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Preface

Pattern recognition is the science that studies the processes of identification, char-
acterization, classification, and reconstruction of sets of objects or phenomena, with
the purpose of extracting information that allows establishing common properties
among them. It has an applied and multidisciplinary character, and it is conformed
to technical sciences, computer science, and mathematics, among others, in order
to develop computational tools and methodologies related to these processes.
The fundamental problems of pattern recognition refer to those related to the
determination of factors that affect objects and their classification, and four types
are considered: (1) selection of variables and objects, (2) supervised classification,
(3) unsupervised classification, and (4) partially supervised classification.

On the other hand, there are different study areas of pattern recognition such as
image processing, signal processing, computer vision, remote sensing, neural net-
works, genetic algorithms, artificial intelligence techniques, descriptive geometry,
mathematical morphology, statistical recognition, structural syntactic recognition,
and combinatorial logical recognition, to name a few. All these can be applied into
biomedical problems.

This volume presents together leading Latin American researchers from five
different countries, namely, Brazil, Chile, Costa Rica, México, and Uruguay, to
present their own work with the perspective to advance their specific fields. It
presents nine chapters regarding different pattern recognition technics applied to
the solution of several biomedical problems featured as follows.

In Chap. 1, Aída Jiménez-González and Norma Castañeda-Villa present two
experiences on the recovery of physiological information from noisy datasets,
applying the method of independent component analysis (ICA).

In Chap. 2, Verónica Jacinto Jiménez et al. describe the identification process of
genomic variants and genetic expression profiles for the diagnostic of diseases using
high-throughput sequencing methodologies.

In Chap. 3, Leticia Vega-Alvarado et al. propose a system for the automatic
detection of the parasite causing Chagas disease in stained blood smears images.
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vi Preface

In Chap. 4, Alfonso Rosales-López and Rosimary Terezinha de Almeida propose
the use of intervention analysis on time series, using the Box and Tiao approach, as
a method for health technology assessment on public health interventions.

In Chap. 5, Millaray Curilem et al. evaluate the possibility of detecting the
presence of nausea in chemotherapy patients by processing the electrogastrogram
signal.

In Chap. 6, Letícia M. Raposo et al. describe the random forest algorithm,
showing an application to predict HIV-1 drug resistance.

In Chap. 7, Luis Jiménez-Ángeles et al. describe an overview of the medical
imaging modalities most frequently used for assessment of the cardiac contraction
pattern.

In Chap. 8, Franco Simini et al. describe two automatic systems related with
home care and personal devices.

In Chap. 9, Tlazohtzin Mora-García et al. propose an evaluation tool based
on multi-criteria decision analysis (MCDA) for the replacement of older medical
equipment installed at hospitals.
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The Classification of Independent
Components for Biomedical Signal
Denoising: Two Case Studies

Aída Jiménez-González and Norma Castañeda-Villa

Abstract This chapter presents two experiences on the recovery of biomedical
signals of interest from noisy datasets, i.e., the extraction of the fetal phono-
cardiogram from the single-channel abdominal phonogram and the recovery of
the Long Latency Auditory Evoked Potential from the multichannel EEG (in
children with a cochlear implant). These by implementing denoising strategies
based on (1) the separation of components statistically independent by using
Independent Component Analysis (ICA) and, of especial interest in this chapter, (2)
the classification of the components of interest by taking advantage of properties
such as temporal structure, frequency content, or temporal and spatial location.
Results of these two case studies are presented on real datasets, where either focused
(1) on rhythmic physiological events such as the fetal heart sounds or (2) on spatially
localized events like the cochlear implant artifact, the classification stage has been
fundamental on the performance of the denoising process and thus, on the quality
of the retrieved signals.

Keywords Blind source separation · Cochlear implant artifact · Fetal heart rate ·
Independent component analysis · TDSep

1 Introduction

During the last three decades, Independent Component Analysis (ICA) has been
recognized as a powerful solution to the matter of revealing the driving forces that
underlie a set of observed phenomena [1–3]. Particularly, ICA has been important in
the field of biomedical signal processing, where the recovery of very low-amplitude
signals from a set of mixtures has posed a challenge that traditional approaches
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like digital filtering do not manage to solve. This has been possible because of the
development of multiple and efficient implementations of ICA that make it suitable
to separate data that used to be thought as too difficult to process [4–8]. As a result,
ICA has been successfully used for the extraction of information of interest from
electroencephalographic [5, 9, 10], electrocardiographic [9, 11], and, more recently,
electromyographic [12], magnetocardiographic [13, 14], magnetoencephalographic
[15, 16], and phonographic recordings [17–20].

Results have been promising and have motivated further research into the
development of new ICA algorithms and methodologies for performance evaluation
that, while paying attention on high-quality separation (and evaluation) of the inde-
pendent components (ICs) finally recovered, leave the researcher the responsibility
of giving physical (or physiological) sense to them and thus to identify and select the
components of interest. The task may sound easy at first, but due to the typical high
dimensionality of the datasets (e.g., 7, 16, 19, 30, 36, 49, 50, 55, 64, 68, 128, or 130
channels and different recording lengths) and the usually unknown characteristics
of the undesirable sources (both physiological and nonphysiological), it requires
objective and, if possible, automatic alternatives that ease what we will refer to as
the third step of the procedure for denoising biomedical signals by means of ICA,
i.e., the classification of the ICs.

At present, different strategies have been presented in the literature, all dependent
on the dataset and, certainly, on the experience of the authors, which illustrates the
challenge behind the classification task for biomedical signal denoising. Here, we
present our experience on two different sceneries: the extraction of the fetal heart
sounds from the single-channel abdominal phonogram (i.e., by classifying rhythmic
ICs associated to the fetal cardiac activity) and the elimination of the cochlear
implant (CI) artifact from the multichannel EEG (i.e., by classifying independent
components with artifactual activity synchronized with the acoustic stimulus and
spatially located close to the cochlear implant position). To this end, this chapter
is organized as follows: Section 2 presents the theoretical background of ICA,
while Sects. 3 and 4, respectively, detail the sceneries for denoising the abdominal
phonogram and the EEG along with their results and discussion. Finally, Sect. 5
presents our final remarks.

2 Independent Component Analysis

ICA is a statistical algorithm whose aim is to represent a set of mixed signals as
a linear combination of statistically independent sources. This technique estimates
ICs, denoted by ŝ(t), from a group of observations, x(t), which are considered as
linear and instantaneous mixtures of unknown sources, s(t) [21]. The statement
that in a biomedical signal different sensors/electrodes receive different mixtures
of the sources is exploited by ICA, that is, spatial diversity. Spatial diversity means
that ICA looks for structures across the sensors and not (necessarily) across time.
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ICA identifies the probability distribution of the measurements, given a sample
distribution [22].

In the most simplistic formulation of the ICA problem (noise-free), p measured
signals x(t) are a linear mixture of unknown but statistically independent q sources
s(t); each source has moments of any order, zero mean, and p ≥ q. Then, the ICA
model is as follows:

x(t) = A s(t), (1)

where the square mixing matrix A is also unknown but invertible, x(t) = [x1, x2, . . . ,
xp]T and s(t) = [s1, s2, . . . , sq]T . ICA calculates the demixing matrix, W = A−1,
from the observations x(t) and estimates the original sources by a linear transform:

ŝ(t) = W x(t), (2)

where W is found by maximizing the statistical independence of the output
components [23].

Currently, depending on the method used to seek statistical independence (i.e.,
higher-order statistics or time-structure-based algorithms), different ICA implemen-
tations have been developed. Among the wide range of ICA algorithms, three are
frequently used in the field of biomedical signal processing: FastICA [24], Infomax
[25, 26], and Temporal Decorrelation Source Separation (TDSep) [27]. The theory
behind these three ICA algorithms will be explained in the next sections, all of them
share steps (a) and (b) as the initial stage:

(a) Centering: Subtract the mean of the mixtures, which simplifies the ICA
algorithm x(t) = x(t) − E{x(t)}, where E{x(t)} is the mean vector of the
measurements; when the algorithm is finished, the mean vector is added back.

(b) Whitening or sphering: In this preprocessing step, the covariance matrix is
calculated as Rxx = E{x(t)xT (t)}, and then, an eigenvalue decomposition is
performed on it; the decomposition is given by R = E�ET , where E is the
orthonormal matrix of eigenvectors of R, and � is the diagonal matrix of
eigenvalues. Transforming the covariance matrix into an identity matrix, a
whitening M matrix is calculated as M = (�1/2ET )−1. This is also known as a
principal component decomposition.

2.1 FastICA

This is a computationally efficient algorithm that uses simple estimators of negative
entropy, J(y), to search a W matrix that, when applied to mixtures, maximizes this
property in the resulting components, thus allowing the estimation of sources with
non-Gaussian probability distributions [28, 29]. It estimates ICs by following either
the deflation approach (Defl), where the components are extracted one by one, or the
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symmetric approach (Sym), where the components are simultaneously extracted.
The negative entropy is defined as follows:

J (w) =
[
E

{
G

(
wT v

)}
− E {G(v)}

]2
, (3)

where w is an m-dimensional vector such as E{(wTv)2} = 1, v is a Gaussian variable
with zero mean and unit variance, and G is a nonquadratic cost function, e.g., tanh
or y3. The problem is now reduced to find a transformation W whose vectors, w,
are iteratively adjusted to maximize J which is equivalent to reduce the mutual
information (MI); this is performed by a fixed-point algorithm. From choosing an
initial weight vector w, the algorithm calculates the direction of w maximizing
the non-Gaussianity of the projection wTx (linear combination of the measured
signals). Since the signal is already whitened, to make the variance of wTx unity, it
is sufficient to constrain the norm of the pseudo-inverse of the initial weight vector
w+, to be unity, w = w+/‖w+‖; if the old and new values of w do not point in the
same direction, the algorithm recalculates the direction of w. Finally, the demixing
matrix is given by W = wTM and the estimations ŝ(t) by Eq. 2.

2.2 Infomax and Ext-Infomax

Described by Bell and Sejnowski [25], Infomax is an ICA algorithm which uses the
mutual information between the estimated sources as a criterion of the minimization
of independence, with which the joint negative entropy is maximized. The demixing
matrix W, which is found using stochastic gradient ascent, maximizes the entropy
of an input vector xG, linearly transformed u = WxG, and sigmoidally compressed
y = g(u). Then, W performs component separation while the nonlinear g(.) provides
the necessary high-order statistic information, g(ui) = (1 + exp (−ui))−1. This
gives an update rule ûi = 1−2ui . Infomax is able to decompose signals into ICs with
sub- and super-Gaussian distributions in its extended version. The original learning
rule for super-Gaussian distributions is as follows:

ΔW ∝
[
I − tan h (u) uT − uuT

]
W, (4)

where I is the identity matrix, and u are the estimated sources. The extended learning
rule (Ext-Infomax) [26] for sub-Gaussian distributions is as follows:

ΔW ∝
[
I − Λ tan h (u) uT − uuT

]
W. (5)

The algorithm switches between two learning rules: one for sub-Gaussian and
one for super-Gaussian sources. � is a diagonal matrix which includes the switching
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criterion between the two learning rules: �i j = 1 for super-Gaussian and −1 for
sub-Gaussian. Finally, the estimated sources ŝ(t) are computed by Eq. 2.

2.3 TDSep

The Temporal Decorrelation Source Separation (TDSep) algorithm [27] takes
into account the temporal structure of the signals. TDSep uses several time-
delayed second-order correlation matrices for source separation. JADE and TDSep
determinate the mixing matrix based on a joint approximate diagonalization of
symmetric matrices; the principal difference between these two algorithms is that
JADE maximizes the kurtosis of the signals, while TDSep minimizes temporal
cross-correlation between the signals [30].

TDSep could be summarized as follows: firstly, Ziehe and Müller define a
cost function based on a certain time lag τ and a time average that measure
the correlation between the signals; after whitening, this cost function imposes
decorrelation over time. After that, they propose an alternative technique for the
joint diagonalization using a rotation [31]. In the rotation step, the cost function can
be minimized by approximate simultaneous diagonalization of several correlation
matrices through several elementary JACOBI rotations [22] to obtain the so-called
rotation matrix, Q.

TDSep computes those matrices relying only on second-order statistics and
diagonalizes the covariance matrices Rxx for a time lag τ = 0 and at the same
time diagonalizes the covariance matrix for a given delay Rxτ = E{x(t)x(t − τ )T}.
The source covariance matrix Rsτ is diagonal for all time lags τ = 0, 1, 2,
. . . , N−1 as Rsτ = WRxτ WT , where Rxτ is the signal covariance matrix. This
algorithm determines the mixing matrix based on a joint approximate digitalization
of symmetric matrices. Finally, using the whitening matrix M and the rotation
matrix Q, an estimate of the mixing matrix can be calculated as follows:

Â = M−1Q, (6)

and the estimations ŝ(t) by Eq. 2.

3 Case Study I: Denoising the Abdominal Phonogram

This first case describes a methodology for the recovery of the fetal heart sounds
(i.e., the fetal phonocardiogram, FPCG) from the single-channel abdominal phono-
gram, which has been implemented by using a denoising strategy based on what has
been referred to as single-channel ICA (SCICA) [17, 20, 32].
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Fig. 1 Distortion of the FPCG by physiological and nonphysiological sources during the abdomi-
nal recording. The FPCG corresponds to the acoustic vibrations produced by the fetal heart, where
the two main heart sounds (S1 and S2) are indicated. The abdominal phonogram, which is recorded
by a microphone positioned on the maternal womb, is a mixture of multiple sources, where the fetal
information is hardly noticed

3.1 The Problem Definition

During the last two decades, fetal examination by passive detection of cardiac
vibrations has regained attention [17, 33–38]. The technique is performed by posi-
tioning a sensitive acoustic sensor on the maternal womb to record the abdominal
phonogram, a signal that is rich in information for well-being assessment (i.e., it
contains the two main fetal heart sounds S1 and S2, which can be used to estimate
the heart rate and the heart valve condition) but highly attenuated by the amniotic
fluid and abdominal tissues and, consequently, highly immersed (both temporally
and spectrally) in maternal and environmental sources whose characteristics turn the
recovery of fetal information into a challenging task. Fig. 1 illustrates the acoustic
vibrations produced by the beating fetal heart (i.e., the FPCG, as a free of noise
trace where the two main heart sounds, S1 and S2, can be detected) and the acoustic
vibrations actually recorded at the surface of the maternal womb (i.e., the abdominal
phonogram, where the fetal information is hard to observe).

In our work, as an alternative to the rigid approach given by traditional
digital filtering schemes (which assume that the FPCG spectrum does not change,
independently on the fetal age, heart rate, or condition), we have studied a data-
driven strategy that, by taking advantage of the rich time-structure in the abdominal
phonogram, adapts itself to each dataset to extract the fetal heart sounds from the
abdominal phonogram (i.e., the FPCG) [17]. This approach, known as SCICA, has
been applied to a set of 25 noisy single-channel abdominal phonograms. This first
case study will describe such a dataset in Sect. 3.2, detail the implementation of
SCICA for denoising purposes in Sect. 3.3, present our findings in Sect. 3.4, and,
finally, a brief Discussion in Sect. 3.5.
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Fig. 2 Time (left-hand side) and frequency (right-hand side) representations of three abdominal
phonograms in the dataset. (Modified from [39])

3.2 A Dataset of Single-Channel Abdominal Phonograms

The dataset is composed of 25 single-channel recordings that were digitized at a
sampling frequency of 500 Hz during 3 or 5 minutes (MP100, Biopac Systems™).
The data was obtained from 18 pregnant women (24 ± 3 years old and fetal
gestational ages between 29 and 40 weeks, who provided their informed consent
to participate in the study) by using a PCG piezoelectric transducer (TK-701T,
Nihon Kohden™) connected to a general purpose amplifier (DA100, Biopac Sys-
tems™). Additionally, as a reference signal, the abdominal ECG was simultaneously
recorded. Figure 2 presents segments (10 s length) of three abdominal phonograms
in the dataset and their frequency content, where the signals clearly show a slow
component along with some quasiperiodic peaks (indicated by downward arrows),
but without any clear evidence of the FPCG.

3.3 Single-Channel ICA (SCICA)

The implementation of SCICA requires three stages [17, 32]: a preprocessing stage
that projects the single-channel abdominal phonogram into a higher dimensional
space, a processing stage that transforms such a multichannel representation into
a set of multiple ICs, and, finally, a postprocessing stage that, in this case study,
automatically classifies the rhythmic ICs corresponding to the fetal cardiac activity
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Fig. 3 Denoising procedure to extract the FPCG from the abdominal phonogram by using SCICA

and, thus, makes it possible to estimate the source of interest, i.e., the FPCG. These
three stages are illustrated in Fig. 3 and described in Sects. 3.3.1, 3.3.2 and 3.3.3,
respectively.

3.3.1 Mapping a Single-Channel Signal into a Multidimensional
Representation

This first stage is implemented by using the method of delays (MD or dynam-
ical embedding), which makes it possible to project an NT-scalar time series
{xi}i=1,...,NT

into a multichannel representation of the data [40]. This new represen-
tation, also known as the matrix of delays (V), is built up by taking consecutive delay
vectors of length m as vk = {xk, xk + 1, . . . , xk + m−1}k = 1, . . . ,N and by using them
as column vectors in the m-dimensional matrix V = [

vT
1 , vT

2 , . . . , vT
N

]
. There, N

corresponds to the number of delay vectors (N = NT − (m − 1)), and m corresponds
to the embedding dimension (m ≥ fs/fl), where fs is the sampling frequency (i.e.,
fs = 500 Hz) and fl is the lowest frequency component of interest in xi.

In our work, by considering that the component with the lowest frequency in
the FPCG is 10 Hz [41, 42], the value used for m has been 50. Regarding N, we
empirically found that NT = 5000 samples (i.e., 10 s) was good enough to ensure
that the matrix of delays covered a quasi-stationary signal and then that ICA would
converge. Thus, by using these parameters, we are certain that the multidimensional
representation V (m × N) is rich in temporal information about the fetal cardiac
activity and, most importantly, that it is ready to be spanned by a convenient basis
such as ICA.

3.3.2 Extraction of Multiple Independent Components

As mentioned in Sect. 2, a number of ICA implementations is currently available,
and since the key point in each algorithm is the method used to numerically
calculate statistical independence (e.g., higher-order statistics or time-structure-
based algorithms), their performance on the ICs estimation will be different. In
our research [19], we have studied two ICA implementations and found that the
underlying components in the abdominal phonogram are better recovered by using
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the Temporal Decorrelation Separation approach of TDSep [27] rather than by using
the approach of FastICA [43].

In general words, the implementation of TDSep (1) defines independence
by the absence of cross-correlations among the underlying components and (2)
assumes that such components possess some temporal structure that, consequently,
produce diagonal time-delayed correlation matrices, RV

τ . Hence, TDSep analyzes
the dependency structure of the multichannel representation, V, by creating a set of
square matrices and then by finding the joint diagonalizer of that set, which turns
out to be the mixing matrix (Â) mentioned in Eq. 6. To this end, TDSEP calculates
a set of time-lagged correlation matrices of V by RV

τ = E {V [n] V [n + τ ]}, where
E represents expectation and τ (= 0, 1, 2, . . . , k) is the time lag. Then, since for
independent components these matrices have to be diagonal, TDSep performs a
joint diagonalization of RV

τ to estimate A. Finally, after calculating W (which is the
inverse of A), it is possible to substitute it in Eq. 2 to estimate the constituent ICs in
our matrix of delays V.

In our research, knowing that the value of k defines the number of time lags and
the quality of the separate ICs, we tested different k values and found that, in our
dataset of abdominal phonograms, a value of k = 1 makes is possible to consistently
process V and estimate the constituent ICs. As a result, TDSep estimates m ICs
whose typical spectra are given by a well-defined single peak [19]. These ICs must
be further analyzed to complete the denoising process as detailed in Sect. 3.3.3.

3.3.3 Automatic Classification of Fetal Independent Components

According to [32], when applying ICA to the matrix of delays V, some of the
estimate ICs will belong to the same independent process, which in our case can be
described as either physiological or nonphysiological (e.g., the fetal cardiac activity,
the maternal cardiac activity or line noise). Here, since we are only interested in
retrieving the fetal cardiac information in the form of the FPCG, the denoising
process will require identifying and grouping the ICs corresponding to the fetal
subspace while discarding the others.

Before describing the classification process in this final stage of SCICA, it
is imperative to mention two fundamental and consistent characteristics of the
ICs recovered from the abdominal phonograms by TDSep; they are rhythmic
and spectrally band-limited components as mentioned in [19, 44] and studied in
[45]. These two characteristics are essential for this section, which describes a
methodology for the automatic classification of the fetal cardiac ICs by using a
couple of spectral features that are relatively easy to calculate, i.e., their rhythmicity
and spectral content [20, 44, 45].

The procedure for this stage is conducted in four steps as follows:

(a) Projecting ICs back to the measurement space [17]: In this step, each IC is
processed by Yi = aic

T
i , with ai as the ith-column in the mixing matrix A

(obtained by TDSep), ci as the ith-IC, and Yi as the resulting matrix of delays
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for that IC (i = 1, 2, . . . , 50). Next, Yi is hankelized to produce the ith-projected
IC (ICi

p), by CIip = 1
50

∑50
k=1 Yi

k,(t+k−1), where t = 1, 2, . . . , N [46].
(b) Calculating spectral features: This step quantifies the rhythmicity and fre-

quency content of each ICi
p as illustrated in Fig. 4 and described in the next

paragraphs.

(i) Frequency content of an ICi
p (SI): This index is used as an indicator of

the spectral content of the ICi
p under analysis and is calculated using the

Welch’s method, with a Hanning window of 32 samples and an overlap
of 50%. Then, from the characteristic band-limited spectrum obtained, Ŝx,
the frequency of its peak is taken as the index that represents the frequency
content, SI . Figure 4 presents an example of the SI calculation for IC45

p (one
of the independent components presented in Sect. 3.4). The resulting trace,
as can be observed, is band-limited and presents a well-defined single peak
that is centered at SI = 27 Hz.

(ii) Rhythmicity of an ICi
p (R): This index is used as an indicator of the

physiological generator driving the ICi
p. As illustrated in Fig. 4, the

calculation of R starts by generating a normalized envelope of the ICi
p using

the Hilbert transform. Next, the envelope autocorrelogram is generated
and band-pass filtered from 0.7 to 3.1 Hz by a 10-order FIR filter (to
reduce contributions from the maternal respiratory rhythm and from the
harmonics of the maternal and fetal cardiac rhythms, respectively). Then,
the filtered autocorrelogram is transformed into the frequency domain using
the Welch’s periodogram, with a Hanning window of 2018 samples and
50% overlap (which contains an average of eight fetal heart beats). Finally,
from the resulting autospectrum, Ŝxx, the frequency of the largest peak is
used as the rhythmicity indicator, R. Figure 4 presents an example of the
R calculation for IC45

p . The resulting trace, as can be observed, presents a
single rhythm that is centered at R = 2.3 Hz.

(c) Selecting fetal components: This third step starts by verifying whether the
indexes R and SI are between 1.7 and 3.0 Hz for the former and between
19.0 and 44.5 Hz for the latter, which are the intervals that our research has
empirically identified as typical for the ICi

ps corresponding to the fetal cardiac

process [44, 45]. In those cases where R and SI disagree on the ICi
p category, the

SI value has the highest priority, which means that, if SI is in the fetal interval,
then the component is classified as fetal cardiac without any further analysis.
Alternatively, whenever both indexes R and SI point at the component as a fetal
ICi

p, it is further analyzed to verify its stability (P) and identify if it is driven
by a single biological rhythm (i.e., the fetal heart rate) or if it is contaminated
by a second one (typically the maternal heart rate). Then, if the ICi

p is found
to be a stable component, it is classified as a fetal cardiac component. On
the contrary, in those cases where the ICi

p is found to be contaminated by a
second biological rhythm (which happens to be the cardiac maternal rhythm),
it is further analyzed to establish the level of contamination, and only the
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Fig. 4 Calculation of two spectral indexes (rhythmicity (R) and frequency content (SI)) for
automatic classification of the fetal cardiac components extracted by SCICA

Fig. 5 Procedure for the identification and automatic classification of fetal cardiac components
and construction of the FPCG trace in the third stage of SCICA

components where the contribution of the second rhythm is not important are
classified as fetal cardiac components. This is done by calculating two Pearson’s
coefficients, one between the autocorrelogram and a sinusoid oscillating at
the fetal heart rate and another between the autocorrelogram and a sinusoid
oscillating at the maternal heart rate. Next, if the former Pearson’s coefficient
is larger than the latter (and SI indicates that the component belongs to the
fetal cardiac group), it is classified as fetal cardiac. Details of the complete
version of this algorithm can be found in [20, 44], along with an evaluation
of its performance. In this chapter, we are only describing the procedure that
makes it suitable to classify the components that are more likely to belong to
the fetal cardiac group.

(d) Constructing the FPCG: In this final step, the classified fetal cardiac ICps are
summed for the construction of the FPCG trace as FPCG = ∑

fetal ICps [17].

Figure 5 presents the four steps followed in our methodology for classifying fetal
ICps and constructing the trace corresponding to the FPCG.
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3.4 Results

Figure 6 depicts the time and frequency representations of a 10 s segment of a noisy
abdominal phonogram of subject 1 (40 weeks of gestational age) and 10 ICps (out
of 50) separated and classified by our methodology for denoising the abdominal
phonogram. From the abdominal phonogram, in the time domain, it is possible to
distinguish a low-frequency component (with large amplitude between ±2 V) and
some peaks (indicated by upward arrows), but without any clear evidence of the fetal
cardiac activity (i.e., the Fetal Heart Sounds (FHS)). In the frequency domain, the
spectrum indicates that most of its power is concentrated below 75 Hz (> −30 dB),
and the autospectrum indicates that four rhythms are present, with the strongest
rhythm centered at 1.3 Hz.

Regarding the ICps, their frequency representations, as mentioned in Sect. 3.3.3,
can be described as consistently given by (1) band-limited power spectra (i.e., a
single-peak spectra) and (2) well-defined autospectra centered at a single dominant
biological rhythm (below 4 Hz). These two characteristics made it possible for
SCICA to automatically classify five of them as belonging to the fetal cardiac
process (IC42

p, IC43
p, IC44

p, IC45
p, and IC46

p). Such components, in the time
domain, showed periodic activity almost every 0.45 s and appeared very clean
(except for some disturbances indicated by a downward arrow), whereas in the
frequency domain presented a power spectrum centered between 39 Hz (IC42

p)
and 21 Hz (IC46

p), all of them with a rhythm centered at 2.3 Hz. The remaining
components, IC41

p, IC47
p, IC48

p, IC49
p, and IC50, although also depicted temporal

structure (clearly indicated by the upward arrows in IC49
p) and band-limited spectra,

do not belong to the fetal cardiac process of interest in this study and, thus, were
discarded during the classification stage as part of the denoising strategy followed by
SCICA. At the end, as can be seen, among the 50 ICps extracted from this segment
of abdominal phonogram in the second stage of SCICA, only five components
were used to construct the trace corresponding to the fetal cardiac activity, i.e.,
the FPCG. This example illustrates one of the best cases, where the separate ICps
were driven by a single biological rhythm (observed in both the temporal structure
and autospectrum) that, detected by a “relatively” easy set of rules, successfully
classified the fetal components of interest.

Figure 7 illustrates the time and frequency representations of a 10 s segment
of a noisy abdominal phonogram of subject 1 (40 weeks of gestational age) and
its denoised version (i.e., the FPCG with its two main heart sounds, S1 and S2)
generated by SCICA. Complementary, as a reference signal, the abdominal ECG is
included. The abdominal phonogram, as can be seen, is a noisy trace composed of
different sources that unease the identification of the fetal information in both time
and frequency domains. On the contrary, the denoised trace produced by SCICA
(i.e., the FPCG) shows periodic activity at about every 0.45 s with amplitude of
±1 V. In addition, such activity is temporally aligned with the fetal QRS complex
in the abdominal ECG (indicated by a dotted vertical line), which confirms that this
trace actually corresponds to the FPCG (where the two main heart sounds, S1 and
S2, can be seen). Also, the time series shows that S1 has the highest amplitude and


