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Preface

Coming to a power plant as an expert, because of a vibration problem, you will hear
in the most cases from the maintenance people: When do we have to shut down for
balancing? Rebalancing seems to be the only generally known countermeasure for
high vibrations at a turbomachine. This book shows that a mechanical unbalance
covers only a small section in the big line of all the possible vibration problems.

The aim of the book is to provide practical people working in the field, at power
plants and/or as service engineers, with a guideline in case there are vibration
problems. In the books available on vibration, there are usually a lot of theories,
equations and high mathematics. This book does not make great demands on
scientific perfection, it is meant for the practical “hands on” man.

Many of the illustrations and sketches in this book come from old reports that are
no longer available. Therefore, the quality of the illustrations does not always meet
today’s standards.

However, I have decided to include these images in this book, because they are
valuable, given that they are the only images of their kind that still exist.

In Chap. 1—“Basics of Vibrations”—some fundamental theories are explained,
which is necessary to understand the vibration events mentioned in Chap. 3
—“Fault Analysis: Vibration Causes and Case Studies.”

This book does not have the usual references as it includes mainly real-life case
studies originating from the 50-year experience about power plant events. These
real-life case studies could serve as a reference, regarding the possible problems at
jobsite.

It is tried to describe the case studies in three steps, explaining the:

1. identification of the problem,
2. explanation of the problem and
3. practical solution to the problem.

Also, some knowledge about measurement and presentation of results is not
avoidable; therefore, see Chap. 2—“Instrumentation, Measurement.”
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The rotors of a machine are balanced individually by the manufacturer. They will
be coupled to a shaft train at first at jobsite. So, a new unbalance distribution is created
and might require a balance correction. On top of that, the newly installed rotors will
see operational parameters (like temperature, torque, etc.) the first time. This might be
another reason for a necessary balance correction. Therefore, Chap. 4—“Jobsite
Balancing”—has been added. It is not meant as a general balancing instruction, but as
a guideline for trim balance corrections for the above-mentioned occurrences.

There are a lot of books on vibration on the market, but not in one of them we
could find a comprehensive collection of case studies of real cases. This book had
been written in English, because according to our experience, especially at the East
Asian region, there seems to be a need for comprehensive practical machinery
vibration primer.

Wohlenschwil, Switzerland Franz Herz

Darmstadt, Germany Rainer Nordmann
nordmann@rainer-nordmann.de
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Chapter 1
Basics of Vibrations

This chapter mainly deals with the relationship of vibration excitation and vibration
response of systems. Firstly, we analyze the different vibration signal types and
the different vibration measurements units. This leads us to the Fast Fourier
Transformation (FFT). We now can explain the resonance frequency: x0 ¼

ffiffiffi
c
m

p
.

The vibrations of a single degree of freedom (SDOF) are explained then and finally
the rotating shaft is explained by means of the Laval shaft. The last chapter deals
with the practical behavior of turbomachine rotors.

In Chap. 3: “Fault Analysis: Vibration Causes and Case Studies”—there are
various vibration problems specified, as they may appear in power plant machines.
To understand and interpret these vibration phenomena, we need to understand the
basic of vibrations.

At first, we must ask how we can describe vibrations of mechanical systems in terms
of deflections, velocities and accelerations as a function of time. This consideration of
the kinematic of vibrations is independent from the vibration system and from the
source of vibrations. Important quantities to describe, for example, a simple harmonic
vibration are the time period and the frequency of the vibration (see Sect. 1.1.1).
However, very often vibrations cannot be described by one frequency only, but they
consist of a superposition of time signals with different frequencies. In order to rec-
ognize these different frequencies involved in a vibration event, the Fourier analysis is a
powerful tool (see Sect. 1.1.2). The important relations between vibration deflections,
vibration velocities and vibration accelerations are derived in Sect. 1.1.3 for the simple
case of a harmonic time signal, expressed by amplitude, frequency and phase.

The second important question is: What causes the vibrations of mechanical
systems? The theory of mechanical vibrations shows that vibrations depend on
some kind of excitation on one side and the dynamic characteristics of the vibrating
mechanical system itself on the other side. Excitations can be time-dependent forces
and/or moments, but movements of the ground or other boundaries are also pos-
sible. Excitations may be different in the time domain, where the time functions can
be harmonic, periodic or non-periodic (transient). An excitation can be of very short
time or may act permanently.

© Springer Nature Switzerland AG 2020
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The other important influences on vibrations are the dynamic characteristics of
the mechanical system itself. The physical system parameters of mass, damping and
stiffness values determine how a vibration system reacts to excitations (distur-
bances). The dynamic characteristics of a mechanical system can also be expressed
by its eigenvalues (natural frequencies, damping) and mode shapes or by frequency
response functions (FRF). From a more practical view, mechanical systems react
very sensitive with respect to vibrations, when they are excited in a resonance
condition (exciter frequency equal to a natural frequency). In the case of rotating
machinery, such resonance conditions are called critical speeds, where the rota-
tional shaft frequency of an unbalance excitation is equal to one of the natural
frequencies of the mechanical system.

Therefore, at each vibration problem two fundamental aspects must be considered:

1. the excitation forces like the unbalance forces due to rotation of the shaft and
2. the consequence of those forces to mechanical systems upon which they are

acting like in critical speeds and in resonances.

The engineer in charge must decide what is the most promising way to overcome
a problem: Is it 1 or 2 or perhaps both.

A very simple mechanical system to explain the basics of vibrations is the single
degree of freedom (SDOF) system (see Sect. 1.2), consisting of the two parameters
mass m and spring c. For this basic system, the equations of motion, the natural
frequency, the free vibrations and the forced vibrations in case of a ground exci-
tation are derived and discussed. The additional effect of damping on free vibrations
(see Sect. 1.2.1) and forced vibrations (see Sect. 1.2.2) are investigated. From the
simple mass-spring system, we lead to the rotating shaft since it also follows similar
fundamental laws.

The transfer from the above SDOF mechanical system to a similar system with a
flexible rotating shaft is shown in Sect. 1.3. This basic mechanical system is the
Laval rotor, where the mass m is represented by a disc in the center of the shaft and
the spring c by the bending stiffness of the rotating shaft. Extensions of this very
basic system are possible, e.g., by the flexibility of the bearings and the support
system, which may include additional springs and masses as well. The effects of
rotation, e.g., unbalance and gyroscopic, must be considered.

The vibration system of a complete power plant machine, e.g., a turbine shaft
train consisting of the shaft train, the oil film bearings, the pedestals and the
foundation, is much more complicated and must be considered as a multi-degree of
freedom (MDOF) vibration system (see Sect. 1.4).

1.1 Kinematic of Vibrations

We discuss the kinematic of vibrations independent from the fact which sources the
vibrations have and at which locations of a system they occur. We will concentrate
on periodic vibrations and the special case of harmonic vibrations, because of their
dominance in vibration problems of power plant machines.

2 1 Basics of Vibrations



1.1.1 Periodic and Harmonic Vibration Signals in the Time
Domain

Figures 1.1 and 1.2 describe three typical periodic oscillations s(t): triangular,
sinusoidal and rectangular. An important example of them is the harmonic sinu-
soidal time function:

s tð Þ ¼ smax sinxt ð1:1Þ

with the amplitude smax and the angular frequency x.

Fig. 1.1 Periodic vibrations
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After elapse of the time period T, all three time function conditions which govern
the changes repeat themselves. We can now determine the oscillatory (vibration)
frequency f from the period T, as follows:

f ¼ 1=T ð1:2Þ

The unit of the frequency f is Hertz: f is equal to the number of events (periods)
per second. In vibration calculations, one often uses the angular frequency, i.e., the
number of oscillations in 2p seconds:

x ¼ 2pf ð1:3Þ

In the analysis of vibration, the subject of “harmonic motion” is of particular
importance. This is when the variables which apply change in accordance with a
sinusoidal curve (see Figs. 1.1, 1.2 and 1.3). The harmonic motion is characterized
by one frequency only. As an example, Fig. 1.3 shows the superposition of two
harmonic functions S1 and S2 leading to the combined periodic vibration S3 with
two frequencies of S1 and S2.

Fig. 1.2 Harmonic vibration
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1.1.2 Vibrations in the Time and Frequency Domain
(Fourier Analysis)

The Fourier analysis is applied, if the different frequencies being involved in a
vibration event. The vibration event should be individually recognized. We speak
about frequency analyzers or Fourier analyzers. These instruments have a special
importance at modal analysis applications like in structural resonance problems.
They enable a transition from the time domain into the frequency domain.

Every periodic oscillation can be traced back to a combination of harmonic (i.e.,
sinusoidal) oscillations. Considering as example a rectangular form (see Fig. 1.4)
and using the Fourier transform method, this time function s = f(t) can be trans-
formed from the time domain to the frequency domain s = f(f) and we obtain a
spectrum. Figure 1.4 indicates the Fourier transformation as a transition from time
to frequency domain:

Fig. 1.3 Combined vibrations
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If the rectangular oscillation is given by the time period T and the basic fre-
quency f = f0 = 1/T in the time domain, one finds in the frequency domain that this
is a combination of basic frequency f0 and an infinite number of harmonic com-
ponents f1, f2, f3, …, f∞.

Harmonic frequency components f1 to f∞ are odd-numbered multiples of the
fundamental f0:

f1 ¼ 1f0; f2 ¼ 0; f3 ¼ 3f0; f4 ¼ 0; f5 ¼ 5f0; . . .

If we look at a triangular oscillation, we will find even-numbered frequency
components:

f1 ¼ f0; f2 ¼ 2f0; f3 ¼ 0; f4 ¼ 4f0; f5 ¼ 0; f6 ¼ 6f0; . . .

The Fourier cube is a visualization of the time domain and the frequency domain
in a 3-dimensional presentation (see Fig. 1.5):

• From the frequency view, the different frequency lines are visible as a spectrum.
• From the time view, the superimposed time functions of these frequencies are

visible.

Fig. 1.4 Time-frequency functions
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The following Figs. 1.6, 1.7, 1.8, 1.9 and 1.10 demonstrate how a periodic
function is built from harmonics.

Fig. 1.5 Fourier cube

Fig. 1.6 Fundamental (Brüel
and Kjäer Vibro 1995)

Fig. 1.7 Third harmonic
added (Brüel and Kjäer Vibro
1995)
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We are now already very close to the rectangular shape. As more harmonics are
added, the closer we get to the rectangular shape. Adding an indefinite number of
harmonics will result in an ideal rectangular signal.

The Fourier rule says: All periodic and quasi-periodic signals are a combination
of several harmonic signals.

Fig. 1.8 Fifth harmonic
added (Brüel and Kjäer Vibro
1995)

Fig. 1.9 Seventh harmonic
added (Brüel and Kjäer Vibro
1995)

Fig. 1.10 Fifth to ninth
harmonic added (Brüel and
Kjäer Vibro 1995)
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1.1.3 Relations Between Deflections, Velocities
and Accelerations

We consider a simple mass-spring vibration system as shown in Fig. 1.11 and
assume that the point-mass m performs a harmonic up and down movement, where
the deflection s(t) follows a time function as described in Eq. (1.4). It describes a
motion whereby its distance from the zero position varies according to a sinusoidal
time function. Such a harmonic motion of the SDOF system can occur either as a
free motion after a short disturbance or as a forced motion due to some harmonic
excitation. Solutions can be found from the equations of motion for the SDOF
system as it will be derived in the next Sect. 1.2. From a kinematic point of view,
the harmonic time function shown in Fig. 1.2 is determined by the projection of an
arrow, rotating in a polar diagram with the angular of velocity x (see Fig. 1.11 for
the definition quantities of a spring pendulum).

The origin of the polar graph is 0, but we define an arbitrary chosen starting
point t = 0 for our considerations. This because of the balancing phase reference,
which will be explained later.

If we consider the period starting at t = 0, the relationship between s and t is
given by the following equation:

s ¼ s0 cos xt � uð Þ ð1:4Þ

where s0 is the deflection or vibration amplitude and u is the phase angle. Both
quantities are very important, particularly when different time signals must be
superimposed.

Fig. 1.11 Mass on a spring
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We will need the phase angle later for balancing, which will be described in
more detail in Chap. 4. The phase angle u is determined from the point of time
zero. With most of the vibration measurements made on turbo-sets, time zero is set
by a reference signal, generated by a photo-electric or magnetic pickup from a mark
on the shaft, so that one impulse peak is given for each revolution.

The balancing phase reference will be explained later.
So far, we have been considering the deflection s which is also referred to as the

vibration amplitude. If the deflection s is now differentiated with respect to time, we
obtain the velocity v:

v ¼ ds
dt

¼ �s0x sin xt � uð Þ ¼ v0 sin xt � uð Þ ð1:5Þ

If Eq. (1.4) is now differentiated a second time with respect to time, we obtain
the vibration acceleration a:

a ¼ dv
dt

¼ d2s
dt2

¼ �s0x
2 cos xt � uð Þ ¼ a0 cos xt � uð Þ ð1:6Þ

From Eqs. (1.4), (1.5) and (1.6), the following relationship becomes clear:

• s is a function of cos xt � uð Þ with factor s0
• v is a function of � sin xt � uð Þ with factor s0x
• a is a function of � cos xt � uð Þ with factor s0x2:

For a given deflection amplitude s0, the velocity amplitude v0 rises linearly with
the frequency x while the acceleration amplitude a0 rises quadratic with x. The
vibration parameters mostly used in power plant applications, s and v, have a phase
displacement of 90° to each other (see Fig. 1.12).

In practice, oscillation or vibration takes place when a mass is subject to forces
under resilient conditions. Mass and spring elements are the requisite components
of a system which is capable of vibration or oscillation. The vibration may either be
free (i.e., natural) or forced vibration.

Fig. 1.12 Phase relation
between s and v
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During the motion, spring forces, mass inertia forces and external forces are
acting, and at each instant are in a state of equilibrium. In actual practice, another
element is also present in the form of frictional forces, which act in opposition to the
direction of motion and which must be included in the conditions of equilibrium.
The effect of friction is called damping. If its effect is so small that it can be
neglected for the considered case, we have an undamped (or weakly damped)
system, otherwise it is damped (see Fig. 1.13).

In contrary to the free, undamped vibration, the damping causes that the system
will restore the standstill according to an exponential function. How long that takes
depends on the amount of damping. A mass-spring system comes into free vibration
if the mass is once displaced from its resting position and then allowed to move on
its own; forced vibration takes place if the system is continuously kept in motion by
an external force.

In Fig. 1.13, we see the difference between a free and a forced vibration. In
practice, a free vibration will decay because of the damping d. A forced vibration
will be kept up, because of an external driving force.

1.2 Vibrations of a Single Degree of Freedom (SDOF)
System

A very simple mechanical system to explain the basics of vibrations is the single
degree of freedom (SDOF) system, consisting of the two parameters mass m and
spring c. For this basic system, the equations of motion, the natural frequency, the

Fig. 1.13 Damped vibration
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free vibrations and the forced vibrations will be derived and discussed in this
chapter. The additional effect of damping on free vibrations and forced vibrations
will also be investigated.

Free undamped vibrations: A ball of mass m as shown in Fig. 1.14 is suspended
from a linear spring having the spring constant c. The ball is next displaced by
amount s and then allowed to move freely. We now want to find the natural
frequency of the oscillation of the mass-spring system, in other words the frequency
of the system, at which “resonance” appears. In case of the free vibration, the forces
acting on the ball are:

• the spring restoring force F ¼ �cs and
• the inertia force of the mass m.

The minus sign indicates that F acts in the opposite direction to the deflection
s. In accordance with the fundamental law of dynamics, expressed by Newton’s
law, these two forces must be in equilibrium:

�cs ¼ m
d2s
dt2

) d2s
dt2

þ c
m
s ¼ 0 ð1:7Þ

For this equation of motion for the free vibrations, the time solution can be
obtained by s = s0 sin xt and with the derived acceleration:

Fig. 1.14 Free vibration of a SDOF system
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d2s
dt2

¼ �x2s ¼ a ð1:8Þ

we obtain the angular natural frequency x of the SDOF system:

x2s ¼ c
m
s)x ¼ x0 ¼

ffiffiffiffi
c
m

r
ð1:9Þ

The natural frequency can also be expressed in Hertz. This natural frequency is a
function of c and m.

f ¼ 1
2p

ffiffiffiffi
c
m

r
ð1:10Þ

Forced undamped vibration: If the mass-spring system is caused to vibrate by
external means, the ball will be subject to forced vibration. We consider the special
case of a forced ground excitation as shown in Fig. 1.15.

We concentrate on the “vibrating condition” after all initiating processes have
died out. If the point of suspension (or of excitation) has moved by amount s1, the
spring has been lengthened by amount s − s1 and as per the basic law of dynamics,
we find the equations of motion for the forced vibration of the SDOF:

Fig. 1.15 Forced vibration due to ground excitation
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m
d2s
dt2

þ cs ¼ cs1 ð1:11Þ

Substituting s1, we obtain the equation of motion:

m
d2s
dt2

þ cs ¼ cr cos xtð Þ ð1:12Þ

By solving Eq. (1.12) for the deflection s, we obtain:

s ¼ cr
c� mx2 cos xtð Þ ð1:13Þ

Thus, the deflection depends on the frequency x. At very low values of x, the
maximum value becomes practically equal to r, and the forced vibration hardly differs
from the exciting oscillation. We could consider that as the “rigid state.” When x
reaches the valuex = x0 (the case of resonance), the denominator becomes zero and
s approaches infinity. In practice, infinite deflection does not occur, because it is
damped by damping effects which are always present. When x is increased further,
above, the denominator becomes negative; this means that the excitation point
reverses direction in relation to the mass. Thus, the mass experiences, as it passes
through the resonance frequency, a “phase jump” of 180° in relation to the movement
of the suspension point. This transition does not take place suddenly, as the damping
results in a continuous changeover (see Fig. 1.16).

Fig. 1.16 Resonance, phase shift, damping
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Figure 1.16 demonstrates the effect of damping, expressed by the damping factor
D. Damping sources can be

• material,
• joints,
• journal bearings,
• seals and
• electromagnetic interaction.

Below its resonance frequency, a flexible system is governed by its spring
properties 1/c. At the high point of the resonance, the damping will limit the
response 1/xd. After having passed the resonance, the inertia mass will govern the
response.

The effect of damping on the free as well the forced vibrations will be derived in
the following (Sects. 1.2.1 and 1.2.2).

1.2.1 Effect of Damping on Free Vibration

Up to now, the damping effect was neglected in the equations of motion, as shown
again for the free vibrations

m
d2s
dt2

þ cs ¼ 0 ð1:14Þ

where m d2
s

dt2 represents the mass inertia force and cs represents the spring restoring

force.
As described earlier, in real cases there are always forces present which have a

damping effect. The damping forces perform work and reduce the content of kinetic
energy in the system. To illustrate this, we will add a damping cylinder to the simple
model, where the piston follows the same motion as the mass (see Fig. 1.17).

Fig. 1.17 Damped
spring-mass system
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The sign of the damping force is negative because the damping force acts against
the motion and slows it down. Again, the dynamic forces are in equilibrium for the
free vibrations, so that:

m
d2s
dt2

þ d
ds
dt

þ cs ¼ 0 ð1:15Þ

In the cylinder, frictional forces K occur which act in the opposite direction to
the vibration movement and which have a magnitude proportional to the velocity
v of the piston (in this case one speaks of a “linear damping,” which is the usual
situation in our work).

Equation (1.15) is the equation of motion for the damped, free vibration. The

terms m d2
s

dt2 and cs are known from the previous discussion, and the term d dsdt now

represents the damping force.
When solving this equation for the displacement s by means of a mathematical

set up, we obtain

s ¼ s0e�DT cos xt � uð Þ ð1:16Þ

where D is the constant for decay time, in the technical literature known as damping
measure:

D ¼ d
2

ffiffiffiffiffiffi
cm

p ð1:17Þ

D is a dimensionless number, which in our practice lies between 0 and 1 (or
between 0 and 100%). A good way to determine D is the “logarithmic decrement
d,” by consideration of the process of decay.

The initially undamped time function s ¼ s0 cos xt � uð Þ will be enveloped by
the damping s ¼ s0e�DT and decays logarithmically. When the values of the
vibration maxima are plotted on a vertically scaled logarithmic graph, each maxi-
mum of the points plotted must lie on a straight line (see Fig. 1.18).
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