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Plants are generally considered to be passive and insensitive organisms. One can 
trace this strong belief back to Aristoteles, who positioned immobile plants outside 
of the sensitive life domain. The millennia that have elapsed between time of 
Aristoteles and the present day highlight the fact that it will very difficult to change 
this almost dogmatic view. For instance, one of the first serious attempts to rehabili-
tate plants was performed by no less than Charles Darwin, in 1880. At the end of 
the book The Power of Movement in Plants, which he wrote together with his son 
Francis, they proposed that the root apex represents the brain-like anterior pole of 
the plant body.

This volume, in fact the whole series, documents a paradigm shift that is currently 
underway in the plant sciences. In the last two or three decades, plants have been 
unmasked as being very sensitive organisms that monitor and integrate large num-
bers of abiotic and biotic parameters from their environment. That plants react to 
electric stimuli in the same manner as animals was shown by Alexander von 
Humboldt a few years after Luigi Galvani discovered the electrical stimulation of 
animal muscles in frogs’ legs. Later, when animal action potentials were discovered 
in animals, similar action potentials were soon recorded in plants too. Initially only 
“sensitive plants” were tested, but some 30 years ago it was found that all plants use 
action potentials to respond to environmental stimuli. This rather dramatic break-
through went almost unnoticed in the mainstream plant sciences. Only recently, the 
emergence of plant neurobiology has highlighted this neglected aspect of biology. 
The obvious conservation that occurs throughout evolution means that action 
potentials provide both plants and animals with evolutionary advantages that are 
crucial to their adaptive behavior and survival. As plants evolved action potentials 
independently of animals, this phenomenon also holds the key to illuminating the 
mystery of convergent evolution, a phenomenon that does not conform to the 
classical Darwinian principles of biological evolution.

Recent advances in chemical and sensory ecology have revealed that plants com-
municate via volatile and allelochemical chemical messengers with other plants and 
insects. By using a wide variety of volatiles, plants are able to attract or repel 
diverse insects and animals, enabling them to shape actively their biotic niche. The 
number of volatile compounds released and received by plants for communication 
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is immense, requiring complex signal-release machinery, as well as “neuronal” 
decoding apparatus to correctly interpret the received signals. These aspects of plant 
activity have not been studied yet. Plants integrate and memorize numerous sensory 
“experiences” in order to adapt effectively to an ever-changing environment.

Plants also show active behavior, including kin and self/nonself recognition, 
cognition, and a plant-specific form of intelligence. In order to find their prey, para-
sitic plants use sophisticated sensory detection systems, and after colonizing the 
prey tissues they conform to an animal-like heterotrophic lifestyle. Plants often 
apply deception as an effective strategy to manipulate other organisms, including 
insects, other animals, and perhaps even us humans. They use colors, forms and 
odors, as well as taste-stimulating, nutritional and neuroactive substances to 
manipulate insects, animals and humans in order to aid their spread around the 
globe. Crop plants like wheat, maize, barley and rice are the most successful spe-
cies in this respect. New concepts are needed and new questions must be asked in 
order to advance our rather rudimentary understanding of the communicative nature 
of sensory plants.

One of the goals of current plant science is to improve the agricultural properties 
and stress adaptabilities of plants. However, we will not achieve this goal until we 
unravel the communicative, sensory, and cognitive aspects of these organisms. 
Moreover, our civilization still is—and will continue to be in the future—fully 
dependent on plants, since they (together with unicellar photosynthetic organisms) 
are the only primary source of oxygen and organic matter on this planet. Recently, 
humans have begun to use plants extensively to produce biofuels. Due to the 
continuing problems with hunger in underdeveloped countries, this presents our 
civilization with a dilemma: what proportion of plants should be grown for food 
and what proportion for energy? Our future depends on us gaining a complete 
understanding of plants in their full complexity.

Bonn, October 2008 František Baluška
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       Mechanical Integration of Plant Cells       

     Anna   Kasprowicz    ,    Daniel   Kierzkowski   ,    Michalina   Maruniewicz   , 
   Marta   Derba-Maceluch   ,    Ewelina   Rodakowska   ,    Paweł   Zawadzki   , 
   Agnieszka   Szuba   , and    Przemysław   Wojtaszek   

      1 Introduction

  In order to function in changing environmental conditions, all living organisms need 
to be equipped with two sets of seemingly contradictory mechanisms; these enable 
them to (1) function as an integrated entity independent of the environment,  and 
(2) sense and communicate with their immediate surrounding. During the course of 
evolution, several factors—both physical and chemical—have emerged as organis-
mal integrators. Among these, gravity provides a major directional stimulus, while 
chemical compounds are usually used as internal integratory molecules (Bhalerao 
and Bennett 2003). 

 Although the same cellular toolkit of their common ancestor gave rise to present-
day eukaryotes through evolution, it should be remembered that plant and animal 
lineages diverged about 1 billion years before they became multicellular organisms. 
As a consequence, plants and animals differ in their lifestyles, responses to stimuli, 
and adaptations to the environment. This distinction results from the adoption of two 
different strategies of coping with the regulation of intracellular water content, and 
is reflected in the properties and behavior of “naked” animal cells vs. “walled” 
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2 A. Kasprowicz et al.

plant cells (Peters et al. 2000). Thus, while animals are able to move away when 
conditions are unfavorable, plants—since they are sessile organisms—must react and/
or adapt to changes. As a result, much greater plasticity of plants and their cells is 
observed (Valladares et al. 2000). 

 All organisms have the ability to sense and respond to a variety of physi-
cal stimuli, such as radiation, temperature, and gravity (Volkmann and Baluška 
2006). Although physical forces act in the same manner on different organisms, 
the effects of their actions depend on the organism’s habitat. For example, the 
effect of gravitational force on an organism depends greatly on whether it lives 
in water or on land. On the other hand, the forces exerted on terrestrial plants 
by the movement of air are much lower than those exerted on aquatic ones by 
the movement of water (Niklas et al. 2000). Thus, although the overall construc-
tion of any particular plant or plant cell is generally similar to that of any other, 
the details of their biochemical and mechanical designs can vary considerably, 
as these are also shaped by the changing conditions in the cell’s or organism’s 
immediate surroundings.    

  2 Mechanical Organization of Plant Cells  

 From a mechanical point of view, the end product of the evolutionary transition to 
present-day plant cells could be considered a  tensegral hydrostat . In normal plant 
cells, compression-resistant turgid protoplast is surrounded by and presses against 
tension-resistant and mechanically stable cell walls (Wojtaszek  2000 ; Zonia and 
Munnik  2007) . This design principle has several important implications for the 
functioning of plant cells and plants: (1) functional cell walls become indispensa-
ble elements of plant cells; (2) the vast majority of plant cells do not move in 
relation to their neighbors; (3) both the cell walls and the steep gradient of hydro-
static pressure across the plasma membrane (which exceeds 2 MPa) can be used 
to mechanically stabilize plant bodies; (4) the interplay between the cell walls and 
turgor is the major determinant of cellular shape and organismal morphogenesis; 
(5) the presence of a hermetic matrix around protoplasts limits the ability to 
acquire energy and nutrients (Peters et al.  2000 ; Wojtaszek  2001) . However, 
phragmoplast-based incomplete cytokinesis, which leads to the formation of the 
cell plate and enables a new type of intercellular communication through plas-
modesmata (Lucas et al.  1993 ; Heinlein and Epel 2004), and the inclusion of 
newly synthesized cell walls into the supracellular structure of the apoplast 
(Wojtaszek  2000),  have allowed plants to overcome at least some of the constraints 
of this mechanical design. 

 The major structural and functional organizer of plant cells is the continuum 
formed by cell walls, plasma membrane and cytoskeleton (WMC continuum; Wyatt 
and Carpita  1993 ; Kohorn  2000 ; Wojtaszek  2000 ; Baluška et al.  2003) . Plant pro-
toplasts are able to rapidly and reversibly retract from the cell wall in plasmolytic 
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response to changing osmotic conditions (Lang-Pauluzzi and Gunning  2000)  while 
maintaining localized membrane-wall attachments (Lang et al.  2004) . The functioning 
of the cytoskeleton, which is anchored via plasma membrane to the walls, provides 
mechanisms for (1) the regulation of cellular volumes (Komis et al.  2003) ; (2) the 
directional transport and spatial distribution of cellular components (Sato et al. 
 2003 ; Chuong et al.  2006) , and; (3) the rearrangement of cellular architecture in 
response to internal and external stimuli (e.g. Wojtaszek et al.  2005 ; Schmidt and 
Panstruga  2007) . However, the wall-anchored cytoskeleton seems to function as not 
only a detector of physical forces but also a transmitter of mechanical signals as 
well as a transducer of those signals into biochemical messages (Forgacs  1995 ; 
Ingber  2003a , b). These processes are rather poorly recognized in plants, and 
important linker molecules within the WMC continuum are still not characterized 
(for review see Kohorn  2000 ; Baluška et al.  2003) . However, from studies in animal 
systems, it is now becoming clear that proper ECM–cytoskeleton contacts are crucial 
to the determination of cellular shapes and thus cell fate (e.g., Nelson et al.  2005 ; 
Engler et al.  2006 ; Vogel and Sheetz  2006 ; Assoian and Klein  2008) . This reinforces 
the idea that information stored in molecular and cellular structures is used during 
the generation of form, giving rise to new, emergent properties that are not directly 
deducible from the properties of the initial components (Harold  1995) . 

 Our questions about the influence of physical forces on the functioning of cells 
and organisms are not yet fully answered. However, some general rules of mechano-
sensing and mechanotransduction are becoming apparent. According to the tensegral 
model of cellular architecture, microfilaments are tension-responsive elements, 
whereas microtubules serve as contraction-resisting structures, and the cell and tissue 
shape depends on a balance between the physical states of those prestressed filamen-
tous networks (Ingber  2003a , b). Upon arrival at the cell surface, mechanical stimuli 
are recognized by specialized receptors. Those receptors—which are connected to 
both the ECM and the internal cytoskeleton spanning the whole cytoplasm—will be 
able to transmit these mechanical signals into cells, while other membrane receptors 
will fail (Ingber  2003a) . At least two possible and nonexclusive ways of mechan-
otransduction can be envisioned. One of them involves the direct transduction of the 
mechanical stress imposed on the receptor into a chemical signal which can be propa-
gated into the cell. The other one makes use of local conformational changes of 
proteins, at least within a portion of the signaling pathway (Kung  2005 ; Valle et al. 
 2007) . The first path offers the versatility of secondary chemical messengers and the 
possibility of cross-talk with other signaling pathways, enabling the fine tuning of 
cellular reactions (Orr et al.  2006) . The second provides the speed and fidelity of 
signal transmission, which is a unique feature of mechanotransduction (Na et al. 
 2008) . Interestingly, if we assume that the same forces act on all elements of the 
tensegral structure (ignoring the size), the same rules of tensegrity will apply at not 
only the cellular level but also the tissue and organismal ones (Ingber  2003a) . 

 There are many examples (in plants too) of cellular processes in which the trans-
mission of mechanical force has been documented or is commonly assumed, starting 
with changes in the activities of enzymes or protein complexes (Aon et al.  2000) , 
through organized movement of molecules, particles and organelles (van der 
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Honing et al.  2007) , and ending with the reorganization of whole cells in response 
to external cues, such as osmotic stress (e.g., Wojtaszek et al.  2005,   2007)  or pathogenic 
infection (Schmidt and Panstruga  2007 ; Hardham et al.  2008) . Over ten years ago, 
a direct mechanical connection between the cell surface and the nucleus via the 
cytoskeleton was demonstrated in animal cells (Maniotis et al.  1997) ; this profoundly 
affects the organization of chromatin (Maniotis et al.  2005) . Interestingly, it seems 
that the nucleolus is to some extent mechanically independent from the rest of the 
nucleus (Yang et al.  2008) . In plant cells, nuclei are highly dynamic; they are able 
to undergo polymorphic shape changes and rapid, long-distance movements 
(Chytilova et al.  2000) . Both the positioning and movements of nuclei are mediated 
by actin (Baluška et al.  2000) . Importantly, mechanical stimulus seems to be the 
primary signal that induces nuclear repositioning (Hardham et al.  2008) , and it has 
been demonstrated that isolated nuclei are also able to sense physical forces (Xiong 
et al.  2004) . As the position of the nucleus is strictly correlated with the cell cycle 
progression, especially with the determination of the plane of cell division, the sensing 
and transduction of mechanical stimuli provide the mechanism for the coordinated 
development of supracellular plant structures (Lintilhac and Vesecky  1984 ; Qu and 
Sun  2007 ; see also below). 

  2.1 Constructing the Pathway for Mechanotransduction 

 In accordance with what was said above, at least two broad classes of mechanosensi-
tive (MS) molecules can be distinguished. The first comprises proteins that sense the 
tension within the lipid bilayers of biological membranes (Martinac  2004) . These 
can then open rapidly, allowing a large number of ions to enter, thus amplifying the 
signal. Examples include the bacterial MscS (mechanosensitive channel of small 
conductance) channels that regulate cellular responses to osmotic stress. In the 
 Arabidopsis  genome there are ten genes coding for MscS-like (MSL) proteins. 
Among them, MSL2 and MSL3 are involved in the control of plastid size and mor-
phology (Haswell and Meyerowitz  2006) , while MSL9 and MSL10, and possibly 
three other MSL proteins, are required for MS channel activities in root cells 
(Haswell et al.  2008) . The regulation of cellular volumes has been ascribed to some 
MS anion channels (reviewed by Roberts  2006) , while the gating of Ca 2+  influx is 
thought to be a major function of the MS ion channels in lily pollen tubes (Dutta and 
Robinson  2004)  and Mca1 protein from  Arabidopsis  roots (Nakagawa et al.  2007) . 

 Proteins belonging to the second group are characterized by their ability to sense 
mechanical distortions in either cytoskeleton or extracellular matrices (ECM), such 
as cell walls in plants. Their ectodomains are usually embedded in ECM or they 
strongly interact with the ECM components. These domains are connected with 
transmembrane domains, and—if present—with cytoplasmic domains of various 
lengths and different activities. On the intracellular side, they interact with cytoskeleton 
either directly or via cytoskeleton-binding proteins. Further signal transmission can 
occur in several different and nonexclusive ways, depending on the design of the 
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given protein. First, the distortion can be propagated as conformational changes 
within a chain of interacting proteins. Second, the stimulus can be transduced into 
an electrical signal via the activity of ion channels. Third, the mechanical signal can 
be transformed into a chemical message, e.g., through the phosphorylation of target 
proteins by the intracellular domain of a sensor with kinase activity or a specialized 
kinase interacting with a sensor (Ingber  2003b ; Orr et al.  2006) . Typical examples 
taken from animal systems include integrins, which are able to detect and transmit 
mechanical perturbations in both directions: inside–outside and from the ECM to 
the cytoskeleton, reacting to changes in the cellular neighborhood and stabilizing 
cell–ECM interactions. The extent and the quality of the interactions with the 
integrins are then recognized and transformed into various biochemical messages 
regulating metabolism and cellular behavior (Arnaout et al.  2007 ; Assoian and 
Klein  2008) . In plants, the most diverse group of proteins are the protein kinases 
with specialized extracellular domains. These include receptor-like kinases (RLKs), 
such as wall-associated kinases (WAKs; Kohorn  2001)  and proline-rich extensin-
like receptor kinases (PERK), and other kinases with, say, carbohydrate-binding 
motifs (reviewed by Shiu and Bleecker  2001) . Although WAKs (for example) have 
been shown to be embedded in the pectin matrix of the walls (Decreux and 
Messiaen  2005) , the involvement of RLKs in mechanotransduction has rarely been 
demonstrated (Gouget et al.  2006) . An interesting example is the specialized potassium 
channel KAT1, located in plasma membrane and probably associated with the surrounding 
cell walls of  Vicia faba  guard cells, although whether it transmits mechanical 
distortion into the cell is yet to be elucidated (Homann et al.  2007) . 

 In animal cells, integrin activity can be directly modulated by peptides containing 
RGD (Arg–Gly–Asp) motifs that are characteristic of many of the extracellular 
proteins interacting with integrins. Although genes coding for integrins or integrin-
interacting proteins have not been identified in the  Arabidopsis  genome (Hussey 
et al.  2002) , the existence of proteins similar to integrins (e.g., those recognized by 
heterologous antibodies) has been demonstrated in many plant species. Moreover, 
the treatment of plant cells with RGD-containing peptides affects their functioning 
in processes such as gravisensing (Wayne et al.  1992) , the plasmolytic cycle (Canut 
et al.  1998) , the plant defense response to fungal infection (Mellersh and Heath 
 2001) , as well as growth and differentiation (Schindler et al.  1989 ; Barthou et al. 
 1998) . The application of RGD peptides also leads to the modulation of cytoplasmic 
streaming (Hayashi and Takagi  2003)  and the formation of Hechtian strands (Canut 
et al.  1998 ; Mellersh and Heath  2001) . As Hechtian strands contain both actin 
filaments and microtubules, these observations provide direct evidence of active 
linkages between plasma membrane proteins and the cytoskeleton, which play an 
important role in cell-to-cell communication and signal transduction from the cell 
wall into the protoplast. 

 Several other molecules has been proposed to function as linkers within the 
WMC continuum; myosin VIII and formins are thought to be the most probable 
adhesive molecules (reviewed by Kohorn  2000 ; Baluška et al.  2003) . Their localization 
at the cross-walls of cells in the axial organs may be crucial to their functioning 
(Deeks et al.  2002 ; Baluška and Hlavačka  2005) . Intriguingly, some of the proposed 
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WMC linkers, such as WAKs and arabinogalactan proteins (AGPs), were found to 
associate with plasma membrane-located MS calcium-selective channels in tobacco 
BY-2 cells, supporting the view that the WMC continuum is the sensor and transducer 
of mechanical signals (Gens et al.  2000) . Interestingly, such an association enables 
the discrimination of various signals, as stretch-activated Ca 2+  channels are involved 
in the sensing of both hypotonic and hypertonic conditions, whereas the WMC con-
tinuum is only involved in sensing a hypertonic environment (Hayashi et al.  2006) .   

  3 Control of Cell Morphogenesis and Fate Determination  

 Cell organization and functioning takes place in four dimensions (Wojtaszek  2000) . 
To understand these processes, we must, in the words of Frank Harold  (1995) , “ask 
how organisms produce successive shapes as they traverse their life cycles. This 
query focuses attention on structures, forces and flows that modulate form, rather 
than on molecules and genes.” Research on various systems, but especially animal 
cells, has provided evidence that cellular shapes and the sensing of geometry and 
mechanical environment are tightly intertwined with cellular functions. For example, 
cell–ECM interactions are crucial in deciding the cellular fate (Engler et al.  2006)  
and the frequency of cell division within an organ (Nelson et al.  2005) . The presence 
of turgor and the “walled” organization of plant cells (Peters et al.  2000)  provide 
other mechanisms of shape determination. As turgor is a scalar quantity, its effects 
are isodiametric, and wall-less protoplasts are invariably spherical. The continuous 
interplay between turgor and the differentiated mechanics of wall domains surrounding 
individual cells provide the means to achieve the great diversity of cellular shapes 
(Panteris and Galatis  2005 ; Mathur  2006) . Even more importantly, although the 
organized cytoskeleton carries out cytokinesis, it is the presence of the walls as well 
as the resulting shape of the cell that provide spatial cues that are indispensable 
when organizing the cytoskeleton and determining the plane of cell division (Meyer 
and Abel  1975 ; Niklas  1992 ; Green  1999 ; Cleary  2001) . In growing plants, the 
characteristic mechanical environment of the cells in a given organ results in an 
ordered pattern of cell divisions. This is lost in regenerating tissues such as callus, but 
can be restored with the external application of directional forces (Lintilhac and 
Vesecky  1984) , which are sensed by protoplasts (Lynch and Lintilhac  1997) . 
Moreover, the mechanical environment of the maternal tissues has a crucial influ-
ence on the plane of first asymmetric division in fertilized zygotes (Kaplan and 
Cooke  1997) . Mechanical patterns are also important in suspension-cultured cells, 
in which mechanical stimuli dictate the proper organization of cellular metabolic 
networks (Yahraus et al.  1995 ; Aon et al.  2000) . 

 At the cellular level, the turgor is used to identify mechanically weaker domains of 
the cellular boundary in order to enable growth in that direction (Mathur  2006) . As the 
cellulose–hemicellulose network constitutes the major tension-resistant element of the walls, 
it is commonly assumed that the orientation of newly deposited cellulose microfibrils 
restricts the possible growth directions of expanding cells. However, the question of what 
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determines the orientation of cellulose microfibrils is still a matter of debate. 
The classical point of view is that the deposition of cellulose microfibrils is affected by 
the alignment of cortical microtubules (Wymer and Lloyd  1996) . Experiments with 
tobacco suspension-cultured cells have demonstrated that spatial cues for the organiza-
tion of microtubules might come from biophysical forces, and that microtubules them-
selves can respond to vectorial changes in such forces (Wymer et al.  1996) . According 
to the geometrical model, new microfibrils are oriented by the cell geometry together 
with existing wall components, while the orientation of microtubules is a simple reflec-
tion of the directed delivery of cellulose synthase complexes to the plasma membrane 
(reviewed by Emons and Mulder  2000) . However, recent biochemical and genetic data 
suggest the existence of a bidirectional flow of information between cortical microtu-
bules and cellulose microfibrils, with the latter providing spatial cues for the internal 
organization of microtubules, most probably through the cellulose synthesis machinery 
(Fisher and Cyr  1998 ; Paredez et al.  2006,   2008) . Microtubules aside, filamentous actin 
is also essential for cell elongation during plant development (Baluška et al.  2001)  and 
for the directed delivery of cellulose synthase complexes to the sites of wall synthesis 
(Wightman and Turner  2008) . 

 In many cases, tissue geometry has a crucial influence on cell fate. In axial plant 
organs, the pressure exerted by external epidermal cell walls allows inner cells of 
the root to perceive the mechanical environment nearby and adjust properly to it 
 (Kutschera  2008) . Externally applied pressure can lead to an ordering of the cell 
division planes in callus (Lintilhac and Vesecky  1984) , and to an altered developmental 
pattern, combined with changes in organ identity (Hernández and Green  1993) . The 
laser removal of cells from  Arabidopsis  root meristem reorients the emerging division 
planes in remaining cells to fill in the empty space. Moreover, daughter cells are 
able to change their directions of development and differentiate according to their 
new positions in the root  (van den Berg et al.  1995,   1997) . These changes can be 
coupled with the remodeling of the structure and composition of the cell wall in 
order to reinforce and stabilize the mechanical message. This was first demon-
strated in fucoid algae, where zygote differentiation into thallus and rhizoid cells 
depends on asymmetric division and the formation of cell-specific cell walls 
(Berger et al.  1994) . Similarly, during zygotic embryogenesis in tobacco, the origi-
nal zygotic cell wall is crucial for the maintenance of apical–basal polarity and for 
determining the fates of daughter cells (He et al.  2007) .  

  4 Responses of Plants and Plant Cells to Mechanical Stimuli  

 In the classical view, for an organism to be able to respond to a given stimulus, it 
should be equipped with a complete signaling pathway that ends with the modulation 
of the activities of regulatory elements that affect the expression of stimulation-
dependent genes. The activities of the gene products would eventually lead to 
changes at the cell level and at the organismal level. As mentioned above, sensing 
and transduction of mechanical stimuli are among the oldest evolutionary mechanisms 
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that enable plant cells to respond to external cues. It should be noted, however, that 
although reactions to osmoticum, touch, and gravity are all responses to physical 
signals, they can be and are differentiated according to their “directionality.” Touch 
stimuli arrive from the outside of the cell and are signaled into the cell. In contrast, 
the reaction to a gravitational stimulus is initiated through its sensing inside the cell. 
Finally, the reaction to osmotic changes is most probably bidirectional, as it 
involves sensing the stimulus at both the plasma membrane and the tonoplast. 

  4.1 Osmoregulation in Plant Cells 

 Water availability is crucial to the proper functioning of the plant cell, as a hypotonic 
environment causes an influx of water into the protoplast, causing it to swell, 
whereas hypertonic conditions draw the water out of the cell, decreasing turgor and 
inducing a plasmolytic response. Stresses such as drought and high salinity result 
in effects similar to those evoked by a hyperosmotic environment, leading to a loss 
of mechanical strength and a wilting of soft, nonlignified plant tissues (Boudsocq 
and Laurière  2005) . Osmotic conditions are carefully sensed by all cells, and their 
changes induce active responses, mainly mechanisms regulating the cell volume 
(Zonia and Munnik  2007) . In walled cells such as yeast, osmotic stress sensing 
depends on cell wall integrity (Hohmann  2002) , and this is also postulated for plant 
cells (Marshall and Dumbroff  1999 ; Nakagawa and Sakurai  2001) . 

 Sensing and signaling systems for osmotic conditions occur in all groups of 
organisms. Relatively little is known about osmosensors in plants (Grefen and 
Harter  2004) . Plasma membrane protein AHK1 has been identified in  Arabidopsis  
and was shown to be a homolog of yeast osmosensory two-component histidine 
kinase SLN1 (Urao et al.  1999) . Its involvement in water stress responses in plants 
has been demonstrated (Wohlbach et al.  2008) . There are eight genes coding for 
two-component histidine kinases in total in the  Arabidopsis  genome, some of 
which are also potential receptors for cytokinins and ethylene (Grefen and Harter 
 2004) . Interestingly, one of the cytokinin receptors—CRE1—is also regulated by 
changes in turgor pressure (Reiser et al.  2003) . A close homolog of another cytokinin 
receptor (AHK3 from  Medicago sativa ) has been shown to be transcriptionally 
activated in response to high salinity, which suggests that MsHK1 can also function 
as an osmosensor (Coba de la Peña et al.  2008) . On the other hand, the overexpression 
of the transmembrane protein NtC7, which is most similar to RLKs, provides 
tobacco with a tolerance to the osmotic stress evoked by 500 mM mannitol. 
Interestingly, this tolerance appears to be stress-specific, as seeds were not able to 
germinate on media containing high salt concentrations (Tamura et al.  2003) . Such 
stress-specific response phenomena have also been demonstrated in other osmotic 
signaling steps (Zonia and Munnik  2004) . During the drought, the detection of the 
cell’s turgor state forms part of a hydraulic signaling pathway that allows for a rapid 
stomatal response in cooperation with the abscisic acid signaling pathway that is 
activated in roots (Comstock  2002) . The tight control over stomatal aperture size 
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depends on osmotically induced rapid shrinking–swelling cycles of guard cells 
(Blatt  2000) . These plasmolytic cycles also involve continuous membrane turnover 
(Shope et al.  2003 ; Meckel et al.  2005) . 

 Changes in hydrostatic pressure across the plasma membrane generate stretch 
and compression forces that induce rapid responses in plant cells. The hydrody-
namic condition of the plant cell and oscillations between different osmotic states 
have recently been postulated to affect cell shape, structure and growth as well as 
vesicle trafficking (Proseus et al.  2000 ; Shope et al.  2003 ; Meckel et al.  2005 ; 
Mathur  2006 ; Proseus and Boyer  2006a , b ; Zon ia et al.  2006) . The cell walls and 
cytosol are highly anisotropic. Inside the cell, organelles and cytoskeleton are 
organized and distributed nonrandomly (e.g., Wojtaszek et al.  2005 ; Chuong et al. 
 2006) . These features allow for a local response to the vector of mechanical force. 
The anisotropic tip growth of pollen tubes and root hairs is strictly controlled by the 
local weakening of cell walls and cortical cytoskeleton arrays (Mathur  2006) . 
Following the appearance of the bulge, tip growth is still maintained due to the 
weaker cortical arrays at the tip than in the distal regions. Modulation of culture 
medium osmolality causes changes in apical volume, cell wall composition and 
expansion, and this affects pollen tube growth rates (Zonia et al.  2002,   2006 ; Zonia 
and Munnik  2004) . The mechanical properties of cell walls can thus be tuned precisely, 
using either enzymatic or nonenzymatic mechanisms, to withstand dynamic changes 
in extra- and intracellular pressure.  

  4.2 Reactions to Touch 

 All plants sense and respond to mechanical perturbations in their environment, such 
as wind, rain, snow and sound waves, as well as to contact with other organisms or 
elements of the physical environment, like soil. These reactions are collectively 
termed touch responses, and are usually divided into thigmotropic or thigmonastic 
reactions, depending on the influence of the stimulus vector on the direction of 
movement. The former usually occur in the direction determined by the arriving 
stimulus, while nastic movements are largely independent of the direction of the 
stimulus. Touch responses can be extremely quick, as in carnivorous plants or 
 Mimosa pudica , or very slow, eventually resulting in changes to the morphology of 
the plant in a process called thigmomorphogenesis (Braam  2005 ; Esmon et al. 
 2005 ; Telewski  2006) . An interesting example is the growth of roots in the soil, as 
it combines responses to both touch and gravity (Fasano et al.  2002 ; see also 
below). Under normal conditions, plant roots grow along the gravitational vector. 
However, when a root approaches an obstacle, it seems that gravitropic behavior is 
compromised and touch responses take place (Okada and Shimura  1990 ; Massa and 
Gilroy  2003) . 

 Although responses of plants to mechanical stimuli are usually observed at an 
organismal level, there are changes at the cellular and subcellular levels that are 
crucial to the selection and modulation of those responses. It has been demonstrated 
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in yeast that cell walls exhibit local temperature-dependent nanomechanical motion 
with an amplitude of ca. 3 nm (Pelling et al.  2004) . If the situation is similar in plant 
cells, this may suggest that touching such an oscillator will immediately induce not 
only a slight perturbation of the surface of the wall but also changes in either the 
frequency or amplitude of the wall’s oscillations. Thus, even a very small stimulus 
could be recognized and transduced into a cellular response. This response can be 
further amplified by the activities of cellular machinery and maintained over time, 
giving rise to all kinds of responses. At the cellular level, touching the cell surface 
induces very rapid changes in both cellular metabolism and intracellular organization, 
like chloroplast movement (Sato et al.  2003)  or nuclear and cytoplasmic migration 
towards the contact site (Hardham et al.  2008) . The cell returns to it previous state 
as soon as stimulus is removed. Examples include the reactions of plant cells to 
physical forces exerted by fungal or oomycete pathogens infecting plant epidermal 
cells. In many cases, fungi use mechanical force to break through the physical barriers 
of plant cell walls, and these attempts can be detected in a mechanosensitive way 
(Gus-Mayer et al. 1998). Such reactions can also be induced experimentally, by 
applying gentle pressure to the epidermal cell surface using a microneedle. 
Interestingly, the changed cell morphology tracks the needle tip as it moves along 
the plant cell surface (Hardham et al.  2008) . 

 Several genes that are upregulated in response to touch stimulation (TCH) 
have been identified and characterized (Braam and Davis  1990) . Interestingly, 
the expression of  TCH  genes is also regulated in response to other environmen-
tal stimuli (reviewed by Braam et al.  1997) , and at least some of them also seem 
to be under the phytohormonal control of, e.g., auxin and brassinosteroids 
(Antosiewicz et al.  1995 ; Xu et al.  1995) . Touch stimulation leads to the rapid and 
transient elevation of [Ca 2+ ] 

cyt
  in plants (Knight et al.  1991) , while the exogenous 

addition of Ca 2+  to suspension-cultured cells upregulates the expression of  TCH  
genes (Braam  1992) . These findings strongly support the idea that Ca 2+  acts as 
a second messenger in touch responses (Braam et al.  1997) , and probably also 
as a stimulus-specific signal that allows touch and gravitational stimulation to 
be discriminated (Legué et al.  1997) . Thus, it is not a surprise to discover that 
three out of four of the initially identified  TCH  genes are in fact calcium-binding 
proteins. TCH1 is a plant calmodulin, while TCH2 and TCH3 belong to a family 
of calmodulin-like proteins that are also able to bind Ca 2+ , but their exact role 
is unknown (Braam et al.  1997 ; McCormack and Braam  2003) . An interesting 
suggestion derives from the finding that TCH3 interacts with PINOID—a serine/
threonine kinase involved in auxin signaling—to regulate its activity in response 
to changes in calcium levels (Benjamins et al.  2003) . Finally, the product of 
 TCH4  is xyloglucan endotransglycosylase/hydrolase (XTH), one of the major 
wall-modifying enzymes. The  TCH4  expression pattern is also touch- and 
Ca 2+ -dependent, and changes in localization are also observed (Xu et al.  1995 ; 
Antosiewicz et al.  1997) . 

 In the years following the description of the  TCH  genes, many other genes were found 
to be induced by touch. Genome-wide analysis of expression patterns in touch-stimulated 
 Arabidopsis  plants revealed that expression of 589 genes was upregulated within 30 min 
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of touch stimulation, while 171 genes were downregulated (Lee et al.  2005) . 
As expected, a relatively high proportion of the upregulated genes coded for proteins 
involved in cellular calcium binding as well as cell wall synthesis and modification. 
Interestingly, among seven genes coding for calmodulins, only  TCH1  was upregulated 
by touch stimulus. Importantly, genes implicated in disease resistance formed the third 
biggest functional group of upregulated genes (Lee et al.  2005) .  

  4.3 Responses to Gravity 

 As mentioned above, gravity is a major relatively constant physical force on Earth 
and is thus considered to be one of the major driving forces in evolution (Volkmann 
and Baluška  2006) . At the organismal level, gravity is the most important integratory 
physical factor, and it is also a source of mechanical stress that must be accommo-
dated (Kern et al.  2005) . Gravity affects plant body architecture via two mechanisms: 
gravitropism and gravity resistance. Gravitropism is the orientation of the growth 
of plant organs along (e.g., roots) or against (e.g., shoots) the gravitational vector 
(Blancaflor and Masson  2003) . On the other hand, gravity resistance comprises there 
are also a set of mechanisms that allow plants to support their own weight, e.g., by 
strengthening their cell walls (Ko et al.  2004 ; Hoson et al.  2005) . Graviperception 
is the first step in a series of events leading to various graviresponses. Its major 
element is a translation of an internal mechanical stimulus, usually caused by the 
displacement of some mass, into biophysical and biochemical signals (Perbal and 
Driss-Ecole  2003) . Although graviperception in plants is now understood in quite some 
detail, the precise mechanisms involved are still a matter of debate. It seems also that 
mechanisms of graviperception utilized in gravitropism and in resistance to gravity 
are at least partially different (Hoson et al.  2005) . 

 Different cells are specialized in order to detect the gravitational vector in 
gravitropism. In roots, these cells are statocytes, which are located in the root-cap 
columella; in hypocotyls, these are dedicated cells within the endodermal cell layer; 
in shoots, they are cells within the bundle sheath parenchyma (Blancaflor et al. 
 1998 ; Fukaki et al.  1998) . Some data indicate, however, that the orientation of the 
gravitational vector can also be perceived outside of those regions (Wolverton et al. 
 2002) . Following transduction, the perceived gravitational signal is transferred 
from the statocytes to the responding tissues (Perbal and Driss-Ecole  2003 ; Perrin 
et al.  2005) . Statocytes are polarized cells containing starch-filled amyloplasts 
(statoliths; Driss-Ecole et al.  2003) . Because they are quite different in density from 
the cytoplasm, statocytes are able to sediment. This notion gave rise to the commonly 
accepted explanation of gravity sensing: the starch–statolith hypothesis, according 
to which the sedimentation of statoliths provides the vectorial information required 
to orient the direction of organ growth (reviewed by, e.g., Sack  1997 ; Blancaflor 
and Masson  2003) . Observations of the gravitropic responses of starch-deficient 
mutants and starch-overproducing mutants as well as experiments utilizing high-
gradient magnetic fields generally support this model (Kuznetsov and Hasenstein 
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 1997 ; Kiss et al.  1997 ; Vitha et al.  2007) . However, some data indicate that 
starch-deficient mutants still exhibit some degree of gravitropic response (Caspar 
and Pickard  1989) . 

 The question how the displacement of starch-filled amyloplasts is sensed in 
statocytes is still debatable. One possibility is that statoliths act as ligands that activate 
receptors located in the cellular membrane system (Braun  2002 ; Limbach et al. 
 2005) . However, not all of the experimental data fit into such a model (Wendt et 
al.  1987) . The sensing of statolith movement by MS ion channels is another 
possibility (Yoder et al.  2001 ; Pickard  2007) . Over the last two decades, various 
MS ion channel activities have been identified in plant membranes (see above). 
It has been shown that gravitational stimulation of roots is correlated with the 
rapid alkalinization of the cytosol and the transient influx of Ca 2+  into proto-
plasts (Fasano et al.  2001 ; Plieth and Trewavas  2002) . The question of how 
statolith movement activates the MS channels remains, however. At the moment 
it appears that the tensegral concept of cellular organization provides the answer, 
and that the mechanical signal is sensed within the WMC continuum (Blancaflor 
 2002 ; Baluška et al.  2003) . The statoliths’ trajectories indicated that they usually 
move along cellular channels located at the interface between the ER-less central 
region and the ER-dense cortical region of columella cells. These regions are 
pervaded by the prestressed actin network, which is denser in the ER-less region. 
Statolith movement can then disturb the mechanical balance of the cytoskeleton, 
and this (through the connection to the plasma membrane) can activate the MS ion 
channels (Yoder et al.  2001) . In accordance with this, pharmacological disruption 
of the microfilaments affects the distribution and sedimentation of amyloplasts 
(Baluška and Hasenstein  1997 ; Palmieri and Kiss  2005) . At the same time, such 
disruption does not usually abolish gravitropic response (Staves et al.  1997 ; 
Yamamoto and Kiss  2002 ; Hou et al.  2004) . This may indicate that other 
cytoskeletal components are also important, and a role for microtubules has 
indeed already been suggested (Himmelspach et al.  1999) . It is also important to 
note that the sedimentation of statoliths is probably not a free, passive precipitation, 
as their positions are precisely controlled by the actomyosin system (Braun et al. 
 2002 ; Wojtaszek et al.  2005) . Finally, the precise spatial organization of the actin 
filaments and the way that they are anchored to the walls via polysaccharides 
and proteins are also important for gravisensing (Wayne et al.  1992 ; Wojtaszek 
et al.  2005,   2007) . 

 Another hypothesis for gravisensing has been proposed by Staves  (1997) . 
The hydrostatic pressure model postulates that what is sensed is not the distur-
bance in the balance of forces within intracellular structures, but rather the difference 
in the tension/compression forces exerted by the entire protoplast between the 
apical and basal sites of attachment to the walls in axial organs (Staves et al. 
 1992) . The tension exerted by an entire protoplast could also locally activate MS 
ion channels (Pickard  2007) , triggering the transduction of the gravitational signal. 
It has also been proposed that such differences can result in a shift in the positions 
of symplastic domains that secrete auxin, resulting in the accumulation of auxin 
at the bottoms of the cells (Friml et al.  2002) . Such a shift could result from 
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differential membrane trafficking in domains subjected to variable tensile forces 
(Morris and Homann  2001) . Finally, the possibility that several gravisensing 
mechanisms operate together cannot be excluded (Barlow  1995 ; LaMotte and 
Pickard  2004) . 

 In contrast to gravitropism, gravity resistance can occur in virtually all cells, so 
there is probably no signal transmission between perceiving and responding cells 
(Hoson et al.  2005) . In this case, gravity produces tensile and compressive forces 
in some regions of the plant body. The gravisensing that occurs in resistance to 
gravity is independent of statolith sedimentation, since mutants that have abolished 
gravitropism and lack sedimentable amyloplasts still exhibit full gravity resistance 
reactions (Tasaka et al.  2001) . Also, the removal of the root cap does not influence 
gravity resistance (Soga et al.  2005a) . On the other hand, MS ion channels have 
been shown to be a crucial element here (Soga et al.  2002,   2005b) , as has the composition 
of the cellular membranes, with sterols being particularly important (Koizumi et al. 
 2007) . Moreover, upregulation of tubulin gene expression is involved in gravity-
induced modification of microtubule dynamics, which may play an important role 
in the resistance of plant organs to gravity (Soga et al.  2006 ; Matsumoto et al. 
 2007) . However, further elaboration of the molecular mechanisms of gravity resistance 
is strongly needed.       
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       Root Behavior in Response to Aluminum 
Toxicity       

     Charlotte   Poschenrieder,         Montse   Amenós   ,    Isabel   Corrales  ,   
   Snezhana   Doncheva   , and    Juan   Barceló       

  Abstract   Roots have an extraordinary capacity for adaptive growth which allows 
them to avoid toxic soil patches or layers and grow into fertile sites. The response 
of roots to aluminum toxicity, a widespread problem in acid soils, is an excellent 
model system for investigating the mechanisms that govern this root behavior. 
In this review, after a short introduction to root growth movement in response to 
chemical factors in the soil, we explore the basic mechanisms of Al-induced inhibition 
of root growth. The actinomyosin network and endocytic vesicle trafficking are 
highlighted as common targets for Al toxicity in cell types with quite different 
origins: root tip transition zone cells, tip-growing cells like root hairs or pollen 
tubes, and astrocytes of the animal or human brain. In the roots of sensitive plants, the 
perception of toxic Al leads to a change in root tip cell patterning. The disturbance 
of polar auxin transport by Al seems to be a major factor in these developmental 
changes. In contrast, Al activates organic acid efflux and the binding of Al in a 
nontoxic form in Al-resistant genotypes.    

  1 Introduction  

 Individual terrestrial higher plants are sessile, living anchored to the substrate by their 
roots. Migration to better, more fertile soil conditions is only possible for their genetic 
information (pollen) or their offspring (seeds), which have different mechanisms of 
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dissemination. Slow movement away from the original placement is also possible as 
clones by vegetative propagation, e.g., through the formation of stolons or rhizomal 
growth (Hart  1990) . 

 Investigations into plant movements have so far mainly focused on aerial plant 
parts. Different mechanisms can be distinguished: those based on turgor changes 
(e.g., nyctinasty and thigmonasty), or those based on differential growth (such as 
phototropism and epinasty). An exception is gravitropism, another growth-based 
movement, which has mainly been investigated in roots. However, bending in 
response to gravitational stimulus is far from being the only movement available to 
roots (Barlow  1994) . Hydrotropism, the directed growth of roots in relation to the 
gradient of soil water potential, is a well-established growth-based movement of 
roots in response to an essential chemical soil factor (water) (Ponce et al.  2008) . 
The availability of other essential nutrients can also induce changes in the orientation 
of root growth in order to improve acquisition. Phosphorus and nitrogen are the 
best-studied examples (Desnos  2008) . The movement of roots into nutrient-rich soil 
patches implies complex morphogenetic events, such as root hair formation, the 
induction of new laterals, or—in certain species—proteoid root formation. These 
trophomorphogenetic responses are controlled directly by the nutrient concentration 
in the external medium or indirectly by the nutrient status of the plant, or by both 
(Forde and Lorenzo  2001) . 

 Avoiding toxic soil conditions by altering root growth patterns is a further 
mechanism that allows plants to move away and try to escape from inadequate 
growth conditions. Two different scenarios can be envisaged: (1) heterogeneous 
soil contamination with small hotspots of high toxicant concentrations embedded 
in less toxic soil, and (2) extended toxic layers in the subsoil. 

 A heterogeneous distribution of potentially toxic concentrations of metal ions is 
frequently observed in soils polluted by mining activities. The observation that less 
Cd was taken up by  Brassica juncea  from soil with a heterogeneous Cd distribution 
than from uniformly polluted soil supports the view that plants are able to sense the 
spot contamination and avoid growth into contaminated sites (Manciulea and 
Ramsey  2006) . Contrastingly,  Thlaspi caerulescens , a metal hyperaccumulating 
species with unusually high Zn requirements (Tolrà et al.  1996) , exhibits zincophilic 
root foraging patterns, i.e., preferential growth into hot spots with high Zn concen-
trations (Haines  2002) . The efficiencies of both avoidance and foraging responses 
seem to depend on the root system size of the species. While a negative correlation 
between species root biomass and precision of placement has been observed in 
foraging studies on nutrient-rich patches (Wijesinghe et al.  2001) , larger root systems 
seem to be more effective at avoiding toxic spots than small ones (Manciuela 
and Ramsey 2006). A well-developed tap root system can also be very useful for 
avoiding the relatively uniform topsoil contamination produced by (for example) 
smelting activities or after years of applying copper sulfate to vines or hopyards. 

 In contrast, subsoil acidity is a typical scenario where the extension of roots into 
the deep soil is hampered by the presence of a layer of soil with high metal 
availability extending from several decimeters below the soil surface. Crop plants 
used in tropical and subtropical agriculture and forest stands affected by natural 
acidification or that due to acid rain are the plants of most concern in this context 


