
Exercises in Environmental Physics



Valerio Faraoni

Exercises in Environmental
Physics



Library of Congress Control Number: 2006925900

ISBN-10: 0-387-33912-4
ISBN-13: 978-0387-33912-2

Printed on acid-free paper.

© 2006 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part 
without the written permission of the publisher (Springer Science+Business Media, LLC,
233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection
with reviews or scholarly analysis. Use in connection with any form of information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as
to whether or not they are subject to proprietary rights.

Printed in the United States of America. (MV)

9 8 7 6 5 4 3 2 1

springer.com

Valerio Faraoni
Physics Department
Bishop’s University
Lennoxville, Quebec J1M 1Z7
Canada
vfaraoni@cs-linux.ubishops.ca



To Louine and Donovan



Contents

Dedication v
Preface xi
Acknowledgments xv

1. MATHEMATICAL METHODS 1
1.1 Complex numbers 2
1.2 Functions of a single variable 6

1.2.1 Differentiation 6
1.2.2 Integration 10
1.2.3 Maxima, minima, and graphs 14

1.3 Ordinary differential equations 24
1.3.1 Solution methods 24
1.3.2 Qualitative analysis 33

1.4 Functions of two or more variables 37
1.4.1 Differentiation 37
1.4.2 Integration 40

1.5 Vector calculus 45
1.6 Partial differential equations 56
1.7 Tensors 69
1.8 Dimensional analysis 73

2. PLANET EARTH IN SPACE 81
2.1 Astronomy 82
2.2 Planet Earth 87



viii EXERCISES IN ENVIRONMENTAL PHYSICS

3. OCEAN AND ATMOSPHERIC PHYSICS 103
3.1 The blue planet 104
3.2 Oceanic circulation 107
3.3 Ocean waves 115
3.4 General features of the atmosphere 122
3.5 Temperature and pressure 128
3.6 Atmospheric circulation 130
3.7 Precipitation 132

4. ELECTROMAGNETIC RADIATION AND RADIOACTIVITY 139
4.1 The electromagnetic spectrum 140
4.2 Blackbody radiation 142
4.3 Propagation of electromagnetic radiation 147
4.4 Greenhouse effect 156
4.5 Electromagnetic radiation and human health 161
4.6 Environmental spectroscopy 164

4.6.1 Quantum mechanics 165
4.6.2 Vibrational and rotational levels of molecules 169

4.7 Radioactivity 173

5. ENERGY AND THE ENVIRONMENT 183
5.1 Mechanical energy 184

5.1.1 Storage and transport 184
5.1.2 Transportation and vehicles 189
5.1.3 Eolic energy 190

5.2 Heat transfer 196
5.3 Thermodynamics 214
5.4 Electricity 219

6. FLUID MECHANICS 223
6.1 Liquids 223

6.1.1 Fluid statics 224
6.1.2 Capillarity and surface tension 231
6.1.3 Fluid dynamics 235

6.2 Gases 244



Contents ix

7. EVAPOTRANSPIRATION, SOILS,
AND HYDROLOGY 251
7.1 Phase transitions, hygrometry, and evapotranspiration 252
7.2 Soil physics 262
7.3 Groundwater hydrology 276

8. POLLUTION 287
8.1 Transport equations 288
8.2 Water pollution 296
8.3 Air pollution 307

APPENDICES 315
A Physical constants 315
B Mathematical identities 319
C Differential operators in various coordinate systems 321

REFERENCES 323

INDEX 327



Preface

The study of environmental physics requires understanding topics
from many different areas of physics as well as comprehension of physi-
cal aspects of the world around us. Several excellent textbooks are
available covering most aspects of environmental physics and of applica-
tions of physics to the natural environment from various points of view.
However, while teaching environmental physics to university students, I
sorely missed a book specifically devoted to exercises for the environmen-
tal science student. Thus, the motivation for this book came about as in
physics, as well as in many other disciplines, satisfactory knowledge of a
subject cannot be acquired without practice. Usually students are not
familiar with the various areas of physics that are required to describe
both the environment and the human impact upon it. At the same time,
students need to develop skills in the manipulation of the ideas and con-
cepts learned in class. Therefore, this exercise book is addressed to all
levels of university students in environmental sciences.

Because of the wide range of potential users this book contains both
calculus-based and algebra-based problems ranging from very simple to
advanced ones. Multiple solutions at different levels are presented for
certain problems—the student who is just beginning to learn calculus will
benefit from the comparison of the different methods of solution. The
material is also useful for courses in atmospheric physics, environmental
aspects of energy generation and transport, groundwater hydrology, soil
physics, and ocean physics, and selected parts may even be used for basic
undergraduate physics courses. This collection of exercises is based on
courses taught at the University of Northern British Columbia and at
the University of Victoria, Canada.

Each problem and its solution are self-contained so that they can
be attempted or assigned independently. For students willing to deepen
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their knowledge of the subject, references to the literature are sometimes
given in the text or the solution of the problems.

The problems are arranged by topic, although problems usually over-
lap two or more different categories. This should make the students
aware of the fact that problems of the environment—even relatively sim-
ple ones—often involve different areas and require various techniques in
an interdisciplinary approach. This is even more true for the complex
problems that the environmental scientist encounters daily. To put it in
John Muir’s words, “When we try to pick out anything by itself, we find
it hitched to everything else in the universe” [53].

This book is not comprehensive: covering the complete spectrum of
topics in environmental physics would require a monumental work and
most readers would have little appreciation for the more specialized top-
ics. Many books or review papers on specific topics exist and they some-
times include exercises, but they are often too detailed for the purpose
of a general course in environmental physics. The selection of topics
contained in this book is to a certain extent arbitrary, as is the choice
of subjects presented in most courses in environmental physics currently
taught in university. However, I do believe that the essential topics
common to any general environmental physics course are covered here.
Rather than presenting exercises on the plethora of empirical formulas
appearing in the literature on the various areas of environmental physics,
the focus is on the unifying physical principles that can be applied to
many different subjects.

How to Use This Book

The International System of units (SI system) is used in this book.
Exercises are labeled with the letters A, B, or C. A denotes lower
mathematical level (algebra-based) problems that can be solved with-
out knowledge of calculus; whereas B indicates higher mathematical
level problems usually requiring calculus for their solution. The letter
C denotes conceptual questions that do not require calculations—these
are inserted at the beginning of each chapter in lieu of lengthy review
sections. Problems labeled A or C are not necessarily the easiest just
because no calculus is required: they test the student’s understanding
and knowledge of the physical concepts and normally require more than
just common sense for their solution.

The student should not browse through the solution before a problem
has been attempted and a honest effort has been made to solve it. If
a problem cannot be solved in spite of serious and repeated effort, the
student should not be frustrated but should read and understand the
solution and then review and correct his or her knowledge of the subject.
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This is what exercises are for, after all, and the student will certainly
learn from this process. Many exercises in the book require a sound
mathematical background, and Chapter 1 reviews basic mathematical
techniques. The section on vector calculus is particularly important to
solve exercises that require the use of the transport equations.

First-year students may benefit from reading a general qualitative
book such as Refs. [64, 60, 46] before delving into the details of specific
areas of environmental physics. References [27, 28] contain entertaining
and instructive solutions to selected problems using simplified quantita-
tive models—for an advanced reference on environmental modeling, see
Ref. [72]. Suggested readings are given at the beginning of each chapter
or section. A recommendation for students just beginning in science and
to whom many of these exercises are addressed: the problems should be
solved using symbols for the physical quantities considered and the nu-
merical values should only be inserted at the end of the mathematical
calculations. It is strongly recommended to insert the corresponding
units together with the numerical values of the various quantities, and
to pay attention to the number of significant digits.

I have tried as much as possible to eliminate errors from the book,
but I shall be grateful to readers informing of any errors that they may
notice.

Lennoxville, Québec

March 2006

Valerio Faraoni
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Chapter 1

MATHEMATICAL METHODS

A part of the secret of analysis is the art of using notations well.
—Gottfried Wilhelm Leibnitz

Environmental problems are often posed in the context of data collec-
tion and statistics, and extensive discussion of the social, economic, and
legal aspects of environmental science is certainly required. However, it
is not sufficient to talk about environmental problems or to collect data
and make statistics. To begin analyzing and finding solutions to prob-
lems in environmental physics requires a precise formulation in mathe-
matical terms, and the methods of mathematical physics are widely used.
Many problems—even if well-posed mathematically—are too difficult to
solve because of the complexity resulting from interdisciplinarity and
because of their intrinsic nonlinearity. As a result, simplified models are
often employed.

Mathematical modeling is an art in which one needs to capture the
essential features of the phenomenon under study, yet keep the model
sufficiently simple so that it is useful. Complications and details can be
added later by modifying a model that has provided physical insight,
and observational data and statistics are required in order to formu-
late the necessary boundary and initial conditions. One ends up using
approximations, which are usually found on the basis of physical in-
tuition rather than mathematical convenience, although sometimes the
temptation to kill complicated terms in the equations has led to mean-
ingful approximations. The assumptions of the model, however, should
not oversimplify—the old adagio applies: no model is better than its
assumptions.
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Environmental science takes advantage of virtually every mathema-
tical tool developed—here we review the basic mathematical concepts
used in the solution of the exercises of this book.

1.1 Complex numbers
Complex numbers are used to describe physical systems ruled by linear

differential equations, to represent physical quantities with Fourier series
and Fourier integrals, to compute definite integrals of functions of a
single variable, in quantum mechanics, fluid dynamics, and in many
other applications.

1 (A) Solve the complex algebraic equation

x + iy + 2 + 3i = 1 − 2i.

Solution
This equation can be rewritten as

x + iy = −1 − 5i

and, by equating the real (respectively, imaginary) part of the left-
hand side to the real (respectively, imaginary) part of the right-hand
side, we obtain the complex solution z = −1 − 5i.

2 (A) Solve the complex algebraic equation

z2 − i = 0.

Solution
One can rewrite this equation using the polar form of i = cos (π/2)+
i sin (π/2) = eiπ/2 as

z2 = i = ei(π/2+2nπ) (n = 0, 1, 2, 3, ...) ,

which has the two distinct solutions obtained for n = 0, 1

z1,2 = ei(π/4+nπ) =
[
cos
(π

4
+ nπ

)
+ i sin

(π

4
+ nπ

)]

= ±
√

2
2

(1 + i) .

3 (A) What regions of the complex plane correspond to the following?
a) |z| < 1
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b) Re(z) > 3
c) Im(z) > 2
d) |z + 5| ≤ 1
e) −1 ≤ Im(z) ≤ 1
f) 2 < |z| < 3

Solution
Let z = x + iy, where x =Re(z) and y =Im(z) are real. Then:
a) represents a circle of unit radius centered on the origin z = 0 and
excluding the circumference of radius r ≡

√
x2 + y2 = 1

b) represents the half-plane x > 3 with arbitrary y
c) represents the half-plane y > 2 with x arbitrary
d) represents the circle of unit radius centered on z = −5 [or (x, y) =
(−5, 0)] and including the circumference of unit radius
e) represents the horizontal strip −1 ≤ y ≤ 1 with arbitrary x
f) represents the annulus comprised between the circles of radii 2 and
3 and centered on the origin z = 0.

4 (A) Express the complex number z = 1 + i
√

3 in polar form.

Solution
The polar form is

z = ρ ei(θ+2nπ) (n = 0, 1, 2, 3, ...) ,

where ρ = |z| =
√

12 +
(√

3
)2

= 2 and θ = tg−1(
√

3/1) = π/3; hence

z = 2 ei(π/3+2nπ) (n = 0, 1, 2, 3, ...) .

The argument of z obtained for n = 0 is called the principal argument
of z.

5 (A) When studying oscillations of a physical system described by or-
dinary differential equations, is it always legitimate to represent an os-
cillating quantity A using a complex exponential as A = A0 exp (iωt),
and to take the real part of A at the end of the calculations as the
physical result? If x(t) and y(t) are oscillating quantities represented
by complex exponentials, is Re(xy) =Re(x) ·Re(y)?

Solution
No: the above representation is legitimate only when the oscillat-
ing quantity A obeys linear differential equations. Often a system
described by a set of nonlinear equations may be described by the
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linearized version of the full equations under the assumption of small
motions or small oscillations (e.g., a simple pendulum), which may
constitute a physically meaningful approximation.

If x(t) = x0 eiω1 t and y(t) = y0 eiω2 t, then

x(t) y(t) = x0y0 ei(ω1+ω2)t;

however,

Re (xy) = x0y0 cos [(ω1 + ω2) t]

= x0y0 [cos (ω1 t) cos (ω2 t) − sin (ω1 t) sin (ω2 t)]

�= Re(x) · Re(y) = x0y0 [cos (ω1 t) cos (ω2 t)] .

6 (A) Prove that a phase factor eiθ, where θ is real, has unit modulus.

Solution
We have

|z| ≡ eiθ = |cos θ + i sin θ| =
(
cos2 θ + sin2 θ

)1/2 = 1.

7 (A) Prove that

a) Re(z) = z+z∗
2

b) Im(z) = z−z∗
2i

c) z2 = (z∗)2 only if z is purely real or purely imaginary.

Solution
Let z = x + iy, where x = Re(z) and y = Im(z) are real. Then we
have

z + z∗

2
=

(x + iy) + (x − iy)
2

= x,

z − z∗

2i
=

(x + iy) − (x − iy)
2i

= y;

the equation z2 = (z∗)2 is equivalent to

(x + iy)2 = (x − iy)2 ,

or
x2 − y2 + 2ixy = x2 − y2 − 2ixy.
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Equating the real part of the left-hand side to the real part of the
right-hand side and doing the same for the imaginary parts yields
xy = 0, with solutions x = 0, or y = 0, or both x and y vanishing.

8 (A) Show that there are exactly n distinct roots of a complex num-
ber z �= 0.

Solution
Write z in its polar form

z = ρ ei(θ+2kπ),

where k = 0, 1, 2, 3, ... Then

z1/n = ρ1/n ei( θ
n

+ 2k
n

π).

The n distinct roots of z are obtained from this formula by letting k
assume the n values

k = 0, 1, 2, ... , (n − 1) .

9 (B) Use complex exponentials to derive the trigonometric identities

sin (2θ) = 2 sin θ cos θ,

cos (2θ) = cos2 θ − sin2 θ.

Solution
The de Moivre formula

eiθ = cos θ + i sin θ

squared yields

e2iθ =
(
eiθ
)2

= (cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i sin θ cos θ.

On the other hand,

e2iθ = cos (2θ) + i sin (2θ) ;

by comparing the two expressions of e2iθ one deduces that

cos (2θ) + i sin (2θ) = cos2 θ − sin2 θ + 2i sin θ cos θ;

and by equating the real and the imaginary parts of the two sides of
this equation, we obtain

sin (2θ) = 2 sin θ cos θ,

cos (2θ) = cos2 θ − sin2 θ.
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1.2 Differentiation and integration of functions
of a single variable

Basic calculus begins by studying functions of a single variable: the
most basic operations are taking limits, differentiation, and integration.
In the mathematical modeling of a physical process or system one begins
by choosing an independent variable and by letting other variables be
functions of it—for example, in the problem of motion of a point particle
the independent variable can be time and the particle coordinates are
dependent variables.

1.2.1 Differentiation
1 (B) Compute the first and second derivatives of the function f(x) =

x ex lnx + x3 sin x.

Solution
The function f(x) is defined on (0, +∞) and has derivatives of all
orders on this interval. The first derivative is

f ′(x) = ex lnx + x ex lnx + ex + 3x2 sin x + x3 cos x,

while the second derivative is

f ′′(x) = ex lnx +
ex

x
+ ex lnx + x ex lnx + x

ex

x
+ ex + 6x sin x

+3x2 cos x + 3x2 cos x − x3 sin x

= (x + 2) ex lnx +
(

1
x

+ 2
)

ex + x
(
6 − x2) sin x + 6x2 cos x.

2 (B) Compute the derivative df/dx, where

f(x) =
√

cos
(
sin2 x

)
.

Solution
We have

df

dx
=

d
(
cos
(
sin2 x

))
/dx

2
√

cos
(
sin2 x

) =
− sin

(
sin2 x

)
d
(
sin2 x

)
/dx

2
√

cos
(
sin2 x

)
=

− sin x cos x sin
(
sin2 x

)
√

cos
(
sin2 x

) .
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3 (B) Compute the derivative df/dx, where

f(x) = x2 e−2x 3 e−2x − 1
(3 e−2x + 1)2

.

Solution
We have

df

dx
= 2x e−2x 3 e−2x − 1

(3 e−2x + 1)2
− 2x2 e−2x 3 e−2x − 1

(3 e−2x + 1)2

+6x2 e−4x

[
− (3 e−2x + 1

)
+ 2
(
3 e−2x − 1

)
(3 e−2x + 1)3

]

= 2x e−2x

[ (
3 e−2x − 1

)
(3 e−2x + 1)2

(1 − x) + 9x e−2x

(
e−2x − 1

)
(3 e−2x + 1)3

]

=
2x e−2x

(3 e−2x + 1)3
(
9 e−4x − 9x e−2x + x − 1

)
.

4 (B) Compute the derivative of the function

f(x) = x ln
(
3x4 + 2x2 + |x| + 1

)
.

Solution
We apply the Leibnitz rule (fg)′ = f ′g + fg′ and the chain rule
d(f(g(x)))

dx dx = df
dg

dg
dx obtaining, for x �= 0,

df

dx
= ln

(
3x4 + 2x2 + |x| + 1

)
+

x
(
12x3 + 4x + |x|

x

)
(3x4 + 2x2 + |x| + 1)

= ln
(
3x4 + 2x2 + |x| + 1

)
+

12x4 + 4x2 + |x|
3x4 + 2x2 + |x| + 1

.

This result is obtained for x �= 0, but the function f(x) is defined at
x = 0 and since the two limits

lim
x→0−

df

dx
= lim

x→0−

[
ln
(
3x4 + 2x2 + |x| + 1

)
+

12x4 + 4x2 + |x|
3x4 + 2x2 + |x| + 1

]

= 0,
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lim
x→0+

df

dx
= lim

x→0+

[
ln
(
3x4 + 2x2 + |x| + 1

)
+

12x4 + 4x2 + |x|
3x4 + 2x2 + |x| + 1

]

= 0,

exist and are equal, we conclude that the derivative of f(x) at x = 0
exists and is zero.

5 (B) Prove that

arcsin x + arccos x =
π

2
, −1 ≤ x ≤ 1,

arctg x + arccotg x =
π

2
, −∞ < x < +∞.

Solution
Differentiate arcsin x + arccos x in the interval (−1, 1):

d

dx
(arcsin x + arccos x) =

1√
1 − x2

− 1√
1 − x2

= 0,

hence arcsin x + arccos x = const. in (−1, 1) and, by continuity, also
in [−1, 1]. At x = 1 we have arcsin 1 + arccos 1 = π/2, which fixes
the value of the constant. Hence arcsinx + arccos x = π/2 in [−1, 1].

Let us consider the function arctgx + arccotg x on the real axis: dif-
ferentiating in this interval we obtain

d

dx
(arctg x + arccotg x) =

1
1 + x2 − 1

1 + x2 = 0

and hence arctg x + arccotg x is constant. Since at x = 1

arctg 1 + arccotg 1 =
π

4
+

π

4
=

π

2
,

the value of the constant is fixed and arctgx + arccotg x = π/2 over
the entire real axis.

6 (B) Prove the identities

arctg x + arctg
(

1
x

)
=

π

2
(x > 0) ,

arctg x + arctg
(

1
x

)
= −π

2
(x < 0) .
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Solution
The function arctgx + arctg

( 1
x

)
is singular at x = 0 and therefore

we have to consider separately the two semi-infinite intervals x < 0
and x > 0. Differentiation yields

d

dx

[
arctg x + arctg

(
1
x

)]
=

1
1 + x2 +

1
1 + 1/x2

(−1
x2

)
= 0

for any x �= 0. Hence the function arctgx+arctg
( 1

x

)
is constant, but

the value of the constant is different in the two disconnected intervals
x < 0 and x > 0. In fact, for x = −1 it is

arctg(−1) + arctg(−1) = −π

4
− π

4
= −π

2
,

while for x = 1 it is

arctg 1 + arctg 1 =
π

4
+

π

4
=

π

2
,

which fixes the values of the constants.

7 (B) Determine whether there exist values of α and β such that the
curves representing the two functions

f(x) =
3α

4
x4 + βx2,

g(x) = x2 + 3,

have parallel tangents at some point, and find the values of x for
which this happens.

Solution
The functions f and g are continuous with all their derivatives of any
order on (−∞,+∞). The points with the desired property are those
where the first derivatives of f and g are equal, i.e., where

3αx3 + 2βx = 2x

or
x
[
3αx2 + 2 (β − 1)

]
= 0.

The point x = 0 has the desired property for any value of α and β:
the tangent to both curves representing f(x) and g(x) is horizontal
here.
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If α = 0, one finds immediately that setting β = 1 all points x have
the desired property.

If α �= 0, then the points x with the desired property satisfy the
equation

x2 = − 2
3α

(β − 1) ;

this equation has solutions for α < 0 and β ≥ 1, or for α > 0 and
β ≤ 1; the points x with the desired property are

x = ±
√

2
3

∣∣∣∣β − 1
α

∣∣∣∣.
To summarize, the values of α and β that allow for the desired prop-
erty are
any (α, β) and x = 0,
(α, β) = (0, 1) and any x,

(α, β) with α < 0 and β ≥ 1, and x = ±
√

2
3

∣∣∣β−1
α

∣∣∣,
(α, β) with α > 0 and β ≤ 1, and x = ±

√
2
3

∣∣∣β−1
α

∣∣∣.
1.2.2 Integration
1 (B) Compute the indefinite integral∫

dx
(
x ex + 3x2) .

Solution
Because of the linearity of the integral, we have∫

dx
(
x ex + 3x2) =

∫
dx x ex + 3

∫
dx x2.

The first integral on the right-hand side is evaluated by parts, ob-
taining ∫

dx x ex = x ex −
∫

dx ex = (x − 1) ex.

As a check, one can take the derivative of this last term,

d

dx
[(x − 1) ex] = ex + (x − 1) ex = x ex,
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which assures us of the correctness of this first integral. The second
integral is elementary, ∫

dx x2 =
x3

3
,

and therefore we have∫
dx
(
x ex + 3x2) = x ex + x3 + constant.

2 (B) Compute the definite integrals

I1 =
∫ +∞

−∞
dx f(x) x,

I2 =
∫ +∞

−∞
dx f(x) x3,

I3 =
∫ +∞

−∞
dx g(x) x2,

I4 =
∫ +∞

−∞
dx g(x) x8,

where the functions f(x) and g(x) are defined and regular over the
entire real axis and are, respectively, even and odd, i.e., f(−x) = f(x)
and g(−x) = −g(x) for any real value of x.

Solution
We have

I1 = I2 = I3 = I4 = 0

because in all these cases the integrand is an odd function of x and
the integrals are computed over an interval symmetric with respect to
x = 0 (the entire real axis). The contribution to the integral coming
from regions with x < 0 cancels the corresponding contribution, with
opposite sign, from symmetric regions with x > 0.

3 (B) Compute the integral∫ +∞

1
dx

1
x (x + 1)

.

Solution
We decompose the fraction in the integrand as follows:

1
x (x + 1)

=
A

x
+

B

x + 1
,
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where the constants A and B are determined by writing the two terms
on the right-hand side with common denominator

A

x
+

B

x + 1
=

(A + B) x + A

x (x + 1)

and setting this equal to 1/x(x + 1), which yields

A + B = 0,

A = 1,

or (A, B) = (1,−1). Therefore,∫ +∞

1
dx

1
x (x + 1)

=
∫ +∞

1

dx

x
−
∫ +∞

1

dx

x + 1

= [lnx − ln (x + 1)]+∞
1

= lim
M→+∞

[
ln
(

M

M + 1

)
− ln

1
2

]

=
[

lim
M→+∞

(
M

M + 1

)]
+ ln 2 = ln 2.

4 (B) Consider a river modeled as a straight channel of width a with
irregular depth. Using horizontal x- and y- axes pointing in the
direction of the flow and in the transversal direction, respectively,
the depth profile across the river is given by the function

h(y) =
{ −h0 sin

[
π
(
1 − y

a

)]
if 0 ≤ y < a,

0 if y < 0 or y ≥ a,

where h0 is a constant with the dimensions of a length. Compute the
cross-sectional area of the river.

Solution
The area of a cross section of the river is

A =
∫ a

0
dy |h(y)| = −h0

∫ a

0
dy sin

[
π
(y

a
− 1
)]

= h0
a

π
cos
[
π
(y

a
− 1
)]∣∣∣a

0
=

2h0a

π
� 0.6367h0a.
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Figure 1.1. The normalized Gaussian (1.2).

5 (B) Compute the integral

I =
∫ +∞

−∞
dx e−αx2

, (1.1)

which represents the area of the region of plane delimited by the
x-axis and by the graph of a Gaussian1 (Fig. 1.1). Normalize the
Gaussian in such a way that

f(x) ≡ N e− α x2
, (1.2)

where N is a constant, satisfies∫ +∞

−∞
dx f(x) = 1.

1The Gaussian function is widely used in statistics and in many models (Gaussian plume
models) describing the spreading of pollutants in water or in the atmosphere.
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Solution
Consider the quantity

I2 =
(∫ +∞

−∞
dx e−αx2

)2

=
(∫ +∞

−∞
dx e−αx2

)
·
(∫ +∞

−∞
dy e−αy2

)

=
∫ ∫

R2
dx dy e−α(x2+y2).

By using polar coordinates (r, ϕ), where

x = r cos ϕ,

y = r sin ϕ,

and inserting the Jacobian factor r corresponding to the transforma-
tion from Cartesian to polar coordinates (x, y) → (r, ϕ), we obtain

I2 =
∫ +∞

0
dr

∫ π

0
dϕ r e−αr2

= 2π

∫ +∞

0
dr

(
− 1

2α

)
d

dr

(
e−αr2

)

= − π

α

[
e−αr2

]+∞
0

=
π

α
,

and therefore

I =
√

π

α
.

In order to find a normalization factor N such that
∫ +∞
−∞ dx f(x) = 1,

one needs to impose the condition∫ +∞

−∞
dx f(x) = 1,

and hence N = 1/I. With the choice N =
√

α/π, the normalized
Gaussian

f(x) =
√

α

π
e− αx2

satisfies ∫ +∞

−∞
dx Ne−αx2

= 1.

1.2.3 Maxima, minima, and graphs
Calculus allows one to compute maxima, minima, and inflection points,

to study the behavior of functions of a single variable and to construct
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their graphs. In physics, these tools are used to find states of equilib-
rium, study stability, or optimize choices.

1 (B) Study the graph of the function f(x) = x2 ln |x|.

Solution
The function is defined on (−∞, 0) ∪ (0, +∞) and is continuous with
all its derivatives of any order there. The function is even, i.e.,
f(x) = f(−x) for all values of x in the intervals on which f is de-
fined. We also notice that f(x) > 0 for |x| > 1, that f(x) < 0 in the
intervals −1 < x < 0 and 0 < x < 1, and f (±1) = 0. The points
x = ±1 are the only zeros of f .

Let us compute the limits of f(x); as x → 0 we have

lim
x→0

f(x) = lim
x→0

ln |x|
1/x2 = lim

x→0

1
|x|

|x|
x

−2
x3

= lim
x→0

−x2

2
= 0,

by using de l’Hôpital rule. The function f(x) can be redefined so that

f̃(x) ≡
⎧⎨
⎩

f(x) if x �= 0,

0 if x = 0

is continuous at x = 0. The other limits of f(x) are

lim
x→±∞ x2 ln |x| = +∞.

The first derivative of the function f is

f ′(x) = x (1 + 2 ln |x|) ,

and its sign is determined by studying the sign of 1 + 2 ln |x|, which
is positive for |x| > e−1/2, negative for −e−1/2 < x < e−1/2, and zero
at ±e−1/2. Therefore:
f ′(x) < 0 and f is strictly decreasing if x < −1/

√
e and 0 < x <

1/
√

e;
f ′ (±1/

√
e) = 0 and f has horizontal tangent there;

f ′(x) > 0 and f is strictly increasing if −1/
√

e < x < 0 and x > 1/
√

e.
This information, plus what we know about the continuity of f , is
sufficient to establish that f(x) has local and absolute minima at
x = ±1/

√
e, and the minimum is f (±1/

√
e) = −1/2e. The graph of

the function is reported in Fig. 1.2.
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Figure 1.2. The graph of f(x) = x2 ln |x|.

2 (B) It can be shown [12, 27, 4] that the work delivered by a heat
engine is

f (x) = xa

(
TH − TC

1 − x

)
,

where x is the efficiency of the engine and TH and TC (with 0 <
TC < TH) are the absolute temperatures of the hot and cold reser-
voir, respectively, while a is a positive constant. Find the efficiency
that maximizes the work delivered in the interval2 [0, 1 − TC/TH ].

Solution
We look for a maximum of the function f(x) in the efficiency interval
[0, 1 − TC/TH ]. The function f is continuous with all its derivatives

2Thermodynamics imposes the fundamental upper limit on the efficiency 0 ≤ x ≤ xc, where
xc ≡ 1 − TC/TH < 1 is the Carnot factor.
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in this interval and its first derivative is
df

dx
= a

(
TH − Tc

1 − x

)
− aTCx

(1 − x)2
=

aTH

(1 − x)2

[
(1 − x)2 − TC

TH

]
.

One has df/dx > 0 and f strictly increasing if (1 − x)2 > TC/TH ,
df/dx = 0 (horizontal tangent) if (1 − x)2 = TC/TH , while df/dx < 0
and f is strictly decreasing if (1 − x)2 < TC/TH . The inequality
(1 − x)2 > TC/TH corresponds to

x < 1 −
√

TC

TH
< 1 − TC

TH
,

and the above results are sufficient to conclude that f(x) has a local
maximum at x∗ = 1 −√TC/TH , which has the value

fmax = f

(
1 −
√

TC

TH

)
= x∗aTH

(
1 − 1

1 − x∗
TC

TH

)

= a

(
1 −
√

TC

TH

)2

.

Since fmax > f(0) = f (1 − TC/TH) = 0 and f is continuous on
[0, 1 − TC/TH ], the local maximum is also an absolute maximum.

3 (B) Study the graph of the function f(x) = x |x| ex.

Solution
The function is defined on (−∞,+∞) and is continuous in this inter-
val. All its derivatives exist and are continuous on (−∞, 0)∪(0, +∞).
The limits of the function at the boundaries of this interval are

lim
x→+∞ f(x) = +∞,

lim
x→−∞ f(x) = 0.

The function is negative for x < 0, vanishes only at x = 0, and is
positive for x > 0. The first derivative of f(x) for x �= 0 is

f ′(x) = |x| ex (x + 2) .

Since both limits

lim
x→0−

f ′(x) = 0,

lim
x→0+

f ′(x) = 0
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exist and are finite and equal, the first derivative of f(x) exists also
at x = 0 and has zero value.
The study of the sign of f ′(x) allows one to conclude that
f ′(x) < 0 for x < −2, where f is strictly decreasing;
f ′ (−2) = 0, where the graph of f has horizontal tangent;
f ′(x) > 0 for x > −2, where f(x) is strictly increasing.
The function f has a local minimum at x = −2, which is f (−2) =
−4/e2. This minimum is also an absolute minimum.
The second derivative f ′′(x) is defined on the set (−∞, 0) ∪ (0, +∞)
and has the value

f ′′(x) = |x| ex

(
2
x

+ x + 4
)

:

it is not defined at x = 0. By studying the sign of f ′′(x) one con-
cludes that
f ′′(x) < 0 for x < − (2 +

√
2
)

and for −2 +
√

2 < x < 0; the graph
of the function has concavity facing downward in these intervals.
f ′′ (−2 ± √

2
)

= 0 and the graph of f(x) changes concavity at x =
−2 ± √

2.
f ′′(x) > 0 for − (2 +

√
2
)

< x < −2 +
√

2 and for x > 0, where
the curve representing f(x) has upward-facing concavity. Therefore,
the graph of f(x) is as follows: the x-axis is a horizontal asymptote
as x → −∞. Beginning from x → −∞, the function is negative
with downward-facing concavity, decreases until it reaches its abso-
lute minimum at x = −2 (changing concavity at x = −2−√

2 before it
reaches its minimum), then it starts increasing and is always strictly
increasing for x > −2 (it changes concavity again at x = −2 +

√
2

past its minimum point). It reaches its zero at x = 0, where the
second derivative has a jump discontinuity (from −2 as x → 0− to
+2 as x → 0+), and diverges as x2 ex as x → +∞. The graph is
reported in Fig. 1.3.

4 (B) Study the function f(x) = x eλx as the real parameter λ varies,
and sketch its graph.

Solution
The function is continuous with all its derivatives of any order on
(−∞,+∞). The sign of f(x) is easy to study—we have, for any real
value of the parameter λ:
f(x) > 0 if x > 0;
f(x) = 0 only at x = 0;
f(x) < 0 if x < 0.
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Figure 1.3. The graph of f(x) = x |x| ex.

The first and second derivatives of f are

f ′(x) = (λx + 1) eλx,

f ′′(x) = λ eλx (λx + 2) ,

respectively. We now consider the possible values of λ separately. If
λ > 0, the limits of f(x) are

lim
x→+∞ x eλx = +∞,

lim
x→−∞ x eλx = 0.

The sign of the first derivative of f is as follows:
f ′(x) < 0 for x < −1/λ, where f is strictly decreasing;
f ′ (−1/λ) = 0 (f has horizontal tangent);
f ′(x) > 0 for x > −1/λ, where f is strictly increasing.


