voltage source with a series resistor Current source with a parallel resistor 

Vs Is Rp

i

Rs

v = Rsi + Vs v = Rp (i + Is)

i

Figure 1.4 Equivalence of voltage and current sources.
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T1. Thevenin eqavuivalent voltage source VTh:
The open-circuit voltage across the terminals, that is, the voltage across
the open-circuited terminals a-b (with ZL =∞).

T2. Thevenin equivalent impedance ZTh:
The equivalent impedance of the circuit (with all the independent sources
removed) seen from the terminals a-b, where an impedance is a ‘general-
ized’ resistance.

Norton’s theorem says that any linear network may be replaced at a pair of
its terminals by the Norton equivalent circuit, which consists of a single element
of impedance ZNt in parallel with a single independent current source INt

(see Figure 1.5(c)), where the values of ZNt and INt are determined as follows:

N1. Norton equivalent current source INt:
The short-circuit current through the terminals, that is, the current through
the short-circuited terminals a-b (with ZL = 0).

N2. Norton equivalent impedance ZNt:
The equivalent impedance of the circuit (with all the independent sources
removed) seen from the terminals a-b

Since Thevenin andNorton equivalents are equivalent in representing a linear
circuit seen from a pair of two terminals, one can be obtained from the other by
using the source transformation introduced in Section 1.2. This suggests
another formula for finding the equivalent impedance as

ZTh =ZNt =
VTh

INt
=
Voc the open-circuit voltage
Isc the short-circuit current

(1.3.1)

Note that we should find the equivalent impedance after removing every
independent source, that is, with every voltage/current source short-/open-
circuited. For networks having no dependent source, the series/parallel combi-
nation and Δ-Y/Y-Δ conversion formulas often suffice for the purpose of

(a) (b) (c)

Arbitrary network with a

 load at its terminals a-b
Thevenin equivalent and

open-circuit voltage with ZL = ∞
Norton equivalent and

short-circuit current with ZL = 0

++

a

b

+

Load

b

a

b

+ZL

ZTh ZNt = ZTh  =

Voc = VTh

INt

VTh

a

VTh INt ZNt Isc = INt

Figure 1.5 Thevenin/Norton equivalents of an arbitrary circuit seen from terminals a to b.
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