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Preface

Due to the ever-increasing computational power of modern computers, numerical
simulations are of growing interest in many different fields of science and engi-
neering. The fast-growing computer performance itself, however, is not sufficient to
satisfy the increasing requirements for the simulation of complex problems arising
in particular in fluid and solid mechanics. To this end, accurate and robust
numerical methods are of crucial importance. The development of reliable and
efficient discretization methods for solids and fluids supports the understanding of
complex physical phenomena and helps to accelerate and improve the development
of products and processes in almost all disciplines. Based on numerical simulation,
the number of time-consuming and expensive experiments can be significantly
reduced, and engineering decisions are supported by computed data which might be
very difficult if not impossible to obtain experimentally.

This book stems from the lecture notes of the CISM course: Modeling in
Engineering Using Innovative Numerical Methods for Solids and Fluids which was
held in Udine on October 15–19, 2018. Innovative and promising modeling and
simulation approaches are presented, including the basics of the methods as well as
advanced topics and complex applications. The contents cover the following topics:

• Particle methods addressing particle-based materials and numerical methods that
are based on discrete element formulations.

• Fictitious domain methods, which allow for the efficient discretization of
complex problems for which meshing with finite elements is very difficult.

• Phase field models, which have become very popular to model and simulate
fracture problems (among other possible applications).

• Computational fluid dynamics based on modern finite volume schemes to effi-
ciently discretize the Navier–Stokes equations.

• Hybridizable discontinuous Galerkin methods, which offer high convergence
rates for the simulation of incompressible flow problems.

• Non-intrusive coupling methods for structural models that allow to perform
model adaptive simulations based on existing well-developed solvers.

v



The book is addressed to scientists and engineers from both academia and industry
working in the broad field of civil and mechanical engineering or applied physics
and mathematics. The intention is to provide a sound introduction to innovative
numerical methods for solids and fluids which can be used to model complex
problems in engineering.

Braunschweig, Germany Laura De Lorenzis
Hamburg, Germany Alexander Düster
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Discrete Element Methods: Basics
and Applications in Engineering

Peter Wriggers and B. Avci

Introduction

Particle systems are of great importance in many industrial branches like in
chemical and food industries as well as in geotechnical engineering problems. Cou-
pling of particles with fluids are related to fluvial erosion, fluidized beds, sedimen-
tation and transport in the blood system. Thus, the numerical simulation of particle
systems is of great interest, both from practical and fundamental points of view.
Therefore, the understanding, the simulation and analysis of related phenomena is
significant, particularlywith regard tomicromovements, homogenization procedures
and coupled moderate or highly concentrated particulate flows. Certainly, such prob-
lems require an accurate description of the underlying physics, but the simulation
of particulate flow and movement is still a challenging task for a large number of
particles.

Popular examples of pure particle methods are Molecular Dynamics (MD), see
Alder and Wainwright (1957), Discrete Element Method (DEM), see Cundall and
Strack (1979), and Smoothed Particle Hydrodynamics (SPH), see
Gingold and Monaghan (1977). In these methods, the positions of the particles and
the evolution of their quantities are described by ordinary differential equations and
solved in a Lagrangian way. In the framework of DEM and SPH, the particle dynam-
ics are obtained by applying the Newton-Euler equations and the Navier-Stokes
equations, respectively. Both of these numerical techniques (DEM and SPH) utilize
many common algorithms, such as neighbor search algorithms, distance compu-
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2 P. Wriggers and B. Avci

tations among neighboring particles and force or kernel evaluations. Thus, many
subroutines can be implemented, used and maintained in a single framework.

In the recent years, effort has been made to improve the existing methods and to
develop new efficient numerical approaches. Among the various methods evolved
so far, e.g., see Zhu et al. (2007), Zohdi (2007), Pöschel and Schwager (2005) for an
overview, the approaches for the treatment of particle systems through direct numer-
ical simulation models are of high computationally cost. Basically, direct numerical
simulations can be performed by different discretization methods.

Concerning the treatment of the particle collision, the methods employed in the
DEMcan be classified into twomain classes, which are characterized by hard particle
contact (Alder and Wainwright 1957) and soft particle contact (Cundall and Strack
1979). Methods assigned to the first of the two groups are instantaneous collision
models. Here, the particles separate immediately from each other in the event of
collision. Theyundergonodeformation, so they are considered to be rigid. In the other
approach the particles are treated as quasi rigid objects such that they are assumed
to suffer minute deformations during the collision. The force based methods of the
second group can be applied to govern the contact forces implying the particles’
strength and eventually also allow to locally break a particle if very strong forces
act on it. The difference of the methods for the treatment of particle contact is
particularly crucial in highly concentrated systems. Here, a particle will usually
collided with more than one partner at the same time. Hence some particles might be
as well in a permanent contact situation with neighboring particles like it occurs in a
heap of sediments or in case of agglomerated adhesive particles. In these cases, the
application of hard contact models may not be suitable. In contrast, force based
soft contact models are applicable both for dense and dilute systems. However,
the computation of particle interactions is for soft spheres much more expensive
compared to the hard particle approach since very small time steps are needed to
resolve the contact interaction between the particles in time.

Other applications—like sediment transport or multiscale computation for gran-
ular materials—are related to coupling discrete elements to solids and fluids. In case
of a direct numerical simulation of 3D particulate flows one has to couple fluids and
particles. This can be done in different ways that span the bridge from just tracing
of particles to a full interaction of particle and fluid via the tractions. The latter can
be based on a complex ALE finite element scheme using a adaptive remesching of
the finite elements to follow the particle movement, see e.g. Johnson and Tezdu-
yar (1997), but is—due to the high computational effort—often limited to a small
amount of particles. Another approach is the fictitious domain method which can
handle much more particles in the flow. In both approaches the numerical tools of
DEM and FEM are appropriately coupled by a staggered scheme. To describe the
collision between particles, the soft contact approach is applied using repulsive force
models. For more details see e.g. Avci and Wriggers (2012).

When coupling finite elements for solids and discrete elements there are two dif-
ferent possibilities. The first is a surface coupling where contact between a finite and
a discrete element takes place. This can be handled by standard contact algorithms,
see e.g. Wriggers (2006). On the other hand it is possible to couple finite and dis-
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crete elements within a volume. Such coupling requires specific treatment of linking
the movement of the finite and the discrete elements. On possibility is the Arlequin
methodology, see e.g. Dhia and Rateau (2005), which was applied with respect to
particle and finite element coupling in Wellmann and Wriggers (2012).

Governing Equations

Themotion of a quasi rigid particlePi is described by a position vectorXi to its center
of mass and a rotation �i at time t = t0. In Fig. 1 the kinematics of the movement of
the particle Pi is depicted for different time instants. Additionally another particle
P j is depicted that collides with particle Pi .

The trajectory of particle Pi can be deduced from the Newton-Euler equations.
Consequently its translational and angular velocities, ui = ẋi and ωi = d�i

dt , have to
satisfy

Mi
d2xi

dt2
= ρi Vig + Fi (1)

�i
dωi

dt
+ ωi × (�iωi ) = Ti . (2)

Therein, Mi is the mass, xi the position vector at time t to the center of mass
(defined as Mi ), ρi the mass density, g the gravity and Vi denotes the volume of
the particle Pi . The tensor of inertia is represented by �i . Furthermore, the sum of
the contact forces is stated as Fi The torques that are caused by Fi with respect to
Mi are associated to the quantities Ti . The traction vector t on ∂�p is defined by
t = σn f where n f is the unit outward normal vector and ri is the position vector of
a point at ∂�p with respect toMi .

Fig. 1 Kinematics and
applied forces related to a
particles
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Constitutive Modeling of the Particle Phase

The particles are modeled as quasi rigid spheres. To describe their collision behavior,
a force based approach is used in order to govern the inter-particle forces that are
deduced from repulsive models. In the sections below, the relevant concepts of the
contact models are stated.

Normal Contact Model

The normal contact force acting between the colliding particles is described by a
constitutive viscoelastic model. For adhesive particles being in contact, the attractive
van der Waals force is additionally considered in the contact area. For the purpose
of governing the elastic contact force Fn

e , the Hertzian law (Hertz 1882) constitutes
a well-established model. If the particles, to be treated, have also viscous mate-
rial properties a consistent phenomenological model has to be employed, see e.g.,
Refs. (Brilliantov et al. 1996, 2007), where the effect of viscosity is considered via
an added dissipative force Fn

d . Regarding the presence of the attractive van derWaals
force in the contact area, the JKR theory, see Johnson et al. (1971), provides a proper
treatment of adhesion, even in the case of underwater adhesion, see e.g. Loskofsky
et al. (2006). For a detailed description of the JKR model see also Maugis (1992).

If adhesion is considered, the attractive force Fn
a acts against the elastic force Fn

e
so that it consequently reduces the particles’ compression. Thus, one obtains for the
force acting on a particle

Fn = Fn
e − Fn

a + Fn
d . (3)

Hertz Law

When using the Hertzian contact law Hertz (1882), the elastic repulsive force is
governed by

Fn
e = 4

3
E

√
R δ3/2 , (4)

where δ = δi + δ j is the total particle compression which is also called the approach
of the particles. The values

R =
(

1

Ri
+ 1

R j

)−1

and E =
(
1 − ν2

i

Ei
+ 1 − ν2

j

E j

)−1

(5)

denote the effective radius and the effective Young’s modulus of the contact pair Pi

and P j , respectively. The Poisson ratio is associated with the particles as νi and ν j .
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Fig. 2 Hertz contact law

Fig. 3 Adhesion in the contact interface

As a result of the mutual compression of the particles, a circular area is formed in
the contact zone. One can deduct that 1 the radius a of the shaped contact area is
related to the total deformation δ via a2 = Rδ.

Figure2 depicts the deformation state that is assumed locallywithin the quasi rigid
spheres. It also shows the relation between approach δ of the two spheres with respect
to the force Fn . One can easily see the nonlinearity of the Hertz law. Furthermore
the distribution of the contact pressure σ/σm depending on the contact radius r/a is
depicted in the right part of the figure. Here σ = Fn/(π a2) and σm = max σ .

Adhesion Law

According to the JKRmodel, see Johnson et al. (1971), it is implied that the adhesive
force acts only within the contact area, see Fig. 3. Here, the work of adhesion under
a liquid or just the free energy changes to separate a unit contact area of Pi and P j

in a liquid medium (l) is defined as
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W = γil + γ jl − γi j , (6)

where γ describes the respective interfacial energy, see Loskofsky et al. (2006).
Since the adhesive force Fn

a is opposed to the elastic force Fn
e , it reduces the elastic

deformation δe leading to

δe − δa = a2

R
−

√
2π Wa

E
, (7)

where δe is obtained from the Hertzian law, the second term δa is due to adhesion,
see Maugis (1992) for details. The corresponding forces follow as

Fn
e − Fn

a = 4Ea3

3R
− 2πa2

√
2W E

πa
. (8)

In case of the absence of external forces, i.e. Fn = 0, then Fn
a �= 0 while Fn

e = 0
and Fd

e = 0. Furthermore, an equilibrium contact area a0 is formed in the contact
zone where a mutual compression δ0 of the particles occurs

a0 =
(
9π W R2

2E

)1/3

and δ0 =
(
3R

4

(
π W

E

)2)1/3

. (9)

To pull the particles off each other, one has to apply a traction force under which
they suffer minute stretching deformations forming a connecting neck around the
contact zone. Once the pulling force has reached a critical level, i.e. Fn = −Fn

c , the
contact breaks and the particles will separate. The critical force Fn

c yields

Fn
c = 3

2
π W R (10)

and the corresponding critical distance of the particles follows

δc = 1

481/3
a2
0

R
. (11)

Here the pulling distance can be defined as δ = −δc. Figure4 demonstrates the
differences in the force.

Viscous Effects in the Contact Interface Law

Viscous properties can bemodeled using the system depicted in Fig. 5 for two spheres
(a) and one sphere (b) being in contact wth a rigid wall. The forces in the damper d
are provided below.
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Fig. 4 Forces in the contact interface due to Hertz and the JKR model

Fig. 5 Viscous effects in the
contact interface

To consider the properties of material viscosity, a dissipative force is adopted
according to the work of Brilliantov et al. (1996, 2007) which yields

Fn
d = Aȧ

∂

∂a
(Fn

e − Fn
a ) . (12)

From this definition, the viscous force follows as

Fn
d = ȧ A

(
4Ea2

R
− 3

2

√
8π W Ea

)
, (13)

where the dissipative factor1 A is related to a constant function of material viscos-
ity. Consequently, considering the above set of equations, one obtains the force-
displacement relation for adhesive viscoelastic particles

1This factor A can also be used as a fitting parameter within specific simulations—like quasistatic
predictions of granular material behaviour—to damp oscillations.
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Fn(δ) =4

3
E

√
Rδ3/2

− 2R3/4δ3/4
√
2π W E (14)

+ Aδ̇

(
2E

√
R
√

δ − 3

√
1

2
R3/2π W Eδ1/4

)
.

Computation of the Approach

In the present contribution, the constitutive law given in (4) and (14) is treated
analogous to the penalty method, e.g., see Wriggers (2006) and Wellmann et al.
(2008). In this methodology one computes the force Fn

e between to particles Pi and
P j is computed from the approach of two particles by using the interface law (in case
of the classical penalty approach this equation is Fn

e = εP δ with the spring stiffness,
know as penalty parameter, εP ). However in this case the penalty spring is nonlinear,
see e.g. Eq. (4).

In all constitutive equations above the approach of the spheres or the rate of this
approach has to be evaluated. For this one can compute the gap in normal direction
gn from the given current positions of two spheres

gn = (Ri + R j ) − l > 0, (15)

and define gn ≡ δ as the mutual compression or approach of Pi and P j . With this
kinematic relation the contact forces can be immediately computed by evaluating
(4) and (14). In Eq. (15) l = ||l|| is the length of the distance vector between Mi

and M j in the current configuration, where l = xi − x j . The deformation rate δ̇ is
computed in Eq. (16) by the projection of the relative velocity (vi − v j ) onto the
direction of the normal unit vector n. This yields

δ̇ = ġn = −(vi − v j ) · n where n = l/ l. (16)

We note that the direction of the contact force Fn of the respective particle is
opposite to the direction of compression δ. Based on this observation, one can deduct
from (14) the contact forceFn = Fnn that contributes to themomentum equation (1).

Tangential Contact Model

The constitutive relation of Coulomb’s law couples the tangential force Ft to the nor-
mal force Fn . For this the coefficient of friction has to be introduced as a constitutive
parameter. The relation is not smooth since for sliding

Ft = μG Fn (17)
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holds while
Ft ≤ μH Fn (18)

is valid for sticking. In this relation the dynamic and the static coefficients of friction
have to be introduced. The parameter μG stands for sliding and μH for stick, where
μG ≤ μH . The relations between normal and tangential force are depicted in Fig. 6.
Here (a) shows a simplifiedmodel of the real behaviour in (b)withμG = μH .Another
simplified model is depicted in Fig. 6c which differentiates between the coefficient
of friction for sticking and sliding.

Within the constitutive treatment for the tangential interface force Ft , a tangential
spring-dashpot element with an incorporated slider is used in order to model the
tangential friction behaviour, see e.g. Cundall and Strack (1979). This model is
depicted in Fig. 7 where again the difference between the tangential contact of two
particles and of a particle with a rigid wall is made.

Since the tangential part of the interface force Ft is related to two states, sliding
and sticking, it can be viewed like an elasto-plastic process where sliding relates to
the plastic flow. For these types of problems efficient algorithms were developed in
the mid 1980s. The first application to frictional contact can be found in Wriggers
(1987) and has been further developed over the years, see e.g. Wriggers et al. (1990),
Luding (2004) and Wriggers (2006). The idea is to algorithmically predict first a
“trial” stick step followed by a slip check in the second step. Then the regularized
penalty formulation for the tangential trial traction takes the form

Fig. 6 Friction states with stick and sliding

Fig. 7 Friction states with
stick and sliding
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Ft
o = −(ctgt + dtvt ). (19)

Therein, gt is the elongation of the tangential spring, ct and dt are the tangential
spring stiffness and the tangential dissipation parameter, respectively. The tangential
relative velocity at the contact point C is given by

vt = vs − (vs · n)n (20)

with the relative velocity at C

vs = vCi − vCj , (21)

where the surface velocities are defined by vCi = Ui + ωi × ri and vCj = U j + ω j ×
r j . The vectors pointing fromMi andM j to C are associated with ri = Ri (−n) and
r j = R jn, respectively. By introducing a trial function f tr, the following relation
can be stated for the tangential contact

f tr =: ||Ft
o|| − μs ||Fn|| ⇒

{≤ 0 : Stick
>0 : Slip.

(22)

If f tr ≤ 0 the contact point C is in the stick region and if f tr > 0 it is in slip
region, thus sliding occurs in the contact area. Note that the stick case is valid again
if Ft

o < μd Fn holds during the sliding process. If the contact point sticks, the actual
tangential spring gt is incremented for the succeeding time step by the relation
�gt = vt�tD. Consequently, the new spring length is defined by

gt = gt + �gt . (23)

Here, �tD denotes the time step of the discrete element method. However, if the
contact point slides in the current time step, the tangential spring is aligned by

gt = − 1

ct
(Ft t + dtvt ) (24)

in order to fulfill Coulomb’s slip condition. Therein, t = Ft
o/||Ft

o|| is the direction of
the trial traction.

In two subsequent time steps, the contact area might be slightly rotated. As
proposed in Luding (2004), the tangential spring is continuously projected onto
the current rotated contact area at the beginning of each new time step via gt =
gt − (gt · n)n . For the above approach, the tangential contact force is Ft = ||Ft

o|| if
f tr ≤ 0 and Ft = μd Fn if f tr > 0 holds. By computing Ft , one obtains Ft = Ft t
and Tt = r × Ft which contributes to F and T in Eq. (1) and Eq. (2), respectively.
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Rolling Resistance Model

During a rolling motion of two particles over each other, the leading part of the
contact area is continuously compressed and the trailing part is decompressed with
respect to the rolling direction, see Fig. 8.

In case of an attractive van der Waals force in the contact area, the particles suffer
an opposing torque to rolling motion, whereby a rolling resistance is generated. For
instance, regarding an agglomerated straight particle chain with a lack of rolling
resistance, the chain cannot resist any external impact resulting in a tangential force.
As a consequence, the particles will roll smoothly over each other, whereby the chain
easily bends and it will finally take a compact shape. For a detailed discussion of the
rolling resistance of adhesive particles, see Dominik and Tielens (1995).

For a constitutive treatment of the rolling resistance, amodel consisting of a rolling
spring-dashpot-slider element is adopted in this contribution, see Iwashita and Oda
(1998) and Fig. 9.

At this, the opposing torque is given by

Mr
o = −(cϕφ + dϕφ̇) = − 1

R
(cφgr + dϕvr ). (25)

Therein, cϕ is the rolling stiffness, dϕ relates to the rolling viscosity coefficient, φ
to the particle rotation, gr to the rolling distance and vr is the rolling velocity which,
according to Kuhn and Bagi (2004), can be computed using

vr = −R

[
(ωi − ω j ) × n + 1

2

(
1

R j
− 1

Ri

)
vt

]
. (26)

Fig. 8 Idea of rolling
resistance
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Fig. 9 Model of rolling
resistance

In the context of the JKR theory one can set for cφ the following expression

cϕ = 4Fn
c R

(
a

a0

)3/2

where dϕ = 0 , (27)

see Dominik and Tielens (1995) for details.
Introducing a trial force Fr

o = Mr
o/R, the problem of the rolling resistance can

algorithmically be treated analogous to the tangential friction model. Here, one can
apply as a yield criteria for the slider Mr

max or μr Fn , where μr is a rolling friction
coefficient, see Iwashita and Oda (1998).

DEM Solver

The kinematic variables of the particles are governed by the computation of the
equations of motion (1) and (2). For this purpose, a time integration scheme has to
be applied to solve these equations.

At the same time the contact between the particles has to be considered. This
yields the different contact forces and moments between the particles. These forces
and moments can be computed using the interaction laws discussed in the previous
section.



Discrete Element Methods: Basics and Applications in Engineering 13

Time Integration

Since DEM simulations usually need very small time steps�t in order to resolve the
constitutive laws between the particles the computational time for a larger system of
particles is high. Thus time integration methods need to be considered very carefully.
They have on one side to guarantee a certain accuracy and on the other side they need
to be efficient and robust to solve the Newton-Euler-equations in (2). An overview
with respect to methods that are used in DEM can be found in e.g. Kruggel-Emden
et al. (2008).
The integration scheme is composed of three steps:

1. Predicting all the kinematic variables.
2. A force computation step is followed using the predicted variables according

to Section “Constitutive Modeling of the Particle”. Hence, the evolution of the
translational and rotational accelerations can be computed from Eqs. (1) and (2).

3. Applying an error criteria between the predicted and calculated accelerations, the
correction of the kinematic variables is ensued.

To illustrate the construction of such time integration scheme we consider a Gear
algorithm in more detail. This starts with a predictor computation which is different
for translation and rotation.
For the translation one computes

xP(t + �t) = X(t) + Ẋ(t)�t + 1

2
Ẍ(t)�t2 + 1

6

...
X(t)�t3

ẋP(t + �t) = Ẋ(t) + Ẍ(t)�t + 1

2

...
X(t)�t2

ẍP(t + �t) = Ẍ(t) + ...
X(t)�t (28)

...
x P(t + �t) = ...

X(t)

For the rotation the predictor is given by

ωP(t + �t) = �(t) + �̇(t)�t + 1

2
�̈(t)�t2 + 1

6

...
�(t)�t3 + 1

24

(iv)

� (t)�t4

ω̇P(t + �t) = �̇(t) + �̈(t)�t + 1

2

...
�(t)�t2 + 1

6

(iv)

� (t)�t3

ω̈P(t + �t) = �̈(t) + ...
�(t)�t + 1

2

(iv)

� (t)�t2 (29)

...
ωP(t + �t) = ...

�(t) + (iv)

� (t)�t

(iv)
ω P(t + �t) = (iv)

� (t)

Based on these predictions the force FP(xP , ẋP) and the moment MP(ẋP ,ωP) are
computedwhich act both on a particle. Based on these quantities the translational and
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rotational accelerations can be computed from (2). This yields a∗ = FP/m and ω̇∗ =
MP/�. Now the differences �ẍ = a∗ − ẍP and �ω̇ = ω̇∗ − ω̇P can be determined
for the corrector step in which the translations and rotations are corrected. For the
translations it follows

x(t + �t) = xP(t + �t) + ct
0 s

t

ẋ(t + �t) = ẋP(t + �t) + ct
1 s

t 1

�t

ẍ(t + �t) = ẍP(t + �t) + ct
2 s

t 2

�t2
(30)

...
x (t + �t) = ...

x P(t + �t) + ct
3 s

t 6

�t3

and the rotations are obtained from

ω(t + �t) = ωP(t + �t) + cr
0 s

r

ω̇(t + �t) = ω̇P(t + �t) + cr
1 s

r 1

�t

ω̈(t + �t) = ω̈P(t + �t) + cr
2 s

r 2

�t2
(31)

...
ω(t + �t) = ...

ωP(t + �t) + cr
3 s

r 6

�t3
(iv)
ω (t + �t) = (iv)

ω P(t + �t) + cr
4 s

r 24

�t4

with the constants

st = �t2

2
�ẍ , ct

0 = 1

6
, ct

1 = 5

6
, ct

2 = 1 , ct
3 = 1

3

and

sr = �t �ω̇ , cr
0 = 251

720
, cr

1 = 1 , cr
2 = 11

12
, cr

3 = 1

3
, cr

4 = 1

24

Within this method of Gear the translations are approximated by a Taylor expan-
sion of 3rd order while the rotations have to be modeled by a 4th order Taylor expan-
sion. This choice is necessary to achieve conservation of momentum and moment of
momentum and a good accuracy of the solution. A more complete description of the
Gear algorithm can be found in Allen and Tildesley (1987), Pöschel and Schwager
(2005).


