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PREFACE 

T 
he research field of poly(ADP-ribosyl)ation, which originated in 
the mid-1960s as an extremely narrow focus of interest for 
polynucleotide biochemists, has remained a rather stable field for 

a long time in terms of scientific orientation and researchers involved. 
Starting from the late 1980s, however, the scene has witnessed a tremen- 
dous influx of new people, fresh ideas and novel techniques, which l e d ~  
especially over the last five years~to a breathtaking expansion of the field 
with regards to breadth and depth of scientific information available. What 
began as a peculiar posttranslational modification somehow associated 
with DNA repair has now invaded almost all sub-disciplines of biology 
and has also gained substantial interest by medical researchers and phar- 
maceutical companies, as there is a wide range of pathophysiological con- 
ditions linked with poly(ADP-ribosyl)ation. 

The last comprehensive monograph on this topic was edited by 
Gilbert de Murcia and Sidney Shall in 2000, and therefore the demand for 
a fresh summary of the state-of-the-art is obvious, despite the recent 
creation of very helpful web resources, such as the "PARP Link" (http:// 
parplink.u-strasbg.fr/index.html). 

I should like to thank Landes Bioscience for the invitation to edit a 
monograph on this topic and all the contributors for their enthusiasm and 
compliance during the writing phase. May the 19 chapters collated in this 
book, covering many, but by no means all, aspects ofpoly(ADP-ribosyl)ation, 
be an useful update for the expert and may they provide, to the non-expert, 
enlightenment about this complex, highly dynamic and fascinating field! 

Alexander Bark& M.D. 



CHAPTER 1 

Enzymes in P01y(ADP-Ribose) Metabolism 
Ralph G. Meyer, Mirella L. Meyer-Ficca, Elaine L. Jacobson 
and Myron K. Jacobson 

Abstract 

S 
tudies over many years have revealed the central importance of poly(ADP-ribose) 
metabolism in the maintenance of genomic integrity. While the involvement of 
poly(ADP-ribose) polymerase- 1 (PARP- 1) in this metabolism has been long known, more 

recent studies have demonstrated the contribution of many different genes coding for PARPs 
to promoting cellular recovery from genotoxic stress, eliminating badly damaged cells from the 
organism, and ensuring accurate transmission of genetic information during cell division. 
Additionally, emerging information suggests the involvement of ADP-ribose polymer metabo- 
lism in the regulation of intracellular trafficking, memory formation and other cellular func- 
tions. This chapter reviews the chemistry of ADP-ribose polymer metabolism and the enzymes 
that catalyze the synthesis and turnover of poly(ADP-ribose). 

Overview of the Enzymes of Poly(ADP-Ribose) Metabolism 
The metabolism ofADP-ribose (ADPR) polymers represents a reversible protein modifica- 

tion whose basic enzymology is depicted in Figure 1. The oxidized form of nicotinamide ad- 
enine dinucleotide (NAD+) is the substrate for polymer synthesis in reactions in which the 
glycosylic linkage between nicotinamide and ribose is cleaved, nicotinamide and a proton are 
released, and the ADPR moiety is used for polymer formation. Poly(ADP-ribose) polymerases 
(PARPs) catalyze three reactions involved in polymer synthesis. 1 Polymer initiation in most 
cases involves addition of ADPR to a protein carboxylate group, usually a glutamate residue. 
Polymer elongation involves formation of novel ribosyl-ribosyl linkages that result in both 
linear and branched polymer residues. The size of polymers in vivo is known primarily for 
polymers synthesized in response to genotoxic stress where polymer length varies from a few 
residues in linear structures to more than 100 residues in multibranched polymers. 1 The large 
variation in polymer size can be attributed to the rapid turnover of polymers and to the nature 
of the protein acceptors. Generally, automodified PARP-1 contains the largest polymers. 1 The 
functional roles of ADPR polymers can be attributed to modulation of the function of the 
protein to which the polymers are covalently attached and/or to noncovalent interactions with 
other cellular components. The ADPR polymers possess structural features found in both poly- 
nucleotides and polysaccharides. Polymers have a high density of negative charge that allows 
the formation of stable ionic interactions and multiple adenine rings capable of both hydrogen 
bonding and base stacking interactions. 

The turnover of ADPR polymer residues is effected by poly(ADP-ribose) glycohydrolase (PARG) 
which catalyses hydrolysis of both linear and branched polymer residues yielding free ADPR.1 

A third enzyme, ADP-ribosyl protein lyase, catalyzes the nonhydrolytic cleavage of protein 
proximal ADPR residues yielding the unique nucleotide ADP-3"-deoxy-pentos-2"-ulose 
(ADP-DP). 2 In addition to the basic enzymology shown in Figure 1, related enzyme activities 

Poly(ADP-Ribosyl)ation, edited by Alexander Bfirkle. ©2006 Landes Bioscience 
and Springer Science+Business Media. 
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are noteworthy. Besides their polymerase activity, PARPs contain NAD ~lycohydrolase (NADase) 
activity that directly convert NAD to nicotinamide and free ADPR. ~The NADase activity is 
likely related to the ability of PARPs to synthesize ADPR polymers linked to proteins by a 
second class of linkages distinct from linkage to carboxylate groups. 3 Free ADPR readily reacts 
with protein lysine residues to form Schiff base derivatives that undergo rearrangement to 
stable ketoamine derivatives. 4 

The protein bound ketoamine derivatives can be elongated by PARPs to generate polymers 
linked to proteins via lysine residues. 5 Finally, free ADPR generated by the polymer turnover is 
a potent protein glycating sugar that can cause protein damage. 4 Thus, a highly active ADPR 
pyrophosphatase that converts ADPR to AMP and ribose 5-phosphate is an important enzyme 
related to this metabolism as ribose 5-phosphate is a much less potent glycating sugar. 6 

The PARP Family of Proteins 
The role of ADPR polymer metabolism in the maintenance of genomic integrity has been 

appreciated for many years, despite the fact that only a single member of the PARP family was 
known for most of this time. However, many exciting advances during the past several years 
now demonstrate that many different genes code for proteins with PARP activity and thus a 
family of PARPs plays numerous roles in the maintenance of genomic integrity. Additionally, 
emerging evidence described below points to involvement in intracellular transport, memory 
formation, and other possible functions. 

An example of the importance of ADPR polymer metabolism to the maintenance of 
genomic integrity is shown in Figure 2, where 5 of the 7 known PARPs are associated with the 
mitotic apparatus whose function is crucial to the accurate distribution of genetic material in 
cell division. Figure 3 provides an overview of the reported locations of PARPs in interphase 
cells. While the cell nucleus is still a major site of ADPR polymer metabolism, it is now clear 
that this metabolism is not restricted to the nuclear compartment. In this chapter, proteins that 
have been demonstrated to have PARP enzymatic activity are discussed, although it seems 
likely that other PARPs may yet be identified. Table 1 summarizes and compares some of the 
known properties of the various PARPs. All PARPs appear to share the property of catalyzing 
automodification, although the significance of this property is not yet apparent. Additionally, 
all PARPs are inhibited by 3-aminobenzamide and related compounds. This inhibition is not 
surprising as these inhibitors bind to the nicotinamide region of a NAD binding site similar in 

Table 1. Comparison of properties of PARPs 

Name 
Chromosome Size* DNA Auto- 3-AB 
Localization* # of aa kDa Dependence Modification Inhibition Branching 

PARP-1 1 q41-42 1014 113 Yes yes yes yes 

PARP-2 14ql 1.2 583 66 Yes yes yes yes 

PARP-3 3 p22.2-p21.1 540 61 ? yes yes yes 
533 

VPARP 13ql 1 1724 193 No yes yes 

Tankyrase-1 8q23.1 1327 142 No yes yes 

Tankyrase-2 10q23.2 1166 12 7 No yes yes 

TiPARP 3q25.31 657 76 ? ? ? 

? 

Not 
detected 
? 

? 

* Information shown refers to human PARPs 
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PARP-3 
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Figure 2. Schematic representation of the localization of different PARPs and the PARG 111 isoform in the 
mitotic spindle during cell division. 

all PARPs. However, this shared property of inhibition should be kept in mind when evaluating 
the biological effects of these inhibitors. 

PARP-1 
PARP-1 (EC 2.4.2.30) was discovered more than 30 years ago and until a few years ago was 

thought to be the sole enzyme responsible for the synthesis of ADPR polymers. The human 
PARP-1 gene has been mapped to chromosome 1 (lq42). 7'8 The PARP-1 protein contains 
1,014 amino acids and consists of several domains with distinct functions. The polymerase 
activity is located in the C-terminal region while the N-terminal region contains a DNA bind- 
ing domain (DBD) with two zinc fingers. The DBD is necessary for recognition and binding 
of DNA single and double strand breaks. 

Moreover, the DBD contains a bipartite nuclear localization signal (NLS) and a caspase-3 
cleavage motif. The region between the DBD and the catalytic center contains a BRCT do- 
main (BRCA1 C-terminal domain) and an automodification domain. A hallmark of PARP-1 
is that binding to DNA strand breaks results in a conformational change in the protein that 
leads to a 500 to 1,000 fold increase in catalytic activity. 1 After activation by DNA strand 
breaks, PARP-1 covalently modifies nuclear target proteins such as histones and catalyzes 
automodification of other PARP-1 molecules. Because of its very high abundance in the cell 
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Figure 3. Schematic representation of the subcellular localization of different PARPs and different PARG 
isoforms in interphase cells. 

nucleus and its potent catalytic activity following activation, PARP- 1 accounts for synthesis of 
the majority of ADPR polymer molecules produced following genotoxic stress. PARP-1 is 
located throughout the nucleus and in the centrosome. There is compelling evidence that 
PARP-1 initiated ADPR polymer cycles play many roles in the maintenance ofgenomic integ- 
rity including mediating cellular recovery following genotoxic stress, elimination of overly dam- 
aged cells, and ensuring proper segregation of genetic material at cell division. Many studies of 
PARP-1 are described in following chapters. 

P A R P - 2  
PARP-2 is the only other PARP known to be strongly activated by DNA strand breaks, but it 

accounts for only - 10% of activated cellular PARP activity following genotoxic stress. 9'1° PARP-2 
is a protein of approximately 66 kDa, and the human PARP-2 gene has been mapped to chromo- 
some 14ql 1.2. 9'11 The protein domain structure resembles a "shorter" version ofPARP- 1 with a 
small N-terminal region of 64 amino acid residues featuring a DNA binding domain and NLS, 
and a larger C-terminal catalytic domain. Although initially PARP-2 was thought to be a PARP- 1 
"backup" with overlapping properties in base excision repair 1° the emerging picture indicates 
that PARP-2 has additional unique functions. PARP-2 knock-out in mice leads to an increased 
sensitivity towards ionizing radiation and decreased genomic stability. 12 The finding that PARP-2 
locates to centromeres and telomeres 13'14 suggests an additional role in maintenance ofgenomic 
integrity by ensuring a proper distribution of the genetic material during cell division. Much 
additional information concerning PARP-2 can be found in the following chapter. 
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PARP-3 
The PARP-3 gene was re~orted simultaneously with the PARP-2 gene and was mapped to 

chromosome 3p22.2-p21.1. The presence of two different splice acceptor sites in exon 2 of 
the PARP-3 gene allows generation of two different mRNAs. The shorter mRNA 11 lacks exon 
1 and codes for a 533 amino acid protein and a longer mRNA containing exon 1 leads to the 
synthesis of a 540 amino acid protein. 15 It is possible therefore, that both differendy spliced 
mRNA forms and different PARP-3 proteins exist in cells, either simultaneously or under 
different physiological conditions. Only recendy, PARP-3 was shown to have poly(ADP-ribose) 

• • 15 polymerase activity. In this report, a possible function of PARP-3 in linking the DNA dam- 
age network to the mitotic fidelity checkpoint was proposed as PARP-3 colocalizes with the 
daughter centriole and is present at the centrosomes as has been shown also for PARP-1.15 
Overexpression of PARP-3 leads to accumulation of cells in G 1/S. This effect is exerted by the 
54 amino acids constituting the N-terminal portion of the protein. The N-terminal region of 
the shorter 533 amino acid PARP-3 form was reported not to have centrosomal retention. 15 
Although PARP-3 colocalizes with the centrosome, it has no direct effect on centrosome dupli- 
cation or amplification, 15 as has been shown for PARP-1.16 

Tankyrase-1 
Tankyrase- 1 was the second PARP described, breaking the single PARP paradigm. Tankyrase- 1 

(also referred to as TANK1) was identified as an interaction partner of the telomeric repeat 
binding factor- 1 (TRF-1).17 Similar to TRF-1, it is located at the chromosome telomere region 
and it is important for the TRF-1 mediated regulation of telomere length. The tankyrase-1 gene 
was mapped to chromosome 8q23.1.18 It encodes an open reading frame of 1327 amino acids, 
which corresponds to a protein of 142 kDa. 17 The central domain of this protein contains 24 
ankyrin (ANK) repeats, protein motifs of 33 amino acids that mediate protein-protein interac- 
tions. The Cterminal portion ofTankyrase-1 is homologous to the PARP-1 catalytic region. In 
addition to TRF-1, tankyrase also interacts with insulin-responsive amino peptidase (IRAP) 
and the telomerase binding protein Tab182.19'20 Unlike PARP-1 and PARP-2, tankyrase-1 ac- 
tivity is not dependent on the presence of DNA strand breaks, but seems to be activated by 
phosphorylation state. 19 A detailed study of the ADPR polymers synthesized by tankyrase-1 did 
not detect branching of the polymer. 21 DNA synthesis is unidirectional in the 5' to 3' direction 
and thus requires the annealing of the Okazaki fragments on the lagging DNA strand for repli- 
cation to proceed. This results in an "end of replication" problem at telomeres as the end of the 
linear, chromosomes are shortened during every cell division. Telomeres can be extended by the 
action ofa ribonucleoprotein enzyme complex called telomerase. Telomerase is a cellular reverse 
transcriptase that elongates telomeres with the help of a RNA subunit with homology to the 
telomeric sequence. This enzyme is present in germ cells and some highly proliferative tissues 
like the intestine. Normal somatic cells do not contain significant telomerase activity and there- 
fore telomeres are shortened with each round of DNA replication and cell division, leading to 
progressive telomere erosion and ultimately to an irreversible cell cycle arrest called "cellular 
senescence", or the "Hayflick Limit" in cell cultures. The elimination of certain cell cycle check 
point markers (e.g., mutation of p53 or pRb) leads to continued cell division and continued 
telomere shortening. After extensive telomere erosion, cells reach a phase characterized by severe 
genomic instability (chromosome fusions, building of anaphase bridges, etc.). While most of 
the cells die during this phase termed "crisis", a small fraction can escape cell death. Most of 
these cells display telomerase activity and they exhibit unlimited proliferation potential. The 
protruding GC-rich 3'overhangs oftelomeres are protected from detection by the cellular DNA 
damage machinery by forming a unique loop structure. 22'23 TRF 1, the main tankyrase-1 inter- 
action partner, stabilizes the interaction of the double stranded telomere region and facilitates 
the formation of a structure called t-loop. The t-loop enables the GC-rich DNA overhang to 
invade the double stranded DNA region and form a displacement loop (D-loop), which then is 
stabilized by TRF2. Tankyrase- 1 is thought to function in the maintenance or elongation of the 
telomere structure. In analogy to the histone shuttling model postulated for PARP-1,24 it has 
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been proposed that poly-(ADP-ribosyl)ation of TRF1 by tankyrase-1 may provide a shutde 
mechanism required to disassemble the telomeric loop structure during telomere elongation in 
telomerase positive cells. Taken together, tankyrase-1 might therefore act as a telomere length 
regulator by controlling the formation of"open" telomere structures and access oftelomerase to 
the telomeric DNA substrate. Evidence for this mechanism is provided by the finding that 
tankyrase-1 overexpression leads to an increase in telomere length in human cells. 25 

During interphase, tankyrase-1 colocalizes with TRF1 to the telomeres and in addition 
resides in the nuclear pore complex. After breakdown of the nuclear envelope and nuclear pore 
complex during mitosis, it relocates to the pericentriolar matrix of the mitotic chromosomes. 
The subcellular localization of overexpressed tankyrase-1 is stricdy dependent on the presence 
of available TRF1. Only when TRF1 also was overexpressed did overexpressed tankyrase-1 
localize to the telomeres. 26 These interesting findings taken together with the fact, that 
tankyrase-1 itself does not contain a nuclear localization signal, suggest that subcellular 
distribution and activity of tankyrase-1 is strictly regulated by the cell cycle and TRF 1. 

A very interesting function of tankyrase-1 in meiosis has been proposed by Smith and de 
Lange because of the dual association of tankyrase with both telomeres and centrosomes. 26 
During mitosis there is a close association between the chromosomal centromeres and the 
centrosomes. In contrast, an association between telomeres and centrosomes has been observed 
in the first meiotic division. During this phase, telomeres attach to the nuclear envelope and 
form a bouquet structure which facilitates pairing of the homologous chromosomes and meiotic 
recombination processes. 27'28 The base of this bouquet is always juxtaposed to the centrosome, 
and it displays a massive clustering of nuclear pore complexes to the site of chromosomal 
attachement. 29 Here, tankyrase could play a structural role comparable to ankyrins and mediate 
attachment of the telomeres to nuclear envelope. Consistent with this proposed role in meiosis, 

• 17 tankyrase transcripts are abundant in testis ussue. In addition to its involvement in maintenance 
ofgenomic integrity, the association between tankyrase and insulin responsive amino peptidase 
(IRAP) in GLUT4 vesicles involved in glucose uptake also has implicated tankyrase-1 in the 
regulation • 19 of endosome vesicle trafficking. 

Tan~rrase-2 
In a yeast two-hybrid screen, Lyons et al. found a novel human tankyrase with high (--80% 

overall) amino acid identity to tankyrase- 1.3° Tankyrase-2 (also referred to as TANK2 or TNKL) 
is a 1166 amino acid protein of .-137 kDa, which lacks the histidine / proline / serine rich 
N-terminal region of tankyrase-1, but shares 85% homology with the corresponding ankyrin 
repeats, a sterile alpha motif module (SAM) and a PARP homology domain. 3°'31 The tankyrase-2 
gene (TNKS) was mapped to chromosome 10q23.2, and is expressed in most tissues. Ankyrin 
repeats 10 to 19 mediate an interaction with Grb14, a protein of the SH2 domain family 
involved in signal transduction and membrane trafficking. Tankyrase-2 is found predominandy 
in the cytoplasm and associates with the low density microsome fraction. The subcellular 
distribution and the interaction with Grb 14 indicates a role for tankyrase-2 in intracellular 
vesicle transport 3° as was also proposed in a similar context for tankyrase-1.19 Like tankyrase-1, 
tankyrase-2 was found to localize preferentially to the perinuclear region and to interact with 
TRF 1. Surprisingly, unlike tankyrase-1, overexpression of tankyrase-2 induced rapid cell death 
characterized by a loss of mitochondrial membrane potential, but not PARP-1 cleavage. This 
cell death was prevented in the presence of the PARP inhibitor 3-aminobenzamide, indicating 
that PARP activity was involved. 31 

Vault PARP (VPARP) 
Vaults are large ribonucleoprotein complexes found in eukaryotic cells. 32 Isolated vault par- 

ticles have a characteristic hollow barrel-like shape. The~. are predominantly localized in the 
33 35 cytoplasm and copurify with microtubules and ribosomes. - An association with nuclear com- 

ponents such as the nucleoli, the nuclear membrane and the nuclear pore complex also has been 
reported. 36 Based on the subcellular localization and the vault particle structure, a function in 
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intracellular transport has been proposed. In this context it also has been assumed that vault 
partides are important for intracellular detoxification by transporting drugs away from their 
subcellular target, as vaults, and especially the major vault protein (MVP), were found to be 
overexpressed in many drug resistant human tumor cell lines. 37-39 

With a mass of 13 MDa, vaults are the largest ribonucleoprotein complexes described to 
date. They are composed of a ribonucleic acid with species-specific length, and three proteins 
of 100, 193 and 240 kDa in size. The 100 kDa protein constitutes over 70% of the vault 
complex mass and therefore was designated "major vault protein" (MVP). The 240 kDa pro- 
tein was identified as the telomerase associated protein 1 (TEP1), that also participates in the 
formation of the telomerase complex which is also a ribonucleoprotein complex. The 193 kDa 
vault subunit was found to have PARP activity and designated vault PARP (VPARP). 4° Al- 
though VPARP is an integral part of vaults, immunofluorescence studies and biochemical 
fractionations showed that its subcellular distribution overlaps only pardy with that of the 
major vault protein. 4°'41 Some of the cellular VPARP is present in the cytoplasm and the 
nudeus. In mitotic cells, an association of VPARP with the mitotic spindle has been observed. 4° 
The human VPARP gene has been mapped to chromosome 13ql 1. 42 The VPARP protein 
contains a --300 amino acid domain that shows 28% sequence identity to the catalytic domain 
of PARP-1. 

VPARP was shown to catalyze modification of MVP and automodification. 4° The VPARP 
N-terminal region has a B RCT domain similar to that of PARP-1 and VPARP possesses a 
glutamic acid rich stretch that resembles the PARP-1 automodification domain, thereby indi- 
cating putatively similar functions. In addition, VPARP seems to have additional functions 
that are independent from vaults. This is suggested by the presence of VPARP outside of typi- 
cal vault locations such as cytoplasmic clusters ("VPARP-rods") as well as its association with 
the nuclear matrix 43 and the mitotic spindle. 4° 

TiPARP 
The most recent addition to the growing PARP family is 2,3,7,8-Tetrachlorodibenzo-p-dioxin 

(TCDD) inducible PARP (TiPARP). It was discovered in mouse cells by using mRNA differ- 
ential display in the analysis of the effects of halogenated aromatic hydrocarbons (HAHs). 
HAHs are important environmental and industrial contaminants that induce a wide range of 
adaptive and toxic responses in animals and humans. 44'45 

These responses are mediated by an alteration of signal transduction pathways via the aro- 
matic hydrocarbon receptor (AhR) and a subsequent change in gene expression pattern. The 
TiPARP gene was found to be specifically upregulated in mouse cells after exposure to TCDD. 46 
This upregulation is dependent on the presence of AhR and Arnt (the aromatic hydrocarbon 
receptor nuclear translocator). 47 The isolated TiPARP mRNA encodes a protein of 657 amino 
acids. Homology studies on the amino acid sequence revealed similarity with the catalytic 
domains of PARP-1 and Tankyrase-1. 46 In vitro expressed murine TiPARP has been shown to 
have PARP-1 activity. Recendy, the human TiPARP gene was characterized and was found to 
consist of 6 exons, and to be located on human chromosome 3q25.31. 48 

The function of the TCDD inducible PARP is not clear at present. A connection between 
TiPARP and memory formation has been implied, as the TiPARP gene has over 90% sequence 
homology to the rat RM1 gene proposed to play a role in memory formation. 49 

It also has been shown that exposure to polychlorinated biphenyl's (PCB), which like TCDD 
are ligands of AhR, lead to decrements in learning and memory. 5° The general link between 
poly(ADP-ribosyl)ation and memory formation is also strengthened by the observation that 
poly(ADP-ribose) formation is a rapid response of neuronal cells to membrane depolariza- 
tion. 51 The signal transduction involved in this response was independent of DNA strand 
breaks and was evoked by inositol 1,4,5,-triphosphate mediated Ca 2÷ mobilization. 51 Although 
this poly(ADP-ribose) synthesis has been proposed to be due to PARP-1, other PARPs such 
TiPARP may play a role in this context. 
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Poly(ADP-Ribose) Glycohydrolase (PARG) 
While many different genes now are known to code for PARPs found in many different 

cellular locations (Figs. 2, 3), higher organisms appear to have only a single gene coding for 
PARG. 52 This raises challenging questions concerning how PARG is targeted to different loca- 
tions within the cell and regulated to function as the opposing arm of ADPR polymer cycles 
initiated by different PARPs. While many questions remain, studies of the PARG protein and 
transcription of the PARG gene are beginning to provide answers to these questions. Figure 4 
shows the human PARG gene exon structure 52 and the structure of three PARG isoforms that 
result from alternative splicing of PARG gene transcripts. 53 The PARG protein contains 4 
putative domains 54 and the PARG isoforms differ only in domain A. All of the PARG isoforms 
contain a very protease labile site located at the junction of domains A and B. This provides an 
explanation as to why PARG isolated from cell extracts is typically 60 to 65 kDa in size 1 since 
the catalytic activity is present in the C-terminal fragment generated by protease cleavage. This 
region of PARG also contains a putative bipartite NLS with sequence homology to the NLS of 
PARP-1, 55 but this sequence does not appear to function as an NLS in PARG. 53 Protein do- 
mains B and D represent mostly alpha helical domains while domain C contains a series of beta 
sheets that are similar to the fold found in ADP-ribosyl transferases. 54 The catalytic active site 
is located in domain C which contains highly conserved amino acid residues involved in sub- 
strate binding and catalysis. 56 

Studies of the enzymatic properties of PARG have demonstrated that PARG catalyzes the 
hydrolysis of both linear and branched polymer residues (Fig. 1) by a predominately exoglycosidic 
mechanism although the enzyme has a low level of endoglycosidic activity. 57'58 The signifi- 
cance of the endoglycosidase activity of PARG is not clear but the enzyme has the potential to 
generate different products depending upon its state of saturation. For example, under condi- 
tions where the enzyme is not saturated with substrate, free ADPR and protein bound ADPR 
polymers would be the expected products, but when saturated with substrate the enzyme would 
be expected to generate free ADPR polymers. It has generally been assumed that PARG is 
unable to catalyze removal of the protein proximal ADPR residue, but a recent reexamination 
of this issue indicates that PARG can catalyze removal of protein proximal ADPR residues 
linked to protein carboxylate groups of histone H 1.5 
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Figure 4. Schematic representation of the human PARG gene exon structure and of three PARG isoforms 
that result from translation ofPARG mRNA splice variants. Abbreviations used are: NLS, nuclear localization 
signal, NES, nuclear export signal, MTS, mitochondrial targeting sequence. 
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The human PARG gene was,mapped to chromosome 10ql 1.23 by in situ hybridization 
and by analysis using the NCBI '  Genome Blast" program. 52'59 The PARG open reading frame 
consists of 18 exons and 17 introns. The catalytic center of the protein (domain C) is encoded 
by exons 9 to 14. The flanking B and D domains are encoded by 2 exons 5 to 7 and 15 to 18, 
respectively. Exons 1 to 3 encode the putative regulatory region. 5 The PARG gene is oriented 
head to head with the gene coding for the translocase of the inner mitochondrial membrane 23 
(TIM23). The two genes share a common bidirectional promoter that achieves different ex- 
pression levels in both directions. 52 It is of interest that the PARG protein contains a putative 
mitochondrial targeting sequence and subcellular fractionation studies indicate that PARG is 
located in the mitochondrion. 6° The presence of PARG in mitochondria is intriguing, as no 
definitive demonstration of PARP activity in mitochondria has been reported. 

Translation of alternatively spliced mRNAs leads to three PARG isoforms that differ in the 
A domain of the protein. Translation of all 18 exons results in a PARG of 111 kDa while splice 
variants omitting exon 1 or both exon 1 and 2 result in PARG isoforms of 102 kDa and 99 
kDa, respectively. 53 Transient overexpression of the respective PARG variants and subsequent 
immunofluorescence analysis revealed that the PARG111 is targeted to the nucleus while 
PARG 102 and PARG99 are targeted to the cytoplasm. 53 

This led to the identification of a strong NLS in the region of the protein coded for by exon 
1. 53 A recent report using a fusion protein of enhanced green fluorescent protein (EGFP) and 
human PARG protein provided a new interesting addition to the already complex picture of 
subcellular PARG distribution as PARG was shown to colocalize and cofractionate with the 
centrosome. 61 The A domain of the PARG isoforms also contain other features that may be 
involved in regulation of the protein. A caspase deavage (Casp3) site that is cleaved during 
apoptosis is present 62 and a putative nuclear export signal (NES) has been described. 63'64 While 
much remains to be learned about PARG, a picture is emerging in which a single PARG gene 
gives rise to multiple PARG proteins that are targeted to multiple locations within the cells to 
effect ADPR polymer turnover. 

ADP-Ribosyl Protein Lyase 
Early studies of ADP-ribose polymer metabolism concluded that PARG was unable to re- 

move the protein proximal ADPR residue from acceptor proteins. This led to the isolation of 
an ADP-ribosyl protein lyase that catalyzes removal of the protein proximal ADPR residue 
linked to the acceptor protein. 2 Although this enzyme was discovered many years ago, it has 
received very little attention and consequently its structure function relationships and role in 
ADPR polymer metabolism are still poorly understood. Additional questions have been raised 
by recent studies that indicate that PARG can catalyze removal of protein proximal ADPR 
residues linked to carboxylate groups of histone H 1. 5 It is possible that the property of both 
enzymes to catalyze removal of these residues represents redundancy in function or that specific 
polymer acceptor proteins require different enzymes to catalyze removal. 
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