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Preface

These are the lecture notes of the Ph.D. level course ‘Nonsmooth Differential
Geometry’ given by the first author at SISSA (Trieste, Italy) from October 2017
to March 2018. The material discussed in the classroom has been collected and
reorganised by the second author.

The course was intended for students with no prior exposure to non-smooth
calculus and aimed at giving a rather complete picture of first-order Sobolev calculus
on general metric measure spaces and a glimpse at second order calculus on RCD
spaces. For this reason the first lectures covered basic material like the concept of
absolutely continuous curve or Bochner integration. This material is collected in
Chap. 1.

A great deal of time has been spent at introducing the by-now classical
concept of real valued Sobolev function on a metric measure space. Out of the
several equivalent definitions, the approach chosen in the course has been the
one based on the concept of ‘test plan’ introduced in [4] as it better fits what
comes next. The original approach by relaxation due to Cheeger [13] and the
one by Shanmugalingam [28] based on the concept of ‘modulus of a family of
curves’ are presented, but for time constraint the equivalence of these notions with
the one related to test plans has not been proved. These topics are covered in
Chap. 2.

The definition of Sobolev map on a metric measure space does not come with
a notion of differential, as it happens in the Euclidean setting, but rather with an
object, called minimal weak upper gradient, which plays the role of ‘modulus of the
distributional differential’. One of the recent achievements of the theory, obtained in
[17], has been to show that actually a well-defined notion of differential exists also
in this setting: its introduction is based on the concept of L∞/L0-normed module.
Chapter 3 investigates these structures from a rather abstract perspective without
insisting on their use in non-smooth analysis.

The core of the course is then covered in Chap. 4, where first-order calculus
is studied in great detail and the key notions of tangent/cotangent modules are
introduced. Beside the notion of differential of a Sobolev map, other topics
discussed are the dual concept of divergence of a vector field and how these behave
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under transformation of the metric measure structures. For simplicity, some of
the constructions, like the one of speed of a test plan, are presented only in the
technically convenient case of infinitesimally Hilbertian metric measure spaces, i.e.
those for which the corresponding Sobolev space W 1,2 is Hilbert.

A basic need in most branches of mathematical analysis is that of a regularisation
procedure. In working on a non-smooth environment this is true more than ever
and classical tools like covering arguments are typically unavailable if one does
not assume at least a doubling property at the metric level. Instead the key, and
often only, tool one has at disposal is that of regularisation via the heat flow (which
behaves particularly well under a lower Ricci curvature bound, a situation which
the theory presented here aims to cover). Such flow can be introduced in a purely
variational way as gradient flow of the ‘Dirichlet energy’ (in this setting called
Cheeger energy) in the Hilbert space L2, and thus can be defined in general metric
measure spaces. In Chap. 5 we present a quick overview of the general theory of
gradient flows in Hilbert spaces and then we discuss its application to the study of
the heat flow in the ‘linear’ case of infinitesimally Hilbertian spaces.

Finally, the last lessons aimed at a quick guided tour in the world of RCD spaces
and second order calculus on them. This material is collected in Chap. 6, where:

– We define RCD(K,∞) spaces.
– Prove some better estimates for the heat flow on them.
– Introduce the algebra of ‘test functions’ on RCD spaces, which is the ‘largest

algebra of smooth functions’ that we have at disposal in this environment, in a
sense.

– Quickly develop the second-order differential calculus on RCD spaces, by
building on top of the first-order one. Meaningful and ‘operative’ definitions
(among others) of Hessian, covariant derivative, exterior derivative and Hodge
Laplacian are discussed.

These lecture notes are mostly self-contained and should be accessible to any
Ph.D. student with a standard background in analysis and geometry: having basic
notions of measure theory, functional analysis and Riemannian geometry suffices
to navigate this text. Hopefully, this should provide a hands-on guide to recent
mathematical theories accessible to the widest possible audience.

The most recent research-level material contained here comes, to a big extent,
from the paper [17], see also the survey [19]. With respect to these presentations,
the current text offers a gentler introduction to all the topics, paying little in terms
of generality: as such it is the most suitable source for the young researcher who
is willing to learn about this fast growing research direction. The presentation is
also complemented by a collection of exercises scattered through the text; since
these are at times essential for the results presented, their solutions are reported (or,
sometimes, just sketched) in Appendix B.
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Chapter 1
Preliminaries

In this chapter we introduce several classic notions that will be needed in the sequel.
Namely, in Sect. 1.1 we review the basics of measure theory, with a particular
accent on the space L0(m) of Borel functions considered up to m-almost everywhere
equality (see Sect. 1.1.2); in Sect. 1.2 we discuss about continuous, absolutely
continuous and geodesic curves on metric spaces; in Sect. 1.3 we collect the most
important results about Bochner integration. Some functional analytic tools will be
treated in Appendix A.

1.1 General Measure Theory

1.1.1 Borel Probability Measures

Given a complete and separable metric space (X, d), let us denote

P(X) := {
Borel probability measures on (X, d)

}
,

Cb(X) := {
bounded continuous functions f : X → R

}
.

(1.1)

We can define a topology on P(X), called weak topology, as follows:

Definition 1.1.1 (Weak Topology) The weak topology on P(X) is defined as the
coarsest topology on P(X) such that:

the function P(X) � μ �−→
ˆ

f dμ is continuous, for every f ∈ Cb(X).

(1.2)

© Springer Nature Switzerland AG 2020
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2 1 Preliminaries

Remark 1.1.2 If a sequence of measures (μn)n weakly converges to a limit measure
μ, then

μ(�) ≤ lim
n→∞

μn(�) for every � ⊆ X open. (1.3)

Indeed, let fk := k d(·, X \ �) ∧ 1 ∈ Cb(X) for k ∈ N. Hence fk(x) ↗ χ�(x) for
all x ∈ X, so that μ(�) = supk

´
fk dμ by monotone convergence theorem. Since

ν �→ ´
fk dν is continuous for any k, we deduce that the function ν �→ ν(�) is

lower semicontinuous as supremum of continuous functions, thus yielding (1.3).
In particular, if a sequence (μn)n ⊆ P(X) weakly converges to some μ ∈

P(X), then

μ(C) ≥ lim
n→∞ μn(C) for every C ⊆ X closed. (1.4)

To prove it, just apply (1.3) to � := X \ C. �
Remark 1.1.3 We claim that if

´
f dμ = ´

f dν for every f ∈ Cb(X), then μ = ν.
Indeed, μ(C) = ν(C) for any C ⊆ X closed as a consequence of (1.4), whence
μ = ν by the monotone class theorem. �
Remark 1.1.4 Given any Banach space V , we denote by V ′ its dual Banach space.
Then

P(X) is continuously embedded into Cb(X)′. (1.5)

Such embedding is given by the operator sending μ ∈ P(X) to the map Cb(X) �
f �→ ´

f dμ, which is injective by Remark 1.1.3 and linear by definition. Finally,
continuity stems from the inequality

∣
∣ ´ f dμ

∣
∣ ≤ ‖f ‖Cb(X), which holds for any

f ∈ Cb(X). �
Fix a countable dense subset (xn)n of X. Let us define

A :=
{(

a − b d(·, xn)
) ∨ c : a, b, c ∈ Q, n ∈ N

}
,

Ã := {
f1 ∨ . . . ∨ fn : n ∈ N, f1, . . . , fn ∈ A

}
.

(1.6)

Observe that A and Ã are countable subsets of Cb(X). We claim that:

f (x) = sup
{
g(x) : g ∈ A, g ≤ f

}
for every f ∈ Cb(X) and x ∈ X. (1.7)

Indeed, the inequality ≥ is trivial, while to prove ≤ fix x ∈ X and ε > 0. The
function f being continuous, there is a neighbourhood U of x such that f (y) ≥
f (x) − ε for all y ∈ U . Then we can easily build a function g ∈ A such that g ≤ f

and g(x) ≥ f (x) − 2 ε. By arbitrariness of x ∈ X and ε > 0, we thus proved the
validity of (1.7).
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Exercise 1.1.5 Suppose that X is compact. Prove that if a sequence (fn)n ⊆ C(X)

satisfies fn(x) ↘ 0 for every x ∈ X, then fn → 0 uniformly on X. �
Corollary 1.1.6 Suppose that X is compact. Then Ã is dense in C(X) = Cb(X). In
particular, the space C(X) is separable.

Proof Fix f ∈ C(X). Enumerate {g ∈ A : g ≤ f } as (gn)n. Call hn := g1 ∨ . . . ∨
gn ∈ Ã for each n ∈ N, thus hn(x) ↗ f (x) for all x ∈ X by (1.7). Hence (f −
hn)(x) ↘ 0 for all x ∈ X and accordingly f − hn → 0 in C(X) by Exercise 1.1.5,
proving the statement. ��

The converse implication holds true as well:

Exercise 1.1.7 Let (X, d) be a complete and separable metric space. Prove that if
Cb(X) is separable, then the space X is compact. �
Corollary 1.1.8 It holds that

ˆ
f dμ = sup

{ ˆ
g dμ

∣∣
∣
∣ g ∈ Ã, g ≤ f

}
for every μ ∈ P(X) and f ∈ Cb(X).

(1.8)

Proof Call (gn)n = {
g ∈ A : g ≤ f

}
and put hn := g1 ∨ . . . ∨ gn ∈ Ã, thus

hn(x) ↗ f (x) for all x ∈ X and accordingly
´

f dμ = limn

´
hn dμ, proving (1.8).

��
We endow P(X) with a distance δ. Enumerate

{
g ∈ Ã∪ (−Ã) : ‖g‖Cb(X) ≤ 1

}

as (fi)i . Then for any μ, ν ∈ P(X) we define

δ(μ, ν) :=
∞∑

i=0

1

2i

∣∣
∣
∣

ˆ
fi d(μ − ν)

∣∣
∣
∣. (1.9)

Proposition 1.1.9 The weak topology on P(X) is induced by the distance δ.

Proof To prove one implication, we want to show that for any f ∈ Cb(X) the map
μ �→ ´

f dμ is δ-continuous. Fix μ, ν ∈ P(X). Given any ε > 0, there exists a
map g ∈ Ã such that g ≤ f and

´
g dμ ≥ ´

f dμ − ε, by Corollary 1.1.8. Let
i ∈ N be such that fi = g/‖g‖Cb(X). Then

ˆ
f dν −

ˆ
f dμ ≥ ‖g‖Cb(X)

ˆ
fi d(ν − μ) − ε ≥ −‖g‖Cb(X) 2i δ(ν, μ) − ε,

whence limδ(ν,μ)→0

´
f d(ν−μ) ≥ 0 by arbitrariness of ε, i.e. the map μ �→ ´

f dμ

is δ-lower semicontinuous. Its δ-upper semicontinuity can be proved in an analogous
way.
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Conversely, fix μ ∈ P(X) and ε > 0. Choose N ∈ N such that 2−N < ε/2.
Then there is a weak neighbourhood W of μ such that

∣
∣ ´ fi d(μ − ν)

∣
∣ < ε/4 for

all i = 0, . . . , N and ν ∈ W . Therefore

δ(μ, ν) ≤
N∑

i=0

1

2i

∣
∣∣
∣

ˆ
fi d(μ − ν)

∣
∣∣
∣ +

∞∑

i=N+1

1

2i
≤ ε

2
+ 1

2N
< ε for every ν ∈ W,

proving that W is contained in the open δ-ball of radius ε centered at μ. ��
Remark 1.1.10 Suppose that X is compact. Then C(X) = Cb(X), thus accordingly
P(X) is weakly compact by (1.5) and Banach-Alaoglu theorem. Conversely, for X
non-compact this is in general no longer true. For instance, take X := R and μn :=
δn. Suppose by contradiction that a subsequence (μnm)m weakly converges to some
limit μ ∈ P(R). For any k ∈ N we have that μ

(
(−k, k)

) ≤ limm δnm

(
(−k, k)

) = 0,
so that μ(R) = limk→∞ μ

(
(−k, k)

) = 0, which leads to a contradiction. This
proves that P(R) is not weakly compact. �
Definition 1.1.11 (Tightness) A set K ⊆ P(X) is said to be tight provided for
every ε > 0 there exists a compact set Kε ⊆ X such that μ(Kε) ≥ 1 − ε for every
μ ∈ K.

Theorem 1.1.12 (Prokhorov) Let K ⊆ P(X) be fixed. Then K is weakly
relatively compact if and only if K is tight.

Proof In light of Proposition 1.1.9, compactness and sequential compactness are
equivalent. We separately prove the two implications:
SUFFICIENCY. Fix K ⊆ P(X) tight. Without loss of generality, suppose that
K = (μi)i∈N. For any n ∈ N, choose a compact set Kn ⊆ X such that μi(Kn) ≥
1 − 1/n for all i. By a diagonalization argument we see that, up to a not relabeled
subsequence, μi |Kn

converges to some measure νn in duality with Cb(Kn) for all
n ∈ N, as a consequence of Remark 1.1.10. We now claim that:

νn → ν in total variation norm, for some measure ν,

μi ⇀ ν in duality with Cb(X).
(1.10)

To prove the former, recall (cf. Remark 1.1.15 below) that for any m ≥ n ≥ 1 one
has

‖νn − νm‖TV = sup

{ˆ
f d(νn − νm)

∣
∣
∣∣ f ∈ Cb(X), ‖f ‖Cb(X) ≤ 1

}
.

Then fix f ∈ Cb(X) with ‖f ‖Cb(X) ≤ 1. We can assume without loss of generality
that (Kn)n is increasing. We deduce from (1.3) that νm(Km \Kn) ≤ limi μi |Km

(X \
Kn) ≤ 1/n. Therefore

ˆ
f d(νn − νm) ≤ lim

i→∞

( ˆ
f dμi −

ˆ
f dμi

)
+ 1

n
+ 1

m
= 1

n
+ 1

m
,
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proving that (νn)n is Cauchy with respect to ‖ · ‖TV and accordingly the first
in (1.10). For the latter, notice that for any f ∈ Cb(X) it holds that

∣
∣
∣∣

ˆ
f d(μi − ν)

∣
∣
∣∣ =

∣
∣
∣∣

ˆ
Kn

f d(μi − νn) −
ˆ

Kn

f d(ν − νn)

+
ˆ

X\Kn

f dμi −
ˆ

X\Kn

f dν

∣
∣
∣
∣

≤
∣
∣
∣∣

ˆ
Kn

f d(μi − νn)

∣
∣
∣∣ + ‖f ‖Cb(X) ‖ν − νn‖TV + 2 ‖f ‖Cb(X)

n
.

By first letting i → ∞ and then n → ∞, we obtain that limi

∣
∣ ´ f d(μi − ν)

∣
∣ = 0,

showing the second in (1.10). Hence sufficiency is proved.
NECESSITY. Fix K ⊆ P(X) weakly relatively sequentially compact. Choose ε > 0
and a sequence (xn)n that is dense in X. Arguing by contradiction, we aim to prove
that

∀i ∈ N ∃Ni ∈ N : μ

( Ni⋃

j=1

B̄1/i(xj )

)
≥ 1 − ε

2i
∀μ ∈ K. (1.11)

If not, there exist i0 ∈ N and (μm)m ⊆ K such that μm

( ⋃m
j=1 B̄1/i0(xj )

)
< 1 −

ε/2i0 holds for every m ∈ N. Up to a not relabeled subsequence μm ⇀ μ ∈ P(X)

and accordingly

μ

( n⋃

j=1

B1/i0(xj )

)
(1.3)≤ lim

m→∞
μm

( m⋃

j=1

B̄1/i0(xj )

)
≤ 1 − ε/2i0 for any n ∈ N,

which contradicts the fact that limn→∞ μ
( ⋃n

j=1 B1/i0(xj )
) = μ(X) = 1. This

proves (1.11).
Now define K := ⋂

i∈N
⋃Ni

j=1 B̄1/i(xj ). Such set is compact, as it is closed and
totally bounded by construction. Moreover, for any μ ∈ K one has that

μ(X \ K) ≤
∑

i

μ

( Ni⋂

j=1

X \ B̄1/i (xj )

)
(1.11)≤ ε

∑

i

1

2i
= ε,

thus proving also necessity. ��
Remark 1.1.13 We have that a set K ⊆ P(X) is tight if and only if

∃ � : X → [0,+∞], with compact sublevels, such that s := sup
μ∈K

ˆ
� dμ < +∞.

(1.12)
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To prove sufficiency, first notice that � is Borel as its sublevels are closed sets. Now
fix ε > 0 and choose C > 0 such that s/C < ε. Moreover, by applying Čebyšëv’s
inequality we obtain that C μ{� > C} ≤ ´

� dμ ≤ s for all μ ∈ K, whence
μ

({� ≤ C}) ≥ 1 − s/C > 1 − ε.
To prove necessity, suppose K tight and choose a sequence (Kn)n of compact

sets such that μ(X \Kn) ≤ 1/n3 for all n ∈ N and μ ∈ K. Define �(x) := inf
{
n ∈

N : x ∈ Kn

}
for every x ∈ X. Clearly � has compact sublevels by construction.

Moreover, it holds that

sup
μ∈K

ˆ
� dμ = sup

μ∈K

∑

n

ˆ
Kn+1\Kn

� dμ ≤
∑

n

n + 1

n3 < +∞,

as required. �
Remark 1.1.14 Let μ ≥ 0 be a finite non-negative Borel measure on X. Then for
any Borel set E ⊆ X one has

μ(E) = sup
{
μ(C) : C ⊆ E closed

} = inf
{
μ(�) : � ⊇ E open

}
. (1.13)

To prove it, it suffices to show that the family of all Borel sets E satisfying (1.13),
which we shall denote by E, forms a σ -algebra containing all open subsets of X.
Then fix � ⊆ X open. Call Cn := {

x ∈ � : d(x, X \ �) ≥ 1/n
}

for all n ∈ N,
whence (Cn)n is an increasing sequence of closed sets and μ(�) = limn μ(Cn) by
continuity from below of μ. This grants that � ∈ E.

It only remains to show that E is a σ -algebra. It is obvious that ∅ ∈ E and that E is
stable by complements. Now fix (En)n ⊆ E and ε > 0. There exist (Cn)n closed and
(�n)n open such that Cn ⊆ En ⊆ �n and μ(�n)−ε 2−n ≤ μ(En) ≤ μ(Cn)+ε 2−n

for every n ∈ N. Let us denote � := ⋃
n �n. Moreover, continuity from above of

μ yields the existence of N ∈ N such that μ
( ⋃

n∈N Cn \ C
) ≤ ε, where we put

C := ⋃N
n=1 Cn. Notice that � is open, C is closed and C ⊆ ⋃

n En ⊆ �. Finally, it
holds that

μ

( ∞⋃

n=1

En \ C

)
≤

∞∑

n=1

μ(En \ Cn) + ε ≤
∞∑

n=1

ε

2n
+ ε = 2 ε,

μ

(
� \

∞⋃

n=1

En

)
≤

∞∑

n=1

μ(�n \ En) ≤
∞∑

n=1

ε

2n
= ε.

This grants that
⋃

n En ∈ E, concluding the proof. �
Remark 1.1.15 (Total Variation Norm) During the proof of Theorem 1.1.12, we
needed the following two properties of the total variation norm:

‖μ‖TV = sup

{ˆ
f dμ

∣
∣
∣
∣ f ∈ Cb(X), ‖f ‖Cb(X) ≤ 1

}
for any signed Borel
measure μ on X,

(
P(X), ‖ · ‖TV

)
is complete.

(1.14)
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In order to prove them, we proceed as follows. Given a signed measure μ, let us
consider its Hahn-Jordan decomposition μ = μ+−μ−, where μ± are non-negative
measures with μ+ ⊥ μ−, which satisfy μ(P) = μ+(X) and μ(P c) = −μ−(X) for
a suitable Borel set P ⊆ X. Hence by definition the total variation norm is defined as

‖μ‖TV := μ+(X) + μ−(X). (1.15)

Such definition is well-posed, since the Hahn-Jordan decomposition (μ+, μ−) of μ

is unique.
To prove the first in (1.14), we start by noticing that

´
f dμ ≤ ´ |f | d(μ+ +

μ−) ≤ ‖μ‖TV holds for any f ∈ Cb(X) with ‖f ‖Cb(X) ≤ 1, proving one inequality.
To show the converse one, let ε > 0 be fixed. By Remark 1.1.14, we can choose
two closed sets C ⊆ P and C′ ⊆ Pc such that μ+(P \ C),μ−(P c \ C′) < ε. Call
fn := (

1−n d(·, C)
)+ and gn := (

1−n d(·, C′)
)+, so that fn ↘ χC and gn ↘ χC ′

as n → ∞. Now define hn := fn −gn. Since |hn| ≤ 1, we have that (hn)n ⊆ Cb(X)

and ‖hn‖Cb(X) ≤ 1 for every n ∈ N. Moreover, it holds that

lim
n→∞

ˆ
hn dμ = lim

n→∞

[ˆ
fn dμ+ −

ˆ
fn dμ− −

ˆ
gn dμ+ +

ˆ
gn dμ−

]

= μ+(C) + μ−(C′) ≥ μ+(P ) + μ−(P c) − 2 ε = ‖μ‖TV − 2 ε.

By arbitrariness of ε > 0, we conclude that limn

´
hn dμ ≥ ‖μ‖TV, proving the first

in (1.14).
To show the second, fix a sequence (μn)n ⊆ P(X) that is ‖ · ‖TV-Cauchy. Notice

that

∣
∣μ(E)

∣
∣ ≤ ‖μ‖TV for every signed measure μ and Borel set E ⊆ X.

Indeed,
∣
∣μ(E)

∣
∣ ≤ μ+(E) + μ−(E) ≤ μ+(X) + μ−(X) = ‖μ‖TV. Therefore

∣
∣μn(E) − μm(E)

∣
∣ ≤ ‖μn − μm‖TV for every n,m ∈ N and E ⊆ X Borel.

(1.16)

In particular,
(
μn(E)

)
n

is Cauchy for any E ⊆ X Borel, so that limn μn(E) = L(E)

for some limit L(E) ∈ [0, 1]. We thus deduce from (1.16) that

∀ε > 0 ∃ n̄ε ∈ N : ∣∣L(E)−μn(E)
∣∣ ≤ ε ∀n ≥ n̄ε ∀E ⊆ X Borel. (1.17)

We claim that L is a probability measure. Clearly, L(∅) = 0 and L(X) = 1. For any
E,F Borel with E ∩F = ∅, we have L(E ∪F) = limn μn(E ∪F) = limn μn(E)+
limn μn(F ) = L(E) + L(F ), which grants that L is finitely additive. To show that
it is also σ -additive, fix a sequence (Ei)i of pairwise disjoint Borel sets. Let us call
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UN := ⋃N
i=1 Ei for all N ∈ N and U := ⋃∞

i=1 Ei . Given any ε > 0, we infer
from (1.17) that for any n ≥ n̄ε one has

lim
N→∞

∣
∣L(U) − L(UN)

∣
∣ ≤ ∣

∣L(U) − μn(U)
∣
∣

+ lim
N→∞

∣∣μn(U) − μn(UN)
∣∣ + lim

N→∞
∣∣μn(UN) − L(UN)

∣∣

≤ 2 ε + lim
N→∞

∣
∣μn(U) − μn(UN)

∣
∣ = 2 ε,

where the last equality follows from the continuity from below of μn. By letting
ε → 0 in the previous formula, we thus obtain that L(U) = limN L(UN) =∑∞

i=1 L(Ei), so that L ∈ P(X). Finally, we aim to prove that limn ‖L − μn‖TV = 0.
For any n ∈ N, choose a Borel set Pn ⊆ X satisfying (L−μn)(Pn) = (L−μn)

+(X)

and (L − μn)(P
c
n ) = −(L − μn)

−(X). Now fix ε > 0. Hence (1.17) guarantees that
for every n ≥ n̄ε it holds that

‖L − μn‖TV = (L − μn)(Pn) − (L − μn)(P c
n ) = ∣

∣(L − μn)(Pn)
∣
∣ + ∣

∣(L − μn)(P c
n )

∣
∣ ≤ 2 ε.

Therefore μn converges to L in the ‖ · ‖TV-norm. Since L ≥ 0 by construction, the
proof of (1.14) is achieved. �

We now present some consequences of Theorem 1.1.12:

Corollary 1.1.16 (Ulam’s Theorem) Any μ ∈ P(X) is concentrated on a σ -
compact set.

Proof Clearly the singleton {μ} is weakly relatively compact, so it is tight by
Theorem 1.1.12. Thus for any n ∈ N we can choose a compact set Kn ⊆ X such
that μ(X \ Kn) < 1/n. In particular, μ is concentrated on

⋃
n Kn, yielding the

statement. ��
Corollary 1.1.17 Let μ ∈ P(X) be given. Then μ is inner regular, i.e.

μ(E) = sup
{
μ(K) : K ⊆ E compact

}
for every E ⊆ X Borel. (1.18)

In particular, μ is a Radon measure.

Proof By Corollary 1.1.16, there exists an increasing sequence (Kn)n of compact
sets such that limn μ

(
X \ Kn

) = 0. Any closed subset C of X that is contained in
some Kn is clearly compact, whence

μ(E) = lim
n→∞ μ(E ∩ Kn) = lim

n→∞ sup
{
μ(C) : C ⊆ E ∩ Kn closed

}

≤ sup
{
μ(K) : K ⊆ E compact

}
for every E ⊆ X Borel,

proving (1.18), as required. ��
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Given any function f : X → R, let us define

Lip(f ) := sup
x,y∈X
x �=y

∣
∣f (x) − f (y)

∣
∣

d(x, y)
∈ [0,+∞]. (1.19)

We say that f is Lipschitz provided Lip(f ) < +∞ and we define

LIP(X) := {
f : X → R : Lip(f ) < +∞}

,

LIPbs(X) := {
f ∈ LIP(X) : spt(f ) is bounded

} ⊆ Cb(X).
(1.20)

We point out that continuous maps having bounded support are not necessarily
bounded.

Proposition 1.1.18 (Separability of Lp(μ) for p < ∞) Let μ ∈ P(X) and p ∈
[1,∞). Then the space LIPbs(X) is dense in Lp(μ). In particular, the space Lp(μ)

is separable.

Proof First, notice that LIPbs(X) ⊆ L∞(μ) ⊆ Lp(μ). Call C the Lp(μ)-closure
of LIPbs(X).

STEP 1. We claim that
{
χC : C ⊆ X closed bounded

}
is contained in the set

C . Indeed, called fn := (
1 − n d(·, C)

)+ ∈ LIPbs(X) for any n ∈ N, one has
fn → χC in Lp(μ) by dominated convergence theorem.

STEP 2. We also have that
{
χE : E ⊆ X Borel

} ⊆ C . Indeed, we can pick an
increasing sequence (Cn)n of closed subsets of E such that μ(E) = limn μ(Cn),
as seen in (1.13). Then one has that ‖χE − χCn‖Lp(μ) = μ(E \ Cn)

1/p → 0,
whence χE ∈ C by STEP 1.

STEP 3. To prove that Lp(μ) ⊆ C , fix f ∈ Lp(μ), without loss of generality
say f ≥ 0. Given any n, i ∈ N, let us define Eni := f −1

([i/2n, (i + 1)/2n[ )
.

Observe that (Eni)i is a Borel partition of X, thus it makes sense to define fn :=∑
i∈N i 2−n χEni ∈ Lp(μ). Given that we have fn(x) ↗ f (x) for μ-a.e. x ∈ X,

it holds fn → f in Lp(μ) by dominated convergence theorem. We aim to prove
that (fn)n ⊆ C , which would immediately imply that f ∈ C . Then fix n ∈ N.
Notice that fn is the Lp(μ)-limit of f N

n := ∑N
i=1 i 2−n χEni as N → ∞, again

by dominated convergence theorem. Given that each f N
n ∈ C by STEP 2, we get

that fn is in C as well. Hence LIPbs(X) is dense in Lp(μ).
STEP 4. Finally, we prove separability of Lp(μ). We can take an increasing

sequence (Kn)n of compact subsets of X such that the measure μ is concentrated
on

⋃
n Kn, by Corollary 1.1.16. Since χKn f → f in Lp(μ) for any f ∈ Lp(μ),

we see that

⋃

n∈N

{
f ∈ Lp(μ) : f = 0 μ-a.e. in X \ Kn

}

︸ ︷︷ ︸
=:Sn

is dense in Lp(μ).
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To conclude, it is sufficient to show that each Sn is separable. Observe that C(Kn) is
separable by Corollary 1.1.6, thus accordingly its subset LIPbs(Kn) is separable with
respect to ‖ · ‖Cb(Kn). In particular, LIPbs(Kn) is separable with respect to ‖ · ‖Lp(μ).
Moreover, LIPbs(Kn) is dense in Lp(μ|Kn

) ∼= Sn by the first part of the statement,
therefore each Sn is separable. ��

1.1.2 The Space L0(m)

By metric measure space we mean a triple (X, d,m), where

(X, d) is a complete and separable metric space,

m �= 0 is a non-negative Borel measure on (X, d), which is finite on balls.
(1.21)

Let us denote by L0(m) the vector space of all Borel functions f : X → R, which
are considered modulo m-a.e. equality. Then L0(m) becomes a topological vector
space when endowed with the following distance: choose any Borel probability
measure m′ ∈ P(X) such that m � m′ � m (for instance, pick any Borel partition

(En)n made of sets having finite positive m-measure and set m′ := ∑
n

χEnm
2n m(En)

)
and define

dL0(f, g) :=
ˆ

|f − g| ∧ 1 dm′ for every f, g ∈ L0(m). (1.22)

Such distance may depend on the choice of m′, but its induced topology does not,
as we are going to show in the next result:

Proposition 1.1.19 A sequence (fn)n ⊆ L0(m) is dL0-Cauchy if and only if

lim
n,m→∞m

(
E ∩ {|fn − fm| > ε

})
= 0

for every ε > 0 and E ⊆ X
Borel with m(E) < +∞.

(1.23)

Proof We separately prove the two implications:
NECESSITY. Suppose that (1.23) holds. Fix ε > 0. Choose any point x̄ ∈ X, then
there exists R > 0 such that m′(BR(x̄)

) ≥ 1 − ε. Recall that m is finite on bounded
sets by hypothesis, so that m

(
BR(x̄)

)
< +∞. Moreover, since m′ is a finite measure,

we clearly have that χBR(x̄)
dm′
dm ∈ L1(m). Now let us call Anm(ε) the set BR(x̄) ∩{|fn−fm| > ε

}
. Then property (1.23) grants that χAnm(ε) → 0 in L1(m) as n,m →

∞, whence an application of the dominated convergence theorem yields

lim
n,m→∞m′(Anm(ε)

) = lim
n,m→∞

ˆ
χAnm(ε) χBR(x̄)

dm′

dm
dm = 0. (1.24)
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Therefore we deduce that
ˆ

|fn − fm| ∧ 1 dm′ =
ˆ

X\BR(x̄)

|fn − fm| ∧ 1 dm′ +
ˆ

BR(x̄)

|fn − fm| ∧ 1 dm′

≤ ε +
ˆ

BR(x̄)∩{|fn−fm|≤ε}
|fn − fm| ∧ 1 dm′

+
ˆ

Anm(ε)

|fn − fm| ∧ 1 dm′

≤ 2 ε + m′(Anm(ε)
)
,

from which we see that limn,m dL0(fn, fm) ≤ 2 ε by (1.24). By arbitrariness of
ε > 0, we conclude that limn,m dL0(fn, fm) = 0, which shows that the sequence
(fn)n is dL0 -Cauchy.
SUFFICIENCY. Suppose that (fn)n is dL0 -Cauchy. Fix any ε ∈ (0, 1) and a Borel set
E ⊆ X with m(E) < +∞. Hence the Čebyšëv inequality yields

m′({|fn−fm| > ε
}) = m′({|fn−fm|∧1 > ε

}) ≤ 1

ε

ˆ
|fn −fm|∧1 dm′ = dL0(fn, fm)

ε
,

so that limn,m m′({|fn − fm| > ε
}) = 0. Finally, observe that χE

dm
dm′ ∈ L1(m′),

whence

m
(
E ∩ {|fn − fm| > ε

})
=
ˆ

χE
dm

dm′ χ {|fn−fm|>ε} dm′ n,m−→ 0

by dominated convergence theorem. Therefore (1.23) is proved. ��
Remark 1.1.20 Recall that two metrizable spaces with the same Cauchy sequences
have the same topology, while the converse implication does not hold in general.
For instance, consider the real line R endowed with the following two distances:

d1(x, y) := |x − y|,
d2(x, y) := ∣

∣arctan(x) − arctan(y)
∣
∣,

for every x, y ∈ R.

Then d1 and d2 induce the same topology on R, but the d2-Cauchy sequence
(xn)n ⊆ R defined by xn := n is not d1-Cauchy. �

We now show that the distance dL0 metrizes the ‘local convergence in measure’:

Proposition 1.1.21 Let f ∈ L0(m) and (fn)n ⊆ L0(m). Then the following are
equivalent:

i) It holds that dL0(fn, f ) → 0 as n → ∞.
ii) Given any subsequence (nm)m, there exists a further subsequence (nmk )k such

that the limit limk fnmk
(x) = f (x) is verified for m-a.e. x ∈ X.


