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Preface

This volume contains selected papers presented at two symposia organized in
conjunction with the TMS 2020 Annual Meeting & Exhibition in San Diego,
California, USA:

• Energy Technologies and CO2 Management (sponsored by the TMS Energy
Committee)

• Recycling of Secondary, Byproduct Materials and Energy (sponsored by the
TMS Recycling and Environmental Technologies Committee)

The papers in this volume intend to address the issues, intricacies, and the chal-
lenges relating to energy and environmental sciences.

The Energy Technologies and CO2 Management Symposium was open to
participants from both industry and academia and focused on energy efficient
technologies including innovative ore beneficiation, smelting technologies, recy-
cling, and waste heat recovery. Topics cover various technological aspects of
sustainable energy ecosystems and processes that improve energy efficiency, reduce
thermal emissions, and reduce carbon dioxide and other greenhouse emissions.
Papers addressing renewable energy resources for metals and materials production,
waste heat recovery and other industrial energy efficient technologies, new concepts
or devices for energy generation and conversion, energy efficiency improvement in
process engineering, sustainability and life cycle assessment of energy systems, as
well as the thermodynamics and modeling for sustainable metallurgical processes
are included. This volume also includes topics on CO2 sequestration and reduction
in greenhouse gas emissions from process engineering, sustainable technologies in
extractive metallurgy, as well as the materials processing and manufacturing
industries with reduced energy consumption and CO2 emission. Contributions from
all areas of non-nuclear and non-traditional energy sources, such as solar, wind, and
biomass, are also included in this volume.

The Recycling of Secondary, Byproduct Materials and Energy Symposium
provided a forum for papers exploring the valorization of materials and their
embodied energy including byproducts or coproducts from ferrous and non-ferrous
industries, batteries, electronics, and other complex secondary materials. Although
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most recycling only involves mechanical and physical manipulation of matter,
which typically require one to two orders of magnitude less energy than the
chemical manipulation involved in primary production, recycling processes still
require energy to operate, and they do not run emission-free. Recycling processes
must be designed to deal with materials that are potentially quite different from the
original base material. However, there has been a significant mismatch between the
technical needs for responsible treatment of secondary, byproduct materials, and
embodied energy of materials and the ability to achieve economically feasible and
sustainable operations. These materials and their embodied energy are generally
low value and can be quite complex due to the significant variation in properties
leading to potential mismatch among complexity, regulations, and available
resources. The papers included in this volume can provide readers a broad per-
spective on both the technical as well as policy-based challenges.

We hope this volume will serve as a reference to materials scientists and
engineers as well as metallurgists for exploring innovative energy technologies and
novel energy materials processing.

We would like to acknowledge the contributions from the authors of the papers
in this volume, the effort of the reviewers involved with the manuscripts review
process, and the help received from the publisher. We also acknowledge the
organizers of both symposia contributing the papers to this volume.

Energy Technologies and CO2 Management Symposium
Organizers

Xiaobo Chen, RMIT University
Yulin Zhong, Griffith University
Lei Zhang, University of Alaska Fairbanks
John A. Howarter, Purdue University
Alafara Abdullahi Baba, University of Ilorin
Cong Wang, Northeastern University
Ziqi Sun, Queensland University of Technology

Recycling of Secondary, Byproduct Materials and Energy
Symposium Organizers

Mingming Zhang, ArcelorMittal Global R&D
Elsa Olivetti, Massachusetts Institute of Technology
Alan Luo, The Ohio State University
Adam Powell, Worcester Polytechnic Institute
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The Impact of Solar Resource
Characteristics on Solar Thermal
Pre-heating of Manganese Ores

Lina Hockaday, Tristan McKechnie, Martina Neises von Puttkamer
and Matti Lubkoll

Abstract The proposed paper evaluates an alternative ferromanganese production
flowsheet seeking to pre-heat manganese ores with concentrating solar thermal
energy to 600 ◦C. The benefits of solar thermal pre-heating will be evaluated based
on a cost discounted economic model taking into account the variability of the solar
resource, capital costs, and operating costs of a solar thermal plant over the lifetime of
the project. Solar variability will be discussed based on possible implementation sites
for such technologies, and the cost and benefits of thermal storage in the flowsheet
will also be evaluated. This work is part of the PreMa project, aiming to advance
novel energy systems in the drying and pre-heating of furnace materials. The PreMa
project has received funding from the European Union’s Horizon 2020 Research and
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Introduction

Manganese is an important additive to steel. Manganese content in steel improves
toughness and wear resistance of steel, and on average about 0.8% manganese is
added to steel. 90% of manganese is used as steel additive in the form of ferroman-
ganese alloys. Ferromanganese alloys are produced in either blast furnaces or electric
arc furnaces with carbon as a reductant. Detailed description ofmanganese ferroalloy
production, both for high carbon ferromanganese and low carbon silicomanganese
alloys can be found in literature [11, 19]. Global manganese ore mine production is
summarized in Table1 as adapted from [21]. The Republic of South Africa (RSA)
is the leading producer of manganese ores and has the largest land based manganese
ore reserves.

Global manganese ferroalloy production which includes different grades of fer-
romanganese and silicomanganese is given in Table2 as adapted from [10].

The PreMa project [17] aims to investigate the optimal pre-heating option for
a high carbon ferromanganese furnace in order to reduce electricity consumption
and greenhouse gas emission from manganese ferroalloy production [8]. Although

Table 1 Global mine production and reserves of manganese ores by country, manganese content

Year Unit RSA Ukraine Brazil Australia Gabon China Other World total

2017 kt/a 5400 735 1160 2820 2190 1700 1278 17,300

2018 kt/a 5500 740 1200 3100 2300 1800 1342 18,000

Reserves kt 230,000 140,000 110,000 99,000 65,000 54,000 62,000 760,000

Table 2 Manganese ferroalloy production by country, based on manganese content. China was the
largest manganese ferroalloy producer, with production being four times more than India and ten
timesmore than SouthAfrica. Norway and Spainwere the largest European producers ofmanganese
ferroalloys

Country Production (000mt)

China 10,349

India 2372

RSA 741

Ukraine 713

South Korea 686

Norway 608

Japan 483

Russia 352

Australia 254

Spain 243

Other 1447

World total 18,249
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the project also investigates pre-heating with furnace off-gas, bio-carbon, and fossil
carbon, this paper focuses on the novel use of concentrating solar thermal energy
as the energy source for pre-heating. The cost of using concentrating solar thermal
process heat is dependent on the available solar resource at the location it is captured,
as well as the technology choices selected. This paper studies three possible locations
for concentrating solar thermal plants in proximity to current manganese ferroalloy
smelters, as well as one location near manganese ore mines. It was attempted to
select locations with existing smelters and good solar radiation in Europe, Africa,
and China. The locations selected for evaluation are listed below. These locations
were not selected as ideal sites, for example China has locations with better solar
resources in the Inner Mongolia Province, but is evaluated to provide insight into
the factors involved in the application of solar thermal process energy to a high-
temperature industrial process.

• Jiayuguan, Gansu Province, China
• Huesca, Spain
• Hotazel, Northern Cape Province, South Africa (RSA 1)
• Emalahleni, Mpumalanga Province, South Africa (RSA 2).

Manganese Ferroalloy Production Process Modeling

To investigate the energy demand for pre-heating of manganese ores, a HSC model
[14, 15], Version 9.9.2.3, was constructed for the PReMA project. The HSC model
is based on the possible reactions that can take place during pre-heating and smelting
and the extent they progress towards completion.

Traditional pre-heating systems rely on fossil fuel combustion, and a reducing
atmosphere with low partial pressures of oxygen is generally practiced [20]. The
novel solar thermal pre-heating unit relies on heated air, maintaining an oxidative
atmosphere in the unit, and therefore, the reactions differ from those expected in a
reducing atmosphere and are given in Eqs. 1–8. Equation7 is the Boudouard reaction
where carbon dioxide reacts with carbon to form carbon monoxide. This reaction is
likely to start taking place at temperatures above 500 ◦C and to proceed fully only at
temperatures above 800 ◦C. Similarly, this preliminary investigation has been guided
by calculated equilibrium reactions for the thermal decomposition ofMnO2 toMn2O3

Table 3 Illustrative modeling assumptions and resulting energy demand for the pre-heater

Reaction 1 2 3 4 5 6 7 8

Completion (%) 100 80 100 100 100 100 0 100

Pre-heating target, ◦C 600

Pre-heater energy demand, kWh/t feed 339.8

Process CO2 emission factor, t/t alloy 2.31
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as published by [19, p. 74]. Future work will involve the determination of kinetics
for these reactions. The completion of these reactions will influence the final energy
demand of the pre-heater, and values in Table 3 are for illustrative purposes only.

The results from process modeling for pre-heating to 600 ◦C are shown in Table3.
The process CO2 emission factor of 2.31 is a reduction in 7% on the emissions factor
for a process not employing pre-heating. The energy demand for a pre-heater feeding
a 30MW high carbon ferromanganese furnace that requires a manganese ore feed of
approximately 40t/h will therefore have an energy demand of 13.6MW to achieve a
product temperature of 600 ◦C.Due to the variable nature of the solar resource, a solar
thermal plant will only be able to meet this demand in part. The following section
describes the methodology to size a solar thermal plant, with thermal storage to
improve availability and electrical heating as back-up for the four different locations
identified as possible sites. Electrical heating was chosen as back-up technology
due to the increase in zero emission electricity options available to industry [16].
Using electricity as back-up rather than a fossil fuel also prevents pre-heating cycling
between an oxidizing and a reducing environment, which may lead to problems with
control of the carbon balance in the submerged arc furnace (SAF).

MgCO3 −→ MgO + CO2(g) (1)

CaMg(CO3)2 −→MgO + CaCO3 + CO2(g) (2)

H2O(l) −→ H2O(g) (3)

2FeO · OH −→ Fe2O3 + H2O(g) (4)

MnCO3 −→ MnO + CO2(g) (5)

2AlO(OH) −→ Al2O3 + H2O(g) (6)

C + CO2(g) −→ CO2(g) (7)

4MnO2 −→ 2Mn2O3 + O2(g) (8)

Solar Thermal Plant Modeling Methodology

In recent years, solar thermal technology has advanced through the development of
solid particle receivers [5, 6]. Solid particle receivers operate with the solid particles
directly exposed to the concentrating solar flux. The layer of solid particles in the
Centrec® receiver shields the rotating structure of the receiver and makes possible
particle temperatures in excess of 900 ◦C [2]. Figure1 shows a schematic of a CST
plant that would provide high-temperature process heat to an industrial process as
envisaged in the PreMa project [17].

The purpose of this section is to compare the effect of solar resource variability
on the potential for incorporating concentrating solar thermal (CST) technologies
in manganese ore pre-heating. The integration of CST technologies is envisioned to
lead to lower energy costs and significant reductions in carbon emissions, as already
presented in Section Manganese Ferroalloy Production Process Modeling. The CST
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Fig. 1 Concentrating solar thermal technologies

plant model assumes the German Aerospace Center’s (DLR) particle receiver tech-
nology [2], CentRec®, for receiver and thermal energy storage. For the purpose of
this assessment, their receiver sizing and performance characteristics are based on
[1]. The model follows [12] with the thermal receiver size fixed at 1 m2 and 2.5MWt

output. The solar field is then sized to provide a system output of 2.5 MWt at solar
equinox. Each such CST tower system can then at best provide 2.5 MWt peak to a
consumer. Multiple CST towers are foreseen to be deployed when the heat demand
exceeds the supply of one tower. The lowest levelized cost of heat, LCOH, of a CST
system is usually found with the solar components being significantly over-sized
compared to the thermal demand. This over-sizing permits thermal storage and is
expressed through the solar multiple, defined as follows:

SM = Qrec

Qprocess
, (9)

where Qrec is the thermal output of the receiver at the solar field design point, and
Qprocess is the thermal output to process.

The solar plant annual performance assessment is conducted by modeling at
hourly steady state conditions. The solar resource data is obtained as typical mete-
orological year (TMY) from Meteonorm [13], Version 7.3. Details regarding the
plant and economic modeling and model inputs are explained further in the paper
of [12]. The solar plant operation was simulated to determine the energy produced,
from which the LCOH was determined. A parametric study was then performed to
determine the most suitable solar plant configuration to obtain the lowest LCOH for
each site.

Field Layout

The positioning of the tower within the heliostat field was investigated, resulting
in improved optical efficiency for the solar field. This is an improvement on the
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(a) Tower at center (b) Tower at 30% (c) Tower at 60% (d) Tower at 90%

Fig. 2 Tower position optimization

Fig. 3 Tower position within field and resulting field optical efficiency

methodology described by [12]. The receiver is modeled angle downward 45◦ from
the horizontal. This allows heliostats placed behind the tower to have line of sight
to the receiver opening. Heliostats placed near and behind the tower have improved
optical efficiency compared to heliostats in front of the tower but further away. The
optimal placement of the tower within the field was determined as presented in
Fig. 2. Figure3 shows the resulting field optical efficiency. It can be seen that the
tower placed at 0.6 × rfield from the center of the field resulted in the maximum field
optical efficiency. These results agree with those of [7]. All fields sized in this paper
will therefore have a layout similar to Fig. 2c. The specification of the heliostat field
now allows the capacity factor (CF) to be calculated. The capacity factor is defined
as the average annual energy production divided by the process heat demand.

Operating Strategy

The configuration of a CST plant producing heat at the lowest levelized cost of
heat, LCOH, does not typically have a 100% capacity factor; for this reason back-up
electric heaters are included as auxiliary heating for when solar heat is insufficient to
meet demand.LCOHis determinedbydividing the total costs over the project lifetime



The Impact of Solar Resource Characteristics … 9

Table 4 Plant locations and resulting solar fields

Location Units RSA 1 RSA 2 Spain China

Site data Latitude – 27.240S 25.886S 41.926N 39.897N

Longitude – 22.902E 29.123E 0.183E 98.318E

DNI kWh/(m2a) 2795 2117 1929 1520

Solar plant
specifica-
tions

htower m 40

arec m2 1

α ◦ 45

ηrec % 90

by the total amount of energy supplied over the lifetime of the project. A combined
LCOH of solar electric heating was calculated to determine the configuration of the
solar plant that results in the lowest produced combined solar electric heat. The cost
of electrically generated heat is simplified as the cost per MWh of electricity. The
combined solar electric LCOH was calculated as follows:

LCOHcomb = LCOHCSTQCST + LCOHelQel

Qtot
, (10)

where QCST is the total annual solar generated heat, Qel is the total annual electrical
generated heat, Qtot is the total annual generated heat, LCOHCST is the cost of solar
generated heat and LCOHel is the cost of electrically generated heat.

The operating strategy for the plant is to deliver the thermal demand whenever the
receiver and/or TES has sufficient energy available. At any point when the solar plant
does not output the rated thermal demand, then electric heating is supplemented.

Locations

Table4 shows the locations that were assessed and the common solar plant parame-
ters with DNI data from [18] and solar plant specifications as modeled by [12]. The
two South African locations have similar latitudes, but differ in the available solar
resource. Likewise for the Chinese and Spanish locations, the solar plant specifica-
tions listed are htower tower height, arec receiver aperture area, α the receiver tilt angle
from the horizontal, and ηrec the receiver solar to particle efficiency.
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Results and Discussion

Table5 summarizes the results from the solar plant modeling and parametric stud-
ies. The CST parameters are configured for the lowest annual combined LCOH,
incorporating solar with electric back-up for constant heat production. LCOHCST,pot

represents an optimized CST only plant configuration and provides reference of
the lowest possible solar LCOH. Relative to this, the configuration represented by
LCOHCST has significantly higher solar capacity factor to reduce the LCOHcomb by
suppressing electricity usage. The economic benefit of increasing the solar capacity
factor is more than the added cost for a larger CST systems. This is because for all
locations, CST heat is more affordable than electrical heat.

Locations with similar latitudes (RSA 1 and RSA 2, and Spain and China) expe-
rience similar sun angles throughout the year. As the solar fields are sized for all
locations with a common design point DNI, the locations with similar latitudes
therefore have similar sized fields. Further, the annual solar field efficiency can be
seen to have increased compared to the results from [12], as the tower has been
located at an improved location.

The Spanish and Chinese locations can be seen to have significantly more expen-
sive electricity, and therefore, favor systems with higher SM and TES size, thereby
off-setting the amount of electricity required. Even then, the Chinese location shows
relatively moderate CF due to the poor direct normal irradiance (DNI). The South
African locations feature less storage, nonetheless show high CF due to high solar
resources. RSA 1 is able to achieve a high capacity factor as the solar resource for
the location is excellent. RSA 2’s solar plant configuration is not further over-sized
as the electricity cost is relatively low.

All locations benefit from incorporating CST technologies. The higher the elec-
tricity tariff for a location, the larger the solar system will be to suppress electricity
use. The benefit of the solar with electric back-up compared to total electrification is
shown in the final row of Table5. Electricity cost data for South Africa was obtained
from [4], for Spain from [9], and for China from [3]. The benefit of solar thermal
heating as compared to electrification is of course larger for countries with higher
electricity costs such as Spain. It should be noted that the cost savings will increase
with electrical tariff increases; whereas, the solar heat cost will remain steady over
the life of the system. The model in this paper does not include electricity price
escalation.

Conclusion

This paper evaluated the energy demand for a pre-heater driven by a solar thermal
plant providing hot air and backed up by electric heating elements. The aim of the
studywas to investigate the feasibility of high-temperature solar thermal process heat
for pre-heating as a cost effective alternative to electrification of the process as a way
of limiting green house gas emissions. The results confirmed that the combined solar
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Table 5 Solar plant configuration

Type Parameters Units RSA 1 RSA 2 Spain China

Site data: DNI kWh/(m2a) 2795 2117 1929 1520

LCOHel $/MWh 47.29 47.29 115.51 74.65

CST potential: LCOHCST,pot $/MWh 35.48 43.43 46.28 56.02

Combined system
per tower:

TES h 14 14 22 16

Asf m2 3563 3563 3616 3616

ηsf,a % 65 66 62 62

SM – 3.2 3.0 4.5 4.2

Q̇process MW 0.79 0.82 0.55 0.60

CFCST % 79 63 76 63

LCOHCST $/MWh 36.25 43.85 54.02 57.46

LCOHcomb $/MWh 38.55 45.13 68.98 63.75

For pre-heater
integration:

Number of towers – 18 17 28 23

Total heliostat field
area

ha 6.4 6.1 9.1 8.3

Benefit versus total
electrification

�LCOHa % 19 5 40 17

a�LCOH = (LCOHel − LCOHcomb)/LCOHel

thermal and electric heating produced lower energy costs over a project lifetime of
25years compared to heating through electrification only for all locations evaluated.
Locations with a high annual DNI had lower levelized energy costs than locations
with lower annual DNI levels, but the cost of electricity at each location also had
an influence on the solar thermal plant design. High electricity costs increased the
amount of thermal energy storage and the solar multiple to ensure that the most cost
effective solution has a high solar share. Countries with high annual DNI and low
electricity costs may in future have a global competitive advantage for low emission,
high-temperature process energy applications.

The methodology was optimised for heliostat field size, tower position, solar
multiple (SM), and thermal energy storage (TES) at each location. The optimization
resulted in higher capacity factors than previously published [12] for systems that
were not optimized to achieve the lowest LCOH.

In conclusion, although combustion heating with fossil fuels such asmetallurgical
coke and coal remains the least cost alternative at the time of writing, solar thermal
process energy can compete favorably with process heating by electrification for
projects with a lifetime of 25years. With industry targets of lowering greenhouse
gas emissions becoming more urgent [16], evaluating where solar thermal process
energy can be a cost effective alternative is of relevance to industry.
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