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Foreword

Since its inception in 1981, repetitive control (RC) has become a major chapter of
control theory, with applications as diverse as power supplies, robotic manipulators,
and quadcopters. These may have in common the requirement that the system track
a periodic reference signal or reject a periodic disturbance or do both.

This book, by two well-known control researchers at the Beijing University of
Aeronautics and Astronautics, aims to provide state-of-the-art coverage of RC, with
due attention to theoretical precision combined with a strong emphasis on engi-
neering design. The basic design challenge is to achieve an appropriate trade-off
between the mutually conflicting goals of steady-state tracking accuracy and robust
internal stability.

As their starting point, the authors introduce the familiar internal model principle
of linear regulation, but now for a generic, not necessarily continuous, periodic
reference signal. This infinite-dimensional extension raises new issues of stabiliz-
ability resolved by filtered repetitive control (FRC). FRC lays the groundwork for
an extensive treatment of alternative design approaches to both linear and nonlinear
systems, including the technique (original with the authors) of “additive state
decomposition”.

The book is well suited to a course on engineering design for readers with some
preparation in ordinary differential-delay equations and Lyapunov stability.
I recommend it as a timely and significant contribution to the current literature on RC.

September 2019 W. M. Wonham
Systems Control Group, ECE

Department University of Toronto
Toronto, ON, Canada
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Preface

Repetition is the mother of all learning
—A Latin Phrase

In nature, numerous examples of periodic phenomena are found and observed,
ranging from the orbital motion of celestial bodies to heart rate. In practice, many
control tasks are often of periodic nature as well. Industrial manipulators are often
required to track or reject periodic exogenous signals when performing operations
such as picking, dropping, and painting. Besides, special applications include
magnetic spacecraft attitude control, helicopter vibration active control and vertical
landing on oscillating platform, aircraft power harmonic elimination, satellite for-
mation, LED light tracking, control of hydraulic servo mechanism, and lower limb
exoskeleton control. For these periodic control tasks, repetitive control (RC, or
repetitive controller, also specified RC) enables high-precision control performance.
RC is derived from the internal model principle and contains a special structure
with time-delay components which play the memory role. RC is, at the root, based
on the compensation control or the predictive control that uses the additional
memory. RC was originally developed on continuous single-input, single-output
linear time-invariant (LTI) systems for high-precision tracking of periodic signals
within a known period. Later, RC extended to multiple-input multiple-output LTI
systems. Since then, RC has been propelled to the forefront of research and
development in control theory. However, previous studies focused on theories and
applications that use frequency-domain methods in relation to LTI systems, while
RC for nonlinear systems received limited attention. What is more, RC often faces
robustness problem, including stability robustness against uncertain parameters of
systems and performance robustness against uncertain or time-varying period-time
of external signals. For these problems, filter design with the frequency-domain
analysis is the main tool, which then develops into filtered RCs. But it is difficult to
apply them, if possible, to nonlinear systems. Therefore, we write this book for the
utilization of filtered RC with nonlinear systems.

As an outcome of a course developed at Beihang University (Beijing University
of Aeronautics and Astronautics, BUAA), this book aims at providing more
methods and tools for the students and researchers in the field of RC to explore the
potential of RC. In this book, commonly used methods like the feedback
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linearization method and adaptive-control-like method are summarized and further
modified to be filtered RC. However, feedback linearization or error dynamics
derived is often difficult to perform due to various reasons. To solve this problem,
three new methods parallel to the two methods mentioned above are also proposed:
the additive-state-decomposition-based method, the actuator-focused design
method, and the contraction mapping method. To be specific, an introduction
(Chap. 1) and preliminaries (Chaps. 2–4) are presented in the first four chapters,
where the preliminaries consist of mathematics preliminary (Chap. 2), a brief
introduction to RC for linear systems (Chap. 3), and the robustness problem of RC
system (Chap. 4) that will serve to be an illustration of what RC is and why filtered
RC must be used. After that, this book will give basic but new methods to solve RC
problems for some special nonlinear systems: commonly used methods like lin-
earization method (Chap. 5) and adaptive-control-like method (Chap. 6) will be
summarized. They consist of both previous research findings and authors’ contri-
butions. In addition, three new methods parallel to the two methods men-
tioned above will be proposed: the additive-state-decomposition-based method in
Chaps. 7–8 that will bridge the LTI systems and nonlinear systems so that the linear
RC methods can be used in nonlinear systems; the actuator-focused design method
in Chap. 9 derived from another viewpoint of the internal model principle proposed
by the authors; and the contraction mapping method (Chap. 10) being another
attempt of the authors to solve the RC problems for nonlinear systems without the
need of corresponding Lyapunov functions.

Beijing, China Quan Quan
Kai-Yuan Cai
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Chapter 1
Introduction

There are several examples of periodic phenomena, such as the orbital motion of
heavenly bodies and heartbeats, that can be observed in nature. In practice, many
control tasks are often considered to exhibit periodic behavior. Industrial manipu-
lators are often used to track or reject periodic exogenous signals when performing
picking, placing, or painting operations.Moreover, some special applications of these
periodic exogenous signals include magnetic spacecraft attitude control, active con-
trol of helicopter vibrations, autonomous vertical landing in an oscillating platform,
elimination of harmonics in aircraft power supply, satellite formation, light-emitting
diode tracking, control of hydraulic servomechanisms, and control of lower limb
exoskeletons. High-precision control performance can be realized for such periodic
control tasks using repetitive control (RC, or repetitive controller, which is also desig-
nated as RC). RC was initially developed for continuous single-input, single-output
(SISO) linear time-invariant (LTI) systems in [1] to accurately track periodic sig-
nals with a known period. RC was then extended to multiple-input multiple-output
(MIMO) LTI systems in [2]. Since then, RC has been the subject of increasing atten-
tion, and applications that employ RC have become a special subject of focus in
control theory. Recent developments concerning RC have not been consistent, with
limited research on RC in nonlinear systems. However, the use of frequency-based
methods has significantly aided the development of theories and applications per-
taining to LTI systems. This chapter aims to answer the following question:

What are the challenges in employing repetitive control for nonlinear systems?

To answer this question, it is essential to introduce the basic idea of RC and provide
a brief overview of RC for linear and nonlinear systems. This chapter presents a
revised and extended version of a paper that was published earlier [3].
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2 1 Introduction

1.1 Basic Idea of Repetitive Control

1.1.1 Basic Concept

Before discussing RC, the concept of iterative learning control (ILC, or iterative
learning controller, which is also designated as ILC) must be introduced to avoid
confusion between these two similar control methods.

1.1.1.1 Iterative Learning Control

ILC is used for repetitive tasks with multiple execution times. It focuses on improv-
ing task results by learning from previous executions [4–10]. This control method
performs a repetitive task and can utilize past control (delayed) information for gen-
erating present control action, which makes it different from most existing control
methods. The classic ILC comprises three steps for each trial: (i) storing past control
information; (ii) suspending the plant and resetting to the initial state condition; and
(iii) controlling the plant using stored past control information and current feedback.
For example, a remote pilot practices the take-off movements of a multicopter from
the ground to a predetermined height. During each take-off, the remote pilot observes
the trajectory of the multicopter (first step). If the trajectory is not satisfactory, the
remote pilot will land the multicopter and then start it again by setting the initial rota-
tion speed of the propellers to the previously recorded values (second step). Finally,
the remote pilot adjusts the operation based on previous data. As the pilot continues
to practice, the correct operation is learned and ingrained into the muscle memory
of the pilot so that the skill of the pilot can be improved iteratively, which is the
principle of the ILC learning method.

1.1.1.2 Repetitive Control

RC is used for periodic signal tracking and rejection. It aims to improve task results
by learning from previous executions. RC is a special tracking method intended
for a class of special problems. The classic RC comprises two steps for each trial:
(i) storing past control information and (ii) controlling the plant using stored past
control information (the last trial) and current feedback. For example, a pilot attempts
to land a helicopter on a periodic oscillating deck at sea. Given the periodicity of the
deck, the pilot can adjust his or her operation based on the previous trajectory of the
helicopter, which is the principle of the RC learning method. The most significant
difference between RC and ILC is that during RC, the initial state of the current trial
cannot be reset to the final state of the previous trial. The entire process is continuous
without any interruption at the end of each trial.
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Table 1.1 Comparison between ILC and RC

ILC RC

Desired trajectory yd : [0, T ], yd (0) �= yd (T ) or
yd (0) = yd (T )

yd : [0,∞) , yd (t + T ) = yd (t) , t ≥ 0

Initial condition xk+1 (0) can be reset manually xk+1 (0) = xk (T ) automatically

Controller form uk = uk−1 + L (yk−1 − yd) uk = uk−1 + L (yk−1 − yd)

1.1.1.3 Comparison

Let us consider a class of linear systems as follows:

ẋ (t) = Ax (t) + Bu (t)

y (t) = CTx (t) ,

whereA ∈ R
n×n,B,C ∈ R

n×m,x ∈ R
n, andy (t) ,u (t) ∈ R

m .The control objective
is to design u that enables y to track the desired trajectory yd. For simplicity, resetting
the time is ignored for ILC and the control variable u is defined as

uk (t) � u (kT + t) , t ∈ [0, T ],

where T > 0 denotes the interval time of a trial for ILC and the period for RC,
k = 0, 1, 2, . . .. A comparison is presented in Table1.1, where the two controller
forms are found to be the same but exhibit a major difference in terms of the initial
condition setting.

1.1.2 Internal Model Principle

The basic concept of RC originates from the internal model principle (IMP); this
principle states that if any exogenous signal can be regarded as the output of an
autonomous system, then the inclusion of this signal model, namely, internal model,
in a stable closed-loop system can assure asymptotic tracking and asymptotic rejec-
tion of the signal [11]. If a given signal is composed of a certain number of harmonics,
then a corresponding number of neutrally stable internal models (one for each har-
monic) should be incorporated into the closed-loop based on the IMP to realize
asymptotic tracking and asymptotic rejection. To further explain the IMP, the zero-
pole cancelation viewpoint of the IMP is used to explain the role of the internal
models in step signals, sine signals, and T -periodic signals.
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Fig. 1.1 Step signal tracking

1.1.2.1 Step Signal

It is well known that integral control can track and reject any external step signal;
this can be explained using the IMP given that the models of an integrator and a step
signal are the same, namely, 1/s. Based on the IMP, inclusion of the internal model
1/s into a stable closed-loop system can assure asymptotic tracking and asymptotic
rejection of a step signal.

According to Fig. 1.1, the transfer function from the desired signal to the tracking
error can be written as follows:

e (s) = 1

1 + 1
s G (s)

yd (s) = 1

s + G (s)

(
s
a

s

)

= a

s + G (s)
,

where yd (s) = a/s is the Laplace transformation of a step signal with amplitude
a ∈ R. Therefore, it is sufficient to merely verify whether the roots of the equation
s + G (s) = 0 are all in the left s-plane, which confirms the stability of the closed-
loop system. If all roots are in the left s-plane, then the tracking error tends to zero
as t → ∞. Therefore, the tracking problem is converted into a stability problem of
the closed-loop system.

1.1.2.2 Sine Signal

Suppose that the external signal is in the form a0 sin (ωt + ϕ0), where a0, ϕ0 are
constants, and the Laplace transformation model of a0 sin (ωt + ϕ0) is (b1s + b0) /(
s2 + ω2

)
, where b0, b1 ∈ R. Precise tracking or complete rejection can then be

achieved by incorporating the model 1/
(
s2 + ω2

)
. into the closed-loop system.

Figure1.2 demonstrates that the transfer function from the desired signal to the
tracking error can be expressed as follows:

e (s) = 1

1 + 1
s2+ω2 G (s)

yd (s)

= 1

s2 + ω2 + G (s)

((
s2 + ω2

) b1s + b0
s2 + ω2

)
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Fig. 1.2 Sine signal tracking

= b1s + b0
s2 + ω2 + G (s)

.

Thus, it is adequate to only verify whether the roots of the equation s2 + ω2 +
G (s) = 0 are all in the left s-plane, which confirms the stability of the closed-loop
system. Therefore, the tracking problem is converted into a stability problem of the
closed-loop system.

Based on the IMP, designing a tracking controller for a general periodic signal
is challenging because any periodic signal may be a summation of finite or infinite
harmonicswith period T . The harmonics of a general periodic signalmust first be ana-
lyzed. However, obtaining accurate harmonics is difficult or time-consuming. Sec-
ond, according to the IMP, the controller will contain more neutrally stable internal
models (one for each harmonic) as the number of harmonics increases. For example,
a T -periodic signal consists of harmonics with frequencies 0, 2π/T, . . . , 2πN/T,

where N ∈ Z+. The corresponding internal model can then be written as

IM,fin = 1

s
N∏

k=1

(
1 + T 2s2

4π2k2

) . (1.1)

This will result in an extremely complex controller structure. Moreover, it will be
time-consuming to solve these neutrally stable internal models (differential equa-
tions) to obtain the control output. However, these two drawbacks can be overcome
by using the following internal model for the T -periodic signal.

1.1.2.3 T -Periodic Signal

The Laplace transformation of a signal yd (t) delayed by T is expressed as follows:

L (yd (t − T )) = e−sTL (yd (t)) .

Suppose that the external signal is of the form yd (t) = yd (t − T ), which can repre-
sent any T -periodic signal. Its Laplace transformation is 1/

(
1 − e−sT

)
with an initial

condition on the interval [−T, 0].Based on the IMP, asymptotic tracking and asymp-
totic rejection can be achieved by incorporating the internal model 1/

(
1 − e−sT

)
into
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Fig. 1.3 T -periodic signal tracking

the closed-loop system. The internalmodel for any T -periodic signal can be rewritten
as follows [12]:

IM,inf � 1

1 − e−sT
= lim

N→∞
1

s
N∏

k=1

(
1 + T 2s2

4π2k2

) . (1.2)

This internal model contains the internal models of all harmonics with period T ,
including the step signal. However, it is interesting to note the simple structure of
RC with an infinite number of harmonics. This observation validates the Chinese
proverb that states “things will develop in the opposite direction when they become
extreme.”

Figure1.3 shows that the transfer function from the desired signal to the tracking
error can be written as follows:

e (s) = 1

1 + 1
1−e−sT G (s)

yd (s)

= 1

1 − e−sT + G (s)

((
1 − e−sT

) 1

1 − e−sT

)

= 1

1 − e−sT + G (s)
.

Therefore, it is sufficient to merely verify whether the roots of the equation 1 −
e−sT + G (s) = 0 are all in the left s-plane. Consequently, the tracking problem is
converted into a stability problem of the closed-loop system.

Based on the RC presented in Table1.1, the Laplace transformation of the con-
troller is expressed as follows:

u (s) = 1

1 − e−sT
L (yk−1 (s) − yd (s)) ,

where the internal model of T -periodic signals is also incorporated. A controller that
includes the internal model IM,inf in (1.2) is called an RC, and a system that employs
this controller is called an RC system [2].
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Fig. 1.4 Plug-in RC system diagram

1.2 Brief Overview of Repetitive Control for Linear System

RC is an internalmodel-based controlmethodwhere the infinite-dimensional internal
model IM,inf gives rise to an infinite number of poles on the imaginary axis. [2] proved
that for a class of general linear plants, the exponential stability of RC systems can be
achieved only when the plant is proper, but not strictly proper. Moreover, the system
may be destabilized by the internal model IM,inf . A linear RC system is a neutral-type
system in a critical case [13, 14]. Consider the following simple RC system:

ẋ (t) = −x (t) + u (t)

u (t) = u (t − T ) − x (t) ,

where x (t) , u (t) ∈ R. The RC system expressed above can also be written as a
neutral-type system in a critical case as follows:

ẋ (t) − ẋ (t − T ) = −2x (t) + x (t − T ) .

The above system is a neutral-type system in a critical case [13, 14]. Additional
information is presented in Chap. 3.

To enhance stability, a suitable filter is introduced, as shown in Fig. 1.4, forming
a filtered repetitive controller (FRC, or filtered repetitive control, which is also des-
ignated as FRC) where the loop gain is reduced at high frequencies.1 Stable results
can only be achieved by compromising on high-frequency performance. However,
using an appropriate design, FRC can often achieve an acceptable trade-off between
tracking performance and stability. This trade-off broadens the practical applica-
tions of RC. The plug-in RC system shown in Fig. 1.4 is a widely used structure. The
objective of this structure is to design and optimize the filter Q (s) and compensator
B (s).

Given the developments over the past 30years, it is evident that significant research
efforts have been devoted toward developing theories and applications regarding
RC for linear systems. Additional information on RC for linear systems has been

1In this book, the term “modified” in [2] is replaced with a more descriptive term “filtered”.
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included as part of [6, 10, 15–17] and the references therein. Current researchmainly
focuses on robust RC [18–21], spatial-based RC [22], or a combination of both [24].
Robust RC mainly includes two aspects: robustness against uncertain parameters of
the considered systems [18–20] and robustness against uncertain or time-varying
periods [21, 23–25]. Researchers are currently attempting to design better RCs to
satisfy the increasing practical requirements.

1.3 Repetitive Control for Nonlinear System

For nonlinear systems, the concept of FRC is not difficult to follow because the
relevant theories have been derived in the frequency domain; these can be applied
with difficulty, if at all, only to nonlinear systems. Currently, RCs for nonlinear
systems are designed using two methods, namely, the feedback linearization method
and adaptive-control-like method.

1.3.1 Major Repetitive Controller Design Method

1.3.1.1 Linearization Method

One of the design methods involves transforming a nonlinear system into a linear
system and then applying the existing design methods to the transformed linear
system. Earlier, researchers often considered the following nonlinear system:

ẋ (t) = Ax (t) + Bu (t) + φ (t, x)

y (t) = CTx (t) + Du (t) . (1.3)

Thismethod is related to the early stages of research on nonlinear systems. RC design
is often restricted on the nonlinear term φ (t, x), including Lipschitz conditions [26]
or sector conditions [27, 28]. Along with the development of feedback linearization
and backstepping, RC design for nonlinear systems was further developed [29–33].
Using these new techniques, some nonlinear systems can be transformed into (1.3)
with some restrictions, while some existing designmethods can also be used directly.

Differential geometric techniques are combined with the IMP, resulting in a non-
linear RC strategy. A formulation is presented for the case of input–state linearizable
and input–output linearizable systems in continuous time [29]. Using the input–
output linearized method and the approximate input–output linearized method, the
applicability of the finite-dimensional RC to nonlinear tracking control problems
is investigated for three different classes of nonlinear systems: (1) systems with a
well-defined relative degree, (2) systems without a well-defined relative degree, and
(3) linear plants with small actuator nonlinearity [30]. Using feedback linearization


