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Preface

These are the keynote and invited talks of the International Conference on
Fractional Differentiation and its Applications (ICFDA-2018), which was held at
the Amman Marriot Hotel, Sheissani in Amman, The Hashemite Kingdom of
Jordan from July 16 to July 18, 2018. The ICFDA18 is a specialized conference on
fractional-order calculus and its applications. It is a generalization of the
integer-order ones. The fractional-order differentiation of arbitrary orders takes into
account the memory effect of most systems. The order of the derivatives may also
be variable, distributed, or complex. Recently, fractional-order calculus became a
more accurate tool to describe systems in various fields in mathematics, biology,
chemistry, medicine, mechanics, electricity, control theory, economics, and signal
and image processing.

For this edition, we were happy to have 23 invited speakers who gave talks on a
subject for which they are internationally known experts. Thirteen of these talks are
collected in this volume. Throughout this book, the fractional calculus concepts have
been explained very carefully in the simplest possible terms, and illustrated by a
number of complete solved examples. This book contains some theorems and their
proofs.

The book is organized as follows. In chapter “Closed-Form Discretization of
Fractional-Order Differential and Integral Operators”, a closed-form concretization
of fractional-order differential or integral Laplace operators is introduced. The pro-
posed method depends on extracting the necessary phase requirements from the
phase diagram. The magnitude frequency response follows directly due to the
symmetry of the poles and zeros of the finite z-transfer function. Unlike the con-
tinued fraction expansion technique, or the infinite impulse response of second-order
IIR-type filters, the proposed technique generalizes the Tustin operator to derive a
first-, second-, third-, and fourth-order discrete-time operators (DTO) that were
stable and of minimum phase. The proposed method depends only on the order
of the Laplace operator. The resulted discrete-time operators enjoy flat phase
response over a wide range of discrete-time frequency spectrum. The closed-form
DTO enables one to identify the stability regions of fractional-order discrete-time
systems or even to design discrete-time-fractional-order PIkDl controllers.
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The effectiveness of this work was demonstrated via several numerical simulations.
In chapter “On Fractional-Order Characteristics of Vegetable Tissues and Edible
Drinks”, we are concerned about frequency response techniques to characterize
vegetable tissues and edible drinks. In the first phase, the impedance of the distinct
samples is measured and fractional-order models are applied to the resulting data. In
the second phase, hierarchical clustering and multidimensional scaling tools are
adopted for comparing and visualizing the similarities between the specimen.

In chapter “Some Relations Between Bounded Below Elliptic Operators and
Stochastic Analysis”, we apply Malliavin calculus tools to the case of a bounded
below elliptic right-invariant pseudo-differential operators on a Lie group. We give
examples of bounded below pseudo-differential elliptic operators on R

d by using
the theory of the Poisson process and the Garding inequality. In the two cases, there
are no stochastic processes because the considered semi-groups do not preserve
positivity. In chapter “Discrete Geometrical Invariants: How to Differentiate the
Pattern Sequences from the Tested Ones?” based on the new method (defined
below as the discrete geometrical invariants—DGI(s)), one can show that it enables
to differentiate the statistical differences between random sequences that can be
presented in the form of 2D curves. We generalized and considered the
Weierstrass–Mandelbrot function and found the desired invariant of the fourth order
that connects the WM-functions with different fractal dimensions. Besides, we
consider an example based on real experimental data. A high correlation of the
statistically significant parameters of the DGI obtained from the measured data
(associated with reflection optical spectra of olive oil) with the sample temperature
is shown. This new methodology opens wide practical applications in the differ-
entiation of the hidden interconnections between measured by the environment and
external factors.

In chapter “Nonlocal Conditions for Semi-linear Fractional Differential
Equations with Hilfer Derivative”, we study the existence of solutions and some
topological proprieties of solution sets for nonlocal semi-linear fractional differ-
ential equations of Hilfer type in Banach space by using noncompact measure
method in the weighted space of continuous functions. The main result is illustrated
with the aid of an example. In chapter “Offshore Wind System in the Way of
Energy 4.0: Ride Through Fault Aided by Fractional PI Control and VRFB”, we
present a simulation about a study to improve the ability of an offshore wind system
to recover from a fault due to a rectifier converter malfunction. The system com-
prises: a semi-submersible platform; a variable speed wind turbine; a synchronous
generator with permanent magnets; a five-level multiple point diode clamped
converter; a fractional PI controller using the Carlson approximation. Recovery is
improved by shielding the DC link of the converter during the fault using as further
equipment a redox vanadium flow battery, aiding the system operation as desired in
the scope of Energy 4.0. Contributions are given for: (i) the fault influence on
the behavior of voltages and currents in the capacitor bank of the DC link; (ii) the
drivetrain modeling of the floating platform by a three-mass modeling; (iii) the
vanadium flow battery integration in the system.
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In chapter “Soft Numerical Algorithm with Convergence Analysis for Time-
Fractional Partial IDEs Constrained by Neumann Conditions”, a soft numerical
algorithm is proposed and analyzed to fitted analytical solutions of PIDEs with
appropriate initial and Neumann conditions in Sobolev space. Meanwhile, the
solutions are represented in series form with accurately computable components.
By truncating the n-term approximate solutions of analytical solutions, the solution
methodology is discussed for both linear and nonlinear problems based on the
nonhomogeneous term. Analysis of convergence and smoothness is given under
certain assumptions to show the theoretical structures of the method. Dynamic
features of the approximate solutions are studied through an illustrated example.
The yield of numerical results indicates the accuracy, clarity, and effectiveness
of the proposed algorithm as well as provide a proper methodology in handling
such fractional issues. Chapter “Approximation of Fractional-Order Operators”
deals with the several comparisons in the time response and Bode results between
four well-known methods; Oustaloup’s method, Matsuda’s method, AbdelAty’s
method, and El-Khazali’s method are made for the rational approximation of
fractional-order operator (fractional Laplace operator). The various methods along
with their advantages and limitations are described in this chapter. Simulation
results are shown for different orders of the fractional operator. It has been shown in
several numerical examples that the El-Khazali’s method is very successful in
comparison with Oustaloup’s, Matsuda’s, and AbdelAty’s methods.

In chapter “Multistep Approach for Nonlinear Fractional Bloch System Using
Adomian Decomposition Techniques”, we discuss a superb multistep approach,
based on the Adomian decomposition method (ADM), which is successfully
implemented for solving nonlinear fractional Bolch system over a vast interval,
numerically. This approach is demonstrated by studying the dynamical behavior
of the fractional Bolch equations (FBEs) at different values of fractional order a in
the sense of Caputo concept over a sequence of the considerable domain. Further,
the numerical comparison between the proposed approach and implicit Runge–
Kutta method is discussed by providing an illustrated example. The gained results
reveal that the MADM is a systematic technique in obtaining a feasible solution for
many nonlinear systems of fractional order arising in natural sciences.

The chapter “Simulation of the Space–Time-Fractional Ultrasound Waves with
Attenuation in Fractal Media” deals with the simulation of the space–time-fractional
ultrasound waves with attenuation in fractal media. In chapter “Certain Properties of
Konhauser Polynomial via Generalized Mittag-Leffler Function”, we establish
several new properties of generalized Mittag-Leffler function via Konhauser
polynomials. Properties like mixed recurrence relations, differential equations, pure
recurrence relations, finite summation formulae, and Laplace transform have been
obtained. In chapter “An Effective Numerical Technique Based on the Tau Method
for the Eigenvalue Problems”, we consider the (presumably new) effective
numerical scheme based on the Legendre polynomials for approximate solution of
eigenvalue problems. First, a new operational matrix, which can be represented by
sparse matrix is defined by using the Tau method and orthogonal functions. Sparse
data is by nature more compressed and thus require significantly less storage.
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A comparison of the results for some examples reveals that the presented method is
convenient and effective, also we consider the problem of column buckling to show
the validity of the proposed method. Finally, in chapter “On Hermite–Hadamard-
Type Inequalities for Coordinated Convex Mappings Utilizing Generalized
Fractional Integrals”, we obtain the Hermite–Hadamard-type inequalities for
coordinated convex function via generalized fractional integrals, which generalize
some important fractional integrals such as the Riemann–Liouville fractional
integrals, the Hadamard fractional integrals, and Katugampola fractional integrals.
The results given in this chapter provide a generalization of several inequalities
obtained in earlier studies.

Jaipur, India Praveen Agarwal
Ankara, Turkey Dumitru Baleanu
Merced, USA YangQuan Chen
Amman, Jordan Shaher Momani
Porto, Portugal José António Tenreiro Machado
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Closed-Form Discretization of
Fractional-Order Differential
and Integral Operators

Reyad El-Khazali and J. A. Tenreiro Machado

Abstract This paper introduces a closed-form discretization of fractional-order dif-
ferential or integral Laplace operators. The proposed method depends on extracting
the necessary phase requirements from the phase diagram. The magnitude frequency
response follows directly due to the symmetry of the poles and zeros of the finite
z-transfer function. Unlike the continued fraction expansion technique, or the infinite
impulse response of second-order IIR-type filters, the proposed technique general-
izes the Tustin operator to derive a first-, second-, third-, and fourth-order discrete-
time operators (DTO) that are stable and of minimum phase. The proposed method
depends only on the order of the Laplace operator. The resulted discrete-time opera-
tors enjoy flat-phase response over awide range of discrete-time frequency spectrum.
The closed-form DTO enables one to identify the stability regions of fractional-
order discrete-time systems or even to design discrete-time fractional-order P I λDμ

controllers. The effectiveness of this work is demonstrated via several numerical
simulations.

Keywords Fractional calculus · Transfer function · Discrete-time operator ·
Discrete-time integro-differential operators · Frequency response

1 Introduction

Fractional calculus is a generalization of the integer-order one. Most practical sys-
tems exhibit fractional-order dynamics, which could be of real or complex values.
Fractional-order systems enjoy the hereditary effect that is approximated by infinite-
dimensional models [8, 20]. It is used in many fields such as in economy, physics,
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2 R. El-Khazali and J. A. T. Machado

biology, chemistry,medicine, social sciences, and engineering. To analyze fractional-
order systems, one has to look for finite-dimensional and realizable models that
approximate such systems [11, 12, 19, 21–25].

The use ofmicroprocessors nowadays are necessary for signal processing and sys-
tem analysis. Thus, a straightforward method is required to discretize a continuous-
time fractional-order system into a discrete-time one. This can be accomplished by
discretizing the fractional-order Laplacian operator sα and replacing it with a finite-
order DTO. In general, there are two methods that are used to discretize sα; i.e., a
direct and an indirect one. In the indirect discretizationmethod, a rational continuous-
time operator (CTO) is first obtained and then discretized using techniques such as
the bilinear transformation, the Al-Alaoui operator, the Euler’s backward method, or
the stable Simpson’s method [1–3].The direct method, however, allows one to gen-
erate discrete-time operators that converts a continuous-time operator (CTO) into a
DTO [4, 5, 17].

The indirect discretization method is achieved in two steps; the first one is to
approximate the Laplacian operator sα by a rational transfer function in the s-domain,
which is then simplified using the continued fraction expansion (CFE), and the sec-
ond step is to discretize the expanded form using either the bilinear transformation,
Simpson’s method, Euler’s method, or a linear combination of them or other exist-
ing forms [6, 24]. It is important to realize that the CFE method could yield an
unstable non-minimum phase discrete-time operator. An alternative approach to the
CFE was discussed in [19], where infinite impulse response (IIR) autoregressive
moving-average (ARMA) models are used to develop DTO operators, which may
result in developing higher order approximation. Notice that the Al-Alaoui operator
is obtained as a linear combination of the trapezoidal and the rectangular integration
rules [2, 14, 15, 26]. The interpolation and inversion processes may induce, in some
cases, unstable fractional-order operators.

This work introduces a straightforward discretization direct method to discretize
continuous differential and/or integral operators. It can be considered as a dynamic
(or adaptive) discretization technique, where the poles and the zeros of the generated
z-transfer function are all located inside the unit disc and their values depend only on
the fractional-order α. The proposed method yields finite-order DTO that exhibits a
competitive frequency response to higher order operators developed in [2, 6, 16].

The paper is organized as follows. Section2 summarizes some preliminary con-
cepts and background. Section3 introduces the main results of first-, second-, third-,
and fourth-order operators, while Sect. 4 summarizes the numerical simulation and
a comparison between different operators. Section5 outlines the main conclusions.

2 Preliminary Concepts and Background

The general fractional-order differential (integral) operator is denoted by a D±α
t (a I α

t ),
respectively [18], where a and t represent the starting time and α ∈ R is the order
of the operator. For example, if one wishes to implement a discrete-time fractional-
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order controller, then it is necessary to look for a stable non-minimum phase DTO
operator of low order. The design and implementation of fractional-order discrete-
time controllers cannot accommodate higher order operators since this will increase
the complexity of the controlled system, and could yield unstable ones. Therefore, the
proposed technique provides a competitive DTO that benefits from the IIR structure
of such operators; i.e., a second-order DTO is competitive to that of a ninth-order
one introduced in [6, 19, 20].

As mentioned in Sect. 1, the indirect discretization method starts by develop-
ing a rational finite-order transfer functions, that is, s±α ≈ N (s,α)

D(s,α)
[10, 13, 21], and

it is followed by using any existing discretization technique, or a linear combina-
tion of such methods. For example, the Al-Alaoui discrete-time integral operator is
simply a linear interpolation of the backward rectangular rule and the trapezoidal
rule, namely H (z) = aHRect (z) + (1 − a) HTrap (z), where 0 < a < 1 [1–3]. A
similar approach was used to derive a hybrid digital integrator using a linear com-
bination of Trapezoidal and Simpson integrator [6, 10]. Such interpolation reduces
the frequency warping over a limited frequency band, and their phase frequency
response is not constant. For comparison, Fig. 1 displays the frequency response of the
Tustin operator, s = H (z) = 2

T
1−z−1

1+z−1 , Al-Alaoui operator, s = H (z) = 8
7T

1−z−1

1+ 1
7 z

−1 ,

and Chen discrete-time operator [5]. Another discrete-time operator that approx-
imates an integer-order integrator was also introduced in [6] and given here for
completeness:

H (z) = 6
(
z2 − 1

)

T (3 − a) (z + p1) (z + p2)
, (1a)

p1 = 3 + a + 2
√
3a

3 − a
, (1b)

p2 = 3 + a − 2
√
3a

3 − a
, (1c)

where T is the sampling time and 0 < a < 1 is a scaling factor. Equation (1) can
then be used to generate several quadratic forms that discretize s±1.

Figure1 shows the frequency response of the aforementioned three DTO opera-
tors that approximate s1 for T = 0.001. The magnitude response of Tustin operator
exhibits large errors at both ends of the frequency spectrum. The magnitude response
of the Al-Alaoui operator, however, is almost identical to that of the Tustin operator
at low frequency, but provides a better response at high frequency.Moreover, it yields
a linear phase response due to the asymmetric pole-zero location, while the hybrid
ninth-order operator reported in [6] yields a perfect phase behavior. However, one
cannot afford this size of an operator since a discrete-time fractional-order phase-
locked loop, for example, will be modeled by an 18th-order discrete-time z-transfer
function.

Since the goal is to look for a closed-form discrete-time model for s±α , the
direct approach is adopted here to develop a straightforward discretization method.
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Fig. 1 Frequency response of Tustin, Al-Alaoui, and the DTO of Eq. (1) for a = 1

In all direct methods, the continuous frequency operator is replaced by a generat-
ing function, that is, s±α = (

ω
(
z−1

))±α
. To gain more insight, one may start with

the Grünwald–Letnikov (GL) definition of the fractional-order differential (integral)
operator [7, 13, 14, 21, 22]:

aD
±α
t f (t) = lim

h→0

1

h±α

∞∑

j=0

C±α
j f ((t − j) h). (2)

where

C±α
j = (−1) j

(±α

j

)
=

(
1 − 1 ± α

j

)
C±α

j−1, j = 1, . . . , n, (3a)

C±α
0 = 1. (3b)

Taking the Z-transform of (2) and using the short memory principle [14], the
following generating function may discretize s±α:

(
ω

(
z−1

))±α = T∓α

⎛

⎝
[ L
T ]∑

j=0

C±α
j z− j

⎞

⎠ , (4)

where T = h is the sampling time, and L
T = [

nh−a
h

]
is an increasing memory size

L − nh − a.
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Fig. 2 Frequency response of a FIR-type discrete-time differentiator for s0.5 with T = 0.001 s,
and L = 0.011

Equation (4) defines a transfer function of a finite impulse response (FIR) discrete-
time system of s±α . The memory size, L , determines the accuracy of the approxi-
mation. Hence, a compromise has to be made between the accuracy and the size of
the operator. Figure2 shows the frequency response of (4) for α = 0.5, T = 0.001,
and L = 11. Clearly, the phase diagram is close to the expected angle of π

4 over a
very narrow frequency band ω ∈ (0.06, 0.08) rad/s, which may not be suitable for
realization techniques.

Obviously, in spite of its large size, the frequency response of the FIRdiscrete-time
form of Eq. (4) does not provide the expected constant phase response. Therefore,
an alternative discrete-time IIR-type rational z-transfer function, of lower size than
the FIR form, to discretize s±α will be the choice to overcome such problem.

Since, the CFE approach does not always yield a minimum phase and stable
system, or a flat-phase response [2, 6, 7, 11, 13], a compromise has to be made
between the size of the expansion and the type of the generating functions used for
approximation. The following generating functions can be used to discretize s±α and
replace it with DTO operators [5, 6, 14, 17]:

(a) Backward-Euler method:
(
ω

(
z−1

))±α =
(
1−z−1

T

)±α

(b) Trapezoidal (Tustin) discretization rule:
(
ω

(
z−1

))±α =
(

2
T

1−z−1

1+z−1

)±α

(c) Al-Alaoui Operator:
(
ω

(
z−1

))±α =
(

8
7T

1−z−1

1+ 1
7 z

−1

)±α
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(d) A Hybrid interpolation of Simpson and Trapezoidal discrete-time integrators:

H (z) = aHS (z) + (1 − a) HT (z) , 0 < a < 1, (5)

where HS (z) = T
3
1+4z−1+z−2

1−z−2 and HT (z) = T
2
1+z−1

1−z−1 .
The interpolation in (5) represents a generalization of the first three methods.

Since the magnitude frequency response of the integer-order integrator, s−1, lies
between the Simpson rule and that of the Trapezoidal discrete-time integrator [2, 3],
the linear combination in (5) for 0 < a < 1 can be used to generate a typical IIR-type
discrete-time operator as follows [6]:

(
ω

(
z−1

))±α = k0

(
1 − z−2

(
1 + bz−1

)2

)α

, (6)

where α ∈ [0, 1], k0 =
(

6z2
T (3−a)

)α

and b = z2 = 3+a−2
√
3a

3−a .

Several transfer functions of different sizes can be obtained to approximate(
ω

(
z−1

))±α
. For example, when α = 0.5 and T = 0.001, Eq. (6), yields the fol-

lowing z-transfer functions, G(n,a) (z), that discretize s0.5, where n and a represent
the order and the weighting factor of the approximation, respectively [6]:

G(2,0,5)
(
z−1

) = 127 + 41.26z−1 − 112.6z−2

4 + 2.98z−1 − z−2
, (7a)

G(3,0,5)
(
z−1

) = 1501 − 503.6z−1 − 1298z−2 + 446.5z−3

47.26 + 4z−1 − 23.63z−2 − z−3
, (7b)

G(4,0,5)
(
z−1) = 508.1 − 1501z−1 − 4.478z−2 + 1298z−3 − 382.9z−4

16 − 40.54z−1 − 12z−2 + 20.27z−3 + z−4
. (7c)

Figure3 shows the frequency response of (7) for ω ∈ (−π, π). The magnitude
frequency response of the second-order approximation yields a warping effect at
high frequency, while the phase diagram of the three forms exhibit a decreasing
phase value over most of the spectrum.

Remark 1 The approximation given by (7c), reported in [6], represents an unstable
non-minimum phase DTO since it has a pole and a zero outside the unit circle at
p = 2.6298, and z = 2.6328, respectively. Even though p ≈ z, that almost cancel
each other, implementing such an operator would cause system instability. Further-
more, according to [6], one must improve the phase performance of G(4,0,5) (z) by
cascading a causal lead compensator z0.5 = z−0.5

z−1 , which requires the implementation
of a fractional-order sampler.



Closed-Form Discretization of Fractional-Order Differential and Integral Operators 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−150

−100

−50

0

50

Normalized Frequency  (×π rad/sample)

P
h

as
e 

(d
eg

re
es

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

Normalized Frequency  (×π rad/sample)

M
ag

n
it

u
d

e 
(d

B
) 2nd−order

3rd−order
4th−order

Fig. 3 Frequency response of s0.5 using (7a), (7b), (7c)

3 New Fractional-Order Discrete-Time Operators

As discussed in Sect. 2, the discretization technique of generating functions using the
CFE yields high order and an unstable non-minimum phase discrete-time approx-
imation. The aim of this work is to avoid such subtleties by developing an adap-
tive closed-form DTO that effectively discretizes the fractional-order operators, s±α ,
which only depend on its order ±α. Furthermore, one can also define the stability
region of the discrete form of s±α .

3.1 First-Order Operators

The following first-order operator based on a closed-form solution was first intro-
duced in [8, 9]. It represents an approximation of a first-order discrete-time differ-
ential operator (DTDO), where its reciprocal also defines a discrete-time integral
operator (DTIO):

s±α ≈ H1K (z) =
(
2

T

)±α z ∓ z1 (α)

z ∓ p1 (α)
, (8)

where

z1 (α) = −p1 (α) = 1

tan
(
(2 − α) π

4

) , 0 < α < 1, (9)

and where z1 (α) = −p1 (α) ∈ R.
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Obviously, for 0 < α < 1, |z1 (α)| = |p1 (α)| < 1 are located inside the unit
circle.

3.2 Second-Order Operator

The second-order discrete-time operator was also introduced in [8, 9]. It yields a
normalized biquadratic discrete-time transfer function that approximates s±α and is
given by (Fig. 4):

s±α ≈ H2K (z) =
(
2

T

)±α
(z ∓ z1 (α)) (z ∓ z2 (α))

(z ∓ p1 (α)) (z ∓ p2 (α))
, (10)

where

z1 (α) =
η2 − 2 +

√
5η2

2 + 4

2η2
, η2 = tan

(
α

π

4

)
, (11)

and ⎧
⎨

⎩

z2 (α) = z1 (α) − 1
p1 (α) = −z2 (α)

p2 (α) = −z1 (α)

. (12)

Clearly, for large values of α, the first-order DTO yields a competitive frequency
response to that of the second-order DTO as shown in Fig. 5.
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Fig. 4 Frequency response of discrete-time first- and second-order operators for s0.5
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Fig. 5 Frequency response of (8) and (10) for s0.95

3.3 Third-Order Operator

The third-order operator is developed to improve the accuracy of the discrete-time
approximation over a wider frequency range. Similar to (10), the third-order operator
is given by

s±α ≈ H3K (z) =
(
2

T

)±α
(z ∓ z1 (α)) (z ∓ z2 (α)) (z ∓ z3 (α))

(z ∓ p1 (α)) (z ∓ p2 (α)) (z ∓ p3 (α))
, (13)

where ⎧
⎪⎪⎨

⎪⎪⎩

p3 (α) = −z1 (α)

z2 (α) = 1 − z1 (α)

p2 (α) = −z2 (α)

z3 (α) = −p1 (α)

(14)

The pole-zero map of (14) is shown in Fig. 6, which represents a distribution of
alternating real poles and zeros.
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Fig. 6 Pole-zero map of
third-order DTO operator

Due to the symmetry of the poles and zeros and since zi (α) = −pi (α), i =
1, 2, 3, the phase requirement is assumed to meet the phase contribution of the
fractional-order operator at the discrete-time frequency � = α π

2 :

(
ϕz1 + ϕz2 + ϕz3

) − (
ϕp1 + ϕp2 + ϕp3

) = α
π

2
(15)

Substituting (14) into (15) yields

z1 = max
(
roots

(
z21 − z1 + q(α)

))
, (16)

where

q(α) = 2 − α (1 + η3)

1 + η3 (1 − α)
(17)

and
η3 = tan

(
α

π

4

)
. (18)

Hence z1 is found, the rest of poles and zeros are determined from (17) and
(15). For example, for α = 0.5 Eq. (19) gives z1 = 0.8425, z2 = 0.1575, and z3 =
−0.5, while p1 = −z3, p2 = −z2 and p3 = −z1. Therefore, the third-order DTO
that discretizes s0.5 for T = 2 is given by

s0.5 ≈ H3K (z) = z3 − 0.5z2 − 0.3673z + 0.06635

z3 + 0.5z2 − 0.3673z − 0.06635
. (19)
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Fig. 7 Pole-zero map of the
fourth-order DTO operator

Remark 2 When α = 1, then from (17), q(1) = 0, and Eq. (16) reduces to z21 − z1 =
0, which yields a nontrivial solution z1 = 1, and the third-order DTO operator given
by (13) and (14) for this case reduces to the well-known bilinear transformation
H3K = 2

T
1−z−1

1+z−1 .

3.4 Fourth-Order Operator

The fourth-order z-transfer function that discretizes the fractional-order operators is
similarly developed as the previous three operators and given by the following finite
z-transfer function:

s±α ≈ H4K (z) =
(
2

T

)±α
(z ∓ z1 (α)) (z ∓ z2 (α)) (z ∓ z3 (α)) (z ∓ z4 (α))

(z ∓ p1 (α)) (z ∓ p2 (α)) (z ∓ p3 (α)) (z ∓ p4 (α))
,

(20)
where ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p4 (α) = −z1 (α)

p2 (α) = 1 − z1 (α)

z3 (α) = −p2 (α)

z4 (α) = −p1 (α)

p3 (α) = −z2 (α)

(21)

The pole-zero map of (21) is shown in Fig. 7, which also represents a distribution
of alternating real poles and zeros of (20).

The phase contribution of (20) is given by
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(
ϕz1 + ϕz2 + ϕz3 + ϕz4

) − (
ϕp1 + ϕp2 + ϕp3 + ϕp4

) = α
π

2
(22)

Since there is a symmetry between the poles and zeros as depicted in Fig. 7, one
may focus on the phase contribution of the poles and zeros that lie on the positive
real axis. By other words, from the symmetry, and without loss of generality, one
may conclude from (22), that,

(
ϕz1 + ϕz2

) − (
ϕp1 + ϕp2

) = α
π

4
(23)

where

ϕzi = π − arctan

(
1

zi (α)

)
, ϕpi = π − arctan

(
1

pi (α)

)
, i = 1, 2. (24)

Assumption 2 Let p1 (α) and z2 (α) lie in the geometric mean of their adjacent
zeros and poles, respectively,

p1 (α) = √
z1 (α) z2 (α), (25a)

z2 (α) = √
p1 (α) p2 (α). (25b)

Substituting (24) and (25) into (23) yields the following nonlinear function in
z1 (α):

f (z) = ηz41 + 2 (1 − η) z31 − (η + 3) z21 + (2η − 1) z1 + (η + 1)

+ η
[
z

5
3
1 (1 − z1)

1
3 + z

1
3
1 (1 − z1)

5
3 − z

4
3
1 (1 − z1)

2
3 − z

2
3
1 (1 − z1)

4
3

]

+ z
5
3
1 (1 − z1)

4
3 − z

4
3
1 (1 − z1)

5
3 + z

2
3
1 (1 − z1)

1
3 − z

1
3
1 (1 − z1)

2
3 = 0,

(26)

where η = tan
(
α π

4

)
.

Obviously, the nonlinearities in (26) are due to placing the inner pole/zero at
the geometric mean of its surrounding zeros/poles. Solving (26) numerically with
an accuracy | f (z)| < ε, for small ε > 0 yields a desired solution 0 < z1 < 1. For
α = 0.5, the fourth- order operator that discretizes s0.5 is found to be

s0.5 ≈ H4k (z) =
(
2

T

)α z4 − 0.5295z3 − 0.3835z2 + 0.05843z + 0.01218

z4 + 0.5295z3 − 0.3835z2 − 0.05843z + 0.01218
. (27)
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Fig. 8 Frequency response of the second-, third-, and fourth-order operators for α = 0.5, α = 0.7
and α = 0.9
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Fig. 8 (continued)

4 Numerical Simulation

Figure8a–c shows the frequency response of the second-, third-, and the fourth-order
operators forα = 0.5,α = 0.7, andα = 0.9, respectively.As noted, the second-order
operator is a good competitor to the third-order one, especially for α > 0.7, while
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Fig. 9 Frequency response of (27) and (28) for s0.5
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the fourth-order operator exhibits a much better frequency response with a constant
phase at the middle frequency with some overshoot at both ends of the spectrum.

To appreciate the proposed DTO, the frequency response of the second- order
operator described by (10) is compared with other forms of DTO reported in [2, 6].
The case when α = 0.5 for T = 0.001 is taken as a benchmark. Equations (10)–(12)
then yield

s0.5 ≈ 44.7214 − 22.0313z−1 − 8.4670z−2

1.0 + 0.4926z−1 − 0.1893z−2
. (28)

The following ninth-order DTO that discretizes s0.5 using the CFE and reported
in [6] is investigated against the one given by (28)

G9 (z) = 44.72
z9 − 0.5z8 − 2z7 + 0.875z6 + 1.313z5 − 0.4688z4

z9 + 0.5z8 − 2z7 − 0.875z6 + 1.313z5 + 0.4688z4
· · ·

−0.3125z3 + 0.07813z2 + 0.01953z − 0.001953

−0.3125z3 − 0.07813z2 + 0.01953z − 0.001953
. (29)
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Fig. 10 Comparison between the approximations of (27) and (29) for s0.5


