Lecture Notes in Mechanical Engineering

Muhammed Nafis Osman Zahid Radhiyah Abd. Aziz Ahmad Razlan Yusoff Nafrizuan Mat Yahya · Fazilah Abdul Aziz · Mohd Yazid Abu *Editors*

imec-apcoms 2019

Proceedings of the 4th International Manufacturing Engineering Conference and The 5th Asia Pacific Conference on Manufacturing Systems

Lecture Notes in Mechanical Engineering

Lecture Notes in Mechanical Engineering (LNME) publishes the latest developments in Mechanical Engineering - quickly, informally and with high quality. Original research reported in proceedings and post-proceedings represents the core of LNME. Volumes published in LNME embrace all aspects, subfields and new challenges of mechanical engineering. Topics in the series include:

- Engineering Design
- Machinery and Machine Elements
- Mechanical Structures and Stress Analysis
- Automotive Engineering
- Engine Technology
- Aerospace Technology and Astronautics
- Nanotechnology and Microengineering
- Control, Robotics, Mechatronics
- MEMS
- Theoretical and Applied Mechanics
- Dynamical Systems, Control
- Fluid Mechanics
- Engineering Thermodynamics, Heat and Mass Transfer
- Manufacturing
- Precision Engineering, Instrumentation, Measurement
- Materials Engineering
- Tribology and Surface Technology

To submit a proposal or request further information, please contact the Springer Editor in your country:

China: Li Shen at li.shen@springer.com

India: Dr. Akash Chakraborty at akash.chakraborty@springernature.com Rest of Asia, Australia, New Zealand: Swati Meherishi at swati.meherishi@springer.com

All other countries: Dr. Leontina Di Cecco at Leontina.dicecco@springer.com

To submit a proposal for a monograph, please check our Springer Tracts in Mechanical Engineering at http://www.springer.com/series/11693 or contact Leontina.dicecco@springer.com

Indexed by SCOPUS. The books of the series are submitted for indexing to Web of Science.

More information about this series at http://www.springer.com/series/11236

Muhammed Nafis Osman Zahid · Radhiyah Abd. Aziz · Ahmad Razlan Yusoff · Nafrizuan Mat Yahya · Fazilah Abdul Aziz · Mohd Yazid Abu Editors

iMEC-APCOMS 2019

Proceedings of the 4th International Manufacturing Engineering Conference and The 5th Asia Pacific Conference on Manufacturing Systems

Editors Muhammed Nafis Osman Zahid Faculty of Manufacturing Engineering Universiti Malaysia Pahang Pekan, Pahang, Malaysia

Ahmad Razlan Yusoff Faculty of Manufacturing Engineering Universiti Malaysia Pahang Pekan, Pahang, Malaysia

Fazilah Abdul Aziz Faculty of Manufacturing Engineering Universiti Malaysia Pahang Pekan, Pahang, Malaysia Radhiyah Abd. Aziz Faculty of Manufacturing Engineering Universiti Malaysia Pahang Pekan, Pahang, Malaysia

Nafrizuan Mat Yahya Faculty of Manufacturing Engineering Universiti Malaysia Pahang Pekan, Pahang, Malaysia

Mohd Yazid Abu Faculty of Manufacturing Engineering Universiti Malaysia Pahang Pekan, Pahang, Malaysia

ISSN 2195-4356 ISSN 2195-4364 (electronic) Lecture Notes in Mechanical Engineering ISBN 978-981-15-0949-0 ISBN 978-981-15-0950-6 (eBook) https://doi.org/10.1007/978-981-15-0950-6

© Springer Nature Singapore Pte Ltd. 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Foreword

For the third time, the 4th International Manufacturing Engineering Conference (iMEC) 2019 is co-organized with 5th Asia-Pacific Conference on Manufacturing System (APCOMS) 2019, owned by Fakulti Teknologi Industri, Institut Teknologi Bandung (ITB), Indonesia. Starting from 2019, the collaboration has been extended to the other institutions including Universiti Teknikal Malaysia Melaka (UTEM), Malaysia and Universitas Sebelas Maret, Indonesia. This extended collaboration aims to intensify knowledge sharing and experiences between higher learning institutions in Malaysia and Republic of Indonesia.

We are immensely pleased to welcome all delegates and distinguished guests to the iMEC-APCOMS 2019, held in the heart of Putrajaya, Malaysia. The conference aims to bring the researchers, academicians, scientists, students, engineers and practitioners around the world to present their latest findings, ideas, development and applications in manufacturing engineering and other related areas. With rapid advancements in manufacturing engineering that currently gearing towards Industry 4.0, iMEC provides an excellent avenue for the community to keep pace with the changes. In 2019, the conference theme is "Intelligent Engineering & Sustainable Development" which reflects to the acceleration of knowledge and technology in global manufacturing. In addition to three keynote speeches, there are 93 papers will be presented in 13 technical sessions. The papers published in these proceedings have underwent an intense peer review from the member of Technical Review Committee. The accepted submissions were categorized based on the conference topics which related to manufacturing systems, manufacturing processes, manufacturing automation and materials.

We are honoured to collaborate with respective institutions to make this conference a grand success. A sincere thanks to all members of the Organizing Committee for their infinite contribution. Not forgetting to all sponsors—Atomic Solutions, Crest, FESTO and others—for their kind gesture and continuous support.

Further, we would like to extend our appreciation to all authors for participation and high-quality contribution to the proceedings. Last but not least, we are grateful to publisher support especially to Dr. Christoph Baumann and Ms. Megana Dinesh. We hope this book will escalate the knowledge sharing and resources in the field of manufacturing engineering.

August 2019

Muhammed Nafis Osman Zahid Radhiyah Abd. Aziz Ahmad Razlan Yusoff Nafrizuan Mat Yahya Fazilah Abdul Aziz Mohd Yazid Abu

Organizing Committee

Chairman of the Organizing Committee

Ahmad Razlan Yusoff	Universiti Malaysia Pahang, Malaysia		
Vice Chairman of the O	Vice Chairman of the Organizing Committee		
Nafrizuan Mat Yahya Wisnu Aribowo	Universiti Malaysia Pahang, Malaysia Institut Teknologi Bandung, Indonesia		
Chief Editor			
Muhammed Nafis Osman Zahid	Universiti Malaysia Pahang, Malaysia		
Secretaries			
Nurrina Rosli Nurul Fatma Nadirah Umar	Universiti Malaysia Pahang, Malaysia Universiti Malaysia Pahang, Malaysia		
Treasurers			
Nurul Akmal Che Lah Saidatul Ulfah Munamad Sahidin	Universiti Malaysia Pahang, Malaysia Universiti Malaysia Pahang, Malaysia		
Publication Committee			
Radhiyah Abd Aziz Mohd Yazid Abu Fazilah Abdul Aziz	Universiti Malaysia Pahang, Malaysia Universiti Malaysia Pahang, Malaysia Universiti Malaysia Pahang, Malaysia		

Moh. Mi'radj Isnaini	Institut Teknologi Bandung, Indonesia
Cucuk Nur Rosyidi	Universitas Sebelas Maret, Indonesia
Mohd Shahadan Mohd Suan	Universiti Teknikal Malaysia Melaka, Malaysia

Promotion and Sponsorship Committee

Zulhelmi Ismail Ahmad Fakhri Ab. Nasir Aidil Shafiza Safiee Muhammad Nasrullah Alias Wildan Trusaji Muh. Hisjam Zamberi Jamaludin Mohd Shahir Kasim

Logistic Committee

Mohd Nizar Mhd RazaliUniversiti Malaysia Pahang, MalaysiaAhmad Najmuddin IbrahimUniversiti Malaysia Pahang, MalaysiaZubair KhalilUniversiti Malaysia Pahang, MalaysiaTechnical Committee

Ahmad Rosli Abdul Manaf Fariz Muharram Hasby Ismayuzri Ishak Nursyazwan Md Talip Mohd Faisal Mohd Saari Shahandzir Baharom

Event Management

Ahmad Redza Ahmad Mokhtar Mohd Khairulnazri Saidi Universiti Malaysia Pahang, Malaysia Institut Teknologi Bandung, Indonesia Universiti Malaysia Pahang, Malaysia Universiti Malaysia Pahang, Malaysia Universiti Malaysia Pahang, Malaysia Universiti Malaysia Pahang, Malaysia

Universiti Malaysia Pahang, Malaysia

Universiti Malaysia Pahang, Malaysia

Universiti Malaysia Pahang, Malaysia

Universiti Malaysia Pahang, Malaysia Institut Teknologi Bandung, Indonesia

Universitas Sebelas Maret, Indonesia

Universiti Teknikal Malaysia Melaka

Universiti Teknikal Malaysia Melaka

Universiti Malaysia Pahang, Malaysia Universiti Malaysia Pahang, Malaysia

Manufacturing Systems

Formulation of Marketing Strategies in Expedition ServicesCompany with SWOT and QSPM MethodsNanang Alamsyah, Arina Luthfini Lubis, and Dede Hamdi	3
Optimization of CNG Multi-depot Distribution to Determine Model Routes and GTM Totals Using Tabu Search and Differential Evolution Methods Afni Khadijah and Huswatun Hasanah	10
Capacity Planning and Assembly Line Balancing for Long-Term Routine and Short-Term Intermittent Demand in Small Medium Enterprises Disa Agatha Willim, Wildan Trusaji, and Anas Ma'ruf	17
Optimal Down-Time Target for Performance Based Remanufactured Lease Contract	24
Fuzzy Initial Condition in a Technology Transfer Modelwith Competing FollowersHennie Husniah, Rachmawati Wangsaputra, and Asep K. Supriatna	30
Order Acceptance and Scheduling Model for Small-Sized Metal Manufacturing Company Silfia Nurul Ariyani, Fariz Muharram Hasby, and Anas Ma'ruf	36
Measurement of Manufacturing Readiness Level for the Tartaric Sulphur Acid Anodizing Method in Aircraft Component Production Fariz Muharram Hasby, Hanifa Laila Novianti, and Iwan Inrawan Wiratmadja	42

Measurement of Technoware and Humanware Readiness to Fulfill SNI 07-2052-2002 in a Steel Manufacturing Company Violla Tania, Praditya Ajidarma, Mohammad Mi'radj Isnaini, and Dradjad Irianto	48
Fuzzy Analytical Hierarchy Process with UnsymmetricalTriangular Fuzzy Number for Supplier Selection ProcessIrene Septin Maharani, Ririn Diar Astanti, and The Jin Ai	54
Analysis of Humanware Readiness Level for a Technology Transfer Process: Case Study in Arms Manufacturing Industry Lucky Apriandi, Praditya Ajidarma, Fariz Muharram Hasby, and Dradjad Irianto	60
Inventory Policy for Cross Selling Item	67
Analysis of Magnetic Component Manufacturing Cost Throughthe Application of Time-Driven Activity-Based CostingNik Nurharyantie Nik Mohd Kamil, Mohd Yazid Abu,Nurul Farahin Zamrud, and Filzah Lina Mohd Safeiee	74
The Impact of Capacity Cost Rate and Time Equation of Time-Driven Activity-Based Costing (TDABC) on Electric Component Nurul Farahin Zamrud, Mohd Yazid Abu, Nik Nurharyantie Nik Mohd Kamil, and Filzah Lina Mohd Safeiee	81
The Application of Time-Driven Activity Based Costing System on Inductors in Electrics and Electronics Industry Filzah Lina Mohd Safeiee, Mohd Yazid Abu, Nik Nurharyantie Nik Mohd Kamil, and Nurul Farahin Zamrud	88
Review on the Prominence of SMEs in Malaysia and Its' Imprint on University Industry Collaboration Darshana Kumari Ragupathy, Shamsuddin Baharin, and Faiz Bin Mohd Turan	96
Critical Success Factors that Affect Implementation of Construction Project in Improving Project Performance: A Case of Cement Plant Construction Industry Ahmad Subekti, Nilda Tri Putri, and Henmaidi	101
Proposing of Mahalanobis-Taguchi System and Time-Driven Activity-Based Costing on Magnetic Component of Electrical & Electronic Industry Nik Nurharyantie Nik Mohd Kamil, Mohd Yazid Abu, Nurul Farahin Zamrud, and Filzah Lina Mohd Safeiee	108

Optimization of Utilities Capacity at Aircraft Heavy Maintenance Center Using Linear Programming Models M. Johny Ali Firdaus, Muhammad Gharutha, and Rachmawati Wangsaputra	115
Diagnosis and Costing Optimization on Inductors in Electrics and Electronics Industry Filzah Lina Mohd Safeiee, Mohd Yazid Abu, Nik Nurharyantie Nik Mohd Kamil, and Nurul Farahin Zamrud	121
A Quality Improvement Model Based on Taguchi's Loss Function Considering Imperfect Quality Inspection Maghfira Devi Ramadhanty, Cucuk Nur Rosyidi, and Wakhid Ahmad Jauhari	128
Identifying Bottleneck Process Using Production Time Study in Concrete Pole Manufacturing Company in Malaysia Afiqah Alias, Atiah Abdullah Sidek, Md. Yusof Ismail, and Muataz Hazza	134
The Development of Industry 4.0 Readiness Model. Case Study in Indonesia's Priority Industrial Sector of Chemical Idriwal Mayusda and Iwan Inrawan Wiratmadja	140
Open Innovation Practices and Sustainability Performance in Small and Medium Industries Amelia Kurniawati, Praditya Ajidarma, Iwan Inrawan Wiratmadja, Indryati Sunaryo, and T. M. A. Ari Samadhi	147
Product-Service System Inventory Control for Malaysian Palm Oil Industry: A Case Study Utilizing IDEF0 Modelling Fatkhurrahman Manani and Siti Zubaidah Ismail	153
Designing Product-Service System Inventory Control: System Requirements Analysis of Raw Material in Automotive Industry Farah Ameelia Mohammad and Siti Zubaidah Ismail	159
Reliability Centered Maintenance of Mining Equipment: A Case Study in Mining of a Cement Plant Industry Endi Alta, Nilda Tri Putri, and Henmaidi	165
A Comparative Study of Product Costing by Using Activity-Based Costing (ABC) and Time-Driven Activity-Based Costing (TDABC) Method N. F. Zamrud, M. Y. Abu, N. N. M. Kamil, and F. L. M. Safeiee	171
Quality Improvement Model Considering Reworkand Imperfect InspectionKuncoro Sakti Pambudi, Cucuk Nur Rosyidi, and Wakhid Ahmad Jauhari	179

Develop Accessibility Design for Increase Disabilities Labor Participation in Manufactured in Indonesia with Design Thinking Approach A. M. Hilmy Nur, Roemintoyo, and Budi Siswanto	186
Location-Allocation Model of Raw Material and Transportation Modes in Cajuput Oil Supply Chain Network (A Case in Indonesia)	193
Job Shop Scheduling in Single Machine: An Overview Yosi Agustina Hidayat, Kiendl Valavani Setio, Harry Winata, and Nadhira Radhiyani	199
Potential Failure Modes of Cement Production Process: A Case Study	205
Six Sigma Implementation to Reduce Rejection Rate in Textile Mills	211
Application of Technometric to Improve Productivityin Indonesian Small Medium Industries (SMI)Augustina Asih Rumanti, Iwan Inrawan Wiradmadja, Praditya Ajidarma,and Melita Hidayat	217
Ant Colony Optimization-Based Multiple-AGV Route-and-VelocityPlanning for Warehouse OperationsAnugrah K. Pamosoaji and Sarifah Putri Raflesia	224
Dual-Channel Warehouse Raw Material Inventory Modelfor Probabilistic DemandDocki Saraswati and Hana Tyasari	230
Eye Segment Movements as Indicators of Mental Workloadin Air Traffic Control Tasks.Vivi Triyanti, Hastian Abdul Azis, Hardianto Iridiastadi, and Yassierli	238
Mixed Model Assembly Line Balancing for Human-Robot Shared Tasks Susanto Yaphiar, Cahyadi Nugraha, and Anas Ma'ruf	245
Project Manufacture Scheduling Using Resource ConstrainedMulti Project Optimization Model (A Case Study in MachineManufacturing Company Solo)Seamus Tadeo Marpaung, Cucuk Nur Rosyidi,and Wakhid Ahmad Jauhari	253

Scheduling an Aircraft Maintenance Shop with DedicatedTechnician and Dedicated Machine ConstraintsWisnu Aribowo, Oktifian Windhi Prastomo, and Abdul Hakim Halim	260
Value Stream Mapping – A Tool to Detect and Reduce Waste for a Lean Manufacturing System Noraini Mohd Razali and Mohd Nizam Ab Rahman	266
Make or Buy Decision with Price and Quality Dependent Demand Cucuk Nur Rosyidi	272
Participatory Ergonomics Intervention for Exploring RiskFactors Lead to Work-Related Musculoskeletal Disorders AmongAutomotive Production WorkersFazilah Abdul Aziz, Zakri Ghazalli, and Nik Mohd Zuki Nik Mohamed	278
A Closed-Loop Supply Chain Model for Manufacturer-Collector- Retailer with Rework, Waste Disposal, Carbon Cap and Trade Regulation Niimas Ayu Frensilia Putri Adam, Wakhid Ahmad Jauhari, and Cucuk Nur Rosyidi	284
Optimization of Woven Fabric Production Process on PicanolOmniplus Air Jet Machine Using Taguchi Multi-responseand Grey Relational Analysis MethodsYunus Nazar, Eko Pujiyanto, and Cucuk Nur Rosyidi	291
Re-designing an Assembly Lines at an Automotive Manufacturing Company Leonard Leymena, Cucuk Nur Rosyidi, and Wakhid Ahmad Jauhari	298
A Three-Echelon Inventory Model for Deteriorated and Imperfect Items with Energy Usage and Carbon Emissions Aldy Fajrianto, Wakhid Ahmad Jauhari, and Cucuk Nur Rosyidi	305
An Assignment Model to Support the Assembly Line Activities by Considering the Operator's Unique Classification – The Computational Results	313
Capacity Planning Model for Make-To-Order Companies Considering Lateness Penalty Cost Based on Critical Resources Wisnu Aribowo, Muhammad Afandi Hudzaifah, and Abdul Hakim Halim	320
An Optimization Model for Coal Procurement Networks with Coal Blending Facilities Muhammad Imaduddin and Sukoyo	326

Contents

Competing Risk Models in Reliability Systems, an Exponential Distribution Model with Gamma Prior Distribution, a Bayesian Analysis Approach Ismed Iskandar, Muchamad Oktaviandri, Rachmawati Wangsaputra, and Zamzuri Hamedon	335
Dump Truck Maintenance Contract Model ConsideringOperational Conditions (Load, Road Inclinationand Environment Condition)Fadhli Nishfi, Bermawi Priyatna Iskandar, and Rachmawati Wangsaputra	342
Intelligent Condition Based Maintenance Using AdaptiveResonance Theory-2 Neural NetworkR. Wangsaputra, H. Husniah, and Prasidhi Artono	349
Nash Game Theory Leasing Contract Model of Newand Recondition Complex EquipmentMochamad Azka Harish, Andi Cakravastia, and Bermawi P. Iskandar	355
Materials	
Refining the Composition of Recycled Spent Lubricants Mixed with Alumina Nanofluids for Machining Purpose Lim Syh Kai, Nurrina Rosli, and Ahmad Razlan Yusoff	365
Fatigue and Harmonic Analysis of a Diesel Engine Crankshaft Using ANSYS Aisha Muhammad, Mohammed A. H. Ali, and Ibrahim Haruna Shanono	371
Tensile Properties Comparison of Cassava Peel/Lycal, E-Glass135/Lycal and Hybrid Cassava Peel+E-Glass135/Lycal Compositewith Hand Lay up Manufacturing MethodLathifa Rusita Isna, Nur Mufidatul Ula, Syamsul Rizal, and Afid Nugroho	377
Dip-Coating Methods for Carbon Membrane Fabrication: Effects of Coating-Carbonization-Cycles on Hydrogen Separation Prepared from P84/NCC Norazlianie Sazali, Mohd Syafiq Sharip, Haziqatulhanis Ibrahim, Ahmad Shahir Jamaludin, and Wan Norharyati Wan Salleh	384
Current Advances in Membranes for Competent Hydrogen Purification: A Short Review Mohd Syafiq Sharip, Norazlianie Sazali, Mohd Nizar Mhd Razali, Farhana Aziz, and Mohd Hafiz Dzarfan Othman	390
Microstructure and Mechanism of Silicanizing Process on Mild Steel Substrate Using Tronoh Silica Sand at 1000 °C for 4 H	396

Surface Roughness and Tool Wear in Edge Trimming of Carbon Fiber Reinforced Polymer (CFRP): Variation in Tool Geometrical Design Syahrul Azwan Sundi, R. Izamshah, M. S. Kasim, M. F. Jaafar, and M. H. Hassan	402
Surface Roughness and Cutting Forces During Edge Trimming of Multi-directional Carbon Fiber Reinforced Polymer (CFRP) Syahrul Azwan Sundi, R. Izamshah, M. S. Kasim, M. F. Jaafar, and M. H. Hassan	409
A Brief Review on Utilization of Hybrid Nanofluid in Heat Exchangers: Theoretical and Experimental Haziqatulhanis Ibrahim, Norazlianie Sazali, Ahmad Shahir Jamaludin, Wan Norharyati Wan Salleh, and M. H. D. Othman	416
A Review on Effectiveness of Numerous Technologies by Utilizing Hydrogen Mohd Syafiq Sharip, Norazlianie Sazali, Haziqatulhanis Ibrahim, Ahmad Shahir Jamaludin, and Farhana Aziz	423
Phosphorus/Nitrogen Grafted Lignin as a Biobased Flame Retardant for Unsaturated Polyester Resin	429
Effect of Glass Fibers and Aramid Fiber on Mechanical Properties of Composite Based Unmanned Aerial Vehicle (UAV) Skin Benni F. Ramadhoni, Ara Gradiniar Rizkyta, Atik Bintoro, and Afid Nugroho	435
Surface Roughness of Laser Modified Die Surface Change Under Thermal Cyclic Loading Annie Lau Sheng, Izwan Ismail, Fazliana Fauzun, and Syarifah Nur Aqida	441
Tensile Properties of Hybrid Woven Glass Fibre/PALF ReinforcedPolymer CompositeMawarnie Ismail, M. R. M. Rejab, J. P. Siregar, Zalinawati Muhamad,and Ma Quanjin	448
Modification of Layered Structure in Manganese Oxide Nanorods for Electrode of Supercapacitor Radhiyah Abd Aziz and Rajan Jose	455
Investigation on the Effect of Build Orientation and Heat Treatment on Tensile Strength and Fracture Mechanism of FDM 3D Printed PLA Nanang Fatchurrohman, Nurul Najihah Najlaa Noor Hamdan, Mebrahitom Asmelash Gebremariam, and Kushendarsyah Saptaji	461

Influence of Glass Fiber Content on the Flexural Properties of Polyamide 6-Polypropylene Blend Composites	466
Effect of Delamination in Drilling of Natural Fibre-Reinforced Composite	472
Investigation on Microstructure and Hardness of Aluminium-Aluminium Oxide Functionally Graded Material Dewan Muhammad Nuruzzaman, A. K. M. Asif Iqbal, Maziyana Marzuki, Mohammad Asaduzzaman Chowdhury, Noor Mazni Ismail, Muhammad Ihsan Abdul Latiff, Md. Mustafizur Rahman, and Mebrahitom Asmelash Gebremariam	478
The Effect of MAPE Compatibilizer Agent on the TensileStrength of Recycled PET/HDPE Plastic CompositeNik Ruqiyah Nik Hassan, Noor Mazni Ismail,Dewan Muhammad Nuruzzaman, Noraini Mohd Razali,and Suriati Ghazali	484
Rheological Properties of Magnetorheological Polishing Fluid for Micro Mould Polishing Nurain Abdul Mutalib, Izwan Ismail, Sofarina M. Soffie, and Syarifah Nur Aqida Syed Ahmad	490
Effect of Aluminum Surface Treatment on the Damping Properties of Aluminum-Rubber Bonding System	497
Manufacturing Processes	
Finite Element Analysis of Baseplate for Failure Estimation in Light Railway Transit Fastening Systems Noraishah Mohamad Noor, Muhammad Nashrur Faizzi Abdul Razak, and Ahmad Razlan Yusoff	505
Enhancement of Surface Integrity in Cryogenic High Speed Ball Nose End Milling Process of Inconel 718 Musfirah Abdul Hadi and Jaharah A. Ghani	512

Toolpath and Holes Accuracy of Robotic Machiningfor Drilling ProcessMohd Shahir Kasim, Mohammad Shah All-Hafiz, Nurwahida Rosli,W Noor Fatihah Mohamad, Raja Izamshah, Mohd Amran Md Ali,and Abu Abdullah	519
Optimization of Speed Cylinder and Distance Speed Cylinder Hydraulic Movement of Kobelco Tire Curing Machine Deri Teguh Santoso and Pajar Barokah	525
Eco Design for Rooftop in Urban Housing	531
Investigation on the Effect of Multiple Passes in Plain Waterjet Cleaning of Paint	537
Investigation on the Effect of Abrasive Waterjet Parameter on Machining Stainless Steel Hafiz Husin, Mohd Nazir Mat Nawi, M. A. Gebremariam, and Azmir Azhari	544
Extension of an Analytical Model for a Contour-Parallel Strategy in the Triangular Pocket Machining Mochammad Chaeron, Budi Saputra Wahyuaji, and Apriani Soepardi	550
Study on Operational Characteristic of Microwave Oven DrivenPlasma Spray DeviceMuhammad Fahmi Izuwan, Ahmad Redza, and Mohd Nizar	558
Comparative Study of Tool Path Strategies in CNC Machining for Part with B-spline Surfaces Zainal Fahmi Zainol Abidin and Muhammed Nafis Osman Zahid	564
Taguchi Multi Respond for Eri Silk/Cotton Yarn ProcessParameters Optimization Using Rieter R35 RotorOpen End MachineRidya Amerani Pra Lovian, Cucuk Nur Rosyidi, and Eko Pujiyanto	570
Effect of Machining Process Parameters on Acceleration Signal in Determining Surface Quality of Milling Process at Ductile Iron Norlida Jamil and Ahmad Razlan Yusoff	577
Study of Cutting Speed Effects on Lubricant Oil Film ThicknessUnder Minimum Quantity LubricationNur Izzati Khoirunnisa Ismail, Nurrina Rosli, and Kenji Amagai	584

Tool Deterioration of Stainless Steel 316 in Wet Milling Operation	
Using Carbide Tool	590
Amirul Ashraf Makhtar, Nurul Hidayah Razak, and Zhan Chen	
Effect of Lubricating Oil on Sliding Loss and Power Loss	
of Nylon Gear	596
Mohammad Asaduzzaman Chowdhury, Md. Azizul Islam,	
Dewan Muhammad Nuruzzaman, Bengir Ahmed Shuvo, Rajib Nandee,	
and Uttam Kumar Debnath	

Manufacturing Automation

Effect of Grouser Angle of Attack on Performance of Adjustable	
Robot Wheel Assistive Grouser	605
Siti Suhaila Sabarudin, Ahmad Najmuddin Ibrahim, and Yasuhiro Fukuoka	
Parametric Study of CNG-DI Engine Operational Parameters	
by Using Analytical Vehicle Model	611
Mohd Fadzil Abdul Rahim, Abdul Aziz Jaafar, Rizalman Mamat,	
and Zahari Taha	
Author Index	617

Manufacturing Systems

Formulation of Marketing Strategies in Expedition Services Company with SWOT and QSPM Methods

Nanang Alamsyah^(⊠)^(☉), Arina Luthfini Lubis^(☉), and Dede Hamdi

Industrial Engineering, Sekolah Tinggi Teknik Ibnu Sina, Jl. Teuku Umar, Lubuk Baja, Batam, Kepulauan Riau, Indonesia nanang@stt-ibnusina.ac.id

Abstract. This research was conducted to determine what strategies the company should do in increasing project load. The company engaged in export and import expedition services has problems with unstable project load, especially in export projects in the past two years. The stages of research are divided into 3 stages: (1) input stage using Internal Factor Evaluation (IFE) Matrix and External Factor Evaluation (EFE) Matrix, (2) matching stage using Internal-External (IE) Matrix, the Strategic Position and Action Evaluation (SPACE) Matrix & the Strength-Weakness-Opportunity-Threat (SWOT) Matrix, (3) decision stage using the Quantitative Strategic Planning Matrix (QSPM) Matrix. In addition, the Analytic Hierarchy Process (AHP) method is used for weighting variables at the input stage. Based on the input stage, there are 8 key questions external factors and 12 key questions internal factors. From IE & SPACE Matrix, it shows the current position of the company in a conservative profile where the strategy that must be carried out is hold and maintain. The results of the SWOT matrix analysis are alternative strategies that are raised based on the comparison between S-O, S-T, W-O, and W-T. Then the QSPM matrix analysis will compare the value of interests between existing strategies and alternative strategies produced by the SWOT matrix. It is show that the proposed weighted strategy value of 6.27 while the existing strategic weighting is 5.56. Based on the results of the analysis, the things that must be done by the company are improving the internal relations, expanding marketing network, and adjusting prices.

Keywords: Strategic management \cdot Strategy formulation \cdot Expedition services company

1 Introduction

One of the processes in manufacturing is the distribution of goods through the supply chain. An expedition company in 2020 the vision, mission and goals for the future were first announced in the 2015 strategy and recently focused and re-emphasized in "Strategy 2020: Focus, Connect, Grow." A strategy that is simple but not mediocre. Built on three pillars of Focus, Connect, and Develop, this strategy sets out a clear plan for the coming years with ambitious but achievable goals. It is a global logistics

© Springer Nature Singapore Pte Ltd. 2020

M. N. Osman Zahid et al. (Eds.): iMEC-APCOMS 2019, LNME, pp. 3–9, 2020. https://doi.org/10.1007/978-981-15-0950-6_1

company with a position that right in the developing world market. The company remains focused on the logistics sector as the core of our business while continuing to contribute to a better world, which we call "Undergoing Responsibility." But based on the data and information the authors receive has a lack of stability in marketing, especially in the export section that is not stuck, the following are Project-Load data for 2 years, namely 2016 and 2017 (Table 1 and Fig. 1).

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average
2016	36	28	36	33	28	23	13	24	19	30	22	12	25.33
2017	13	10	12	20	18	17	13	28	8	18	34	16	17.25

Table 1. Project load

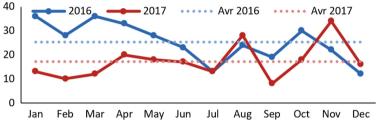


Fig. 1. Project-load fluctuation

Therefore, we need to know how to determine a good strategy for the company to stabilize and improve the company's project load, is to make observations on the internal and external parties of the company. Then do data processing with the SWOT and QSPM methods.

2 Research Methodology

The stages of research that have been carried out begin with the identification of problems through observation. Then proceed with identifying internal and external factors that affect the company through interviews with the head of the company's branch. Factors, both internal and external, that have been identified are given scores based on questionnaires that have been filled by customers and branch heads and given weights using the calculation of Analytical Hierarchy Process (AHP) [2]. With these scores and weights, we can create an IFE & EFE matrix, so that we can find out the scores of Strength (S), Weakness (W), Opportunity (O), and Threat (T). The IE and SPACE matrix can inform us of the position of the company in what quadrant. Each quadrant has a different strategy recommendation. The SWOT matrix helps us in choosing strategies that are in accordance with the comparison between SO, ST, WO, and WT. The QSPM matrix serves to find out whether the strategy we are proposing is better than the existing strategy [3] (Figs. 2 and 3).

Fig. 2. Strategy-formulation analytical framework [1]

Fig. 3. Stages of research

3 Finding and Discussion

See Tables 2, 3, 4, 5, 6 and 7 and Figs. 4 and 5.

Table 2.	Key	questions	internal	&	external	factors
----------	-----	-----------	----------	---	----------	---------

No.	Item description	Forces
I1	More than ever emphasize low price and value versus rivals	Marketing
I2	More than ever emphasize how the product/service will make your life better	Marketing
I3	Does the firm have good relations with its investors and stockholders?	Finance
I4	Are the firm's financial managers experienced and will trained?	Finance
I5	Is the firm's debt situation excellent?	Finance
I6	Are facilities, equipment, machinery, and offices in good condition?	Operation
I7	Are facilities, resources, and markets strategically located?	Operation
I8	Is communication between R&D and other organizational units effective?	R&D*
I9	Is there a chief information officer or director of information systems positions in the firm?	MIS**
I10	Do managers from all functional areas of the firm contribute input to the information system?	MIS
I11	Are strategists of the firm familiar with the information systems of rival firms?	MIS
I12	Is the firm's information system continually being improved in content and user-friendliness?	MIS
E1	Worker productivity levels	Economic
E2	Value of dollar in world markets	Economic
E3	Tax rates	Economic
E4	Attitudes toward work	Social
E5	Ethical concerns	Social
E6	Attitudes toward product quality	Social
E7	Attitudes toward customer service	Social
E8	Import - Export regulations	Political

Note: *R&D: Research and Development; **MIS: Management Information System

6

							<u> </u>					
No.	I1	I2	I3	I4	I5	I6	I7	I8	I9	I10	I11	I12
I1	1.00	0.20	0.33	0.25	0.16	0.50	0.14	0.33	0.12	0.20	0.20	0.25
I2	5.00	1.00	1.66	1.25	0.83	2.50	0.71	1.66	0.62	1.00	1.00	1.25
I3	3.00	0.60	1.00	0.75	0.50	1.50	0.42	1.00	0.37	0.60	0.60	0.75
I4	4.00	0.80	1.33	1.00	0.66	2.00	0.57	1.33	0.50	0.80	0.80	1.00
I5	6.00	1.20	2.00	1.50	1.00	3.00	0.85	2.00	0.75	1.20	1.20	1.50
I6	2.00	0.40	0.66	0.50	0.33	1.00	0.28	0.66	0.25	0.40	0.40	0.50
I7	7.00	1.40	2.33	1.75	1.16	3.50	1.00	2.33	0.87	1.40	1.40	1.75
I8	3.00	0.60	1.00	0.75	0.50	1.50	0.42	1.00	0.37	0.60	0.60	0.75
I9	8.00	1.60	2.66	2.00	1.33	4.00	1.14	2.66	1.00	1.60	1.60	2.00
I10	5.00	1.00	1.66	1.25	0.83	2.50	0.71	1.66	0.62	1.00	1.00	1.25
I11	5.00	1.00	1.66	1.25	0.83	2.50	0.71	1.66	0.62	1.00	1.00	1.25
I12	4.00	0.80	1.33	1.00	0.66	2.00	0.57	1.33	0.50	0.80	0.80	1.00
Sum	53.00	10.60	17.66	13.25	8.83	26.50	7.57	17.66	6.62	10.60	10.60	13.25

Table 3. Pairwise comparisons of IFE

Table 4. Pairwise comparisons of EFE

No.	E1	E2	E3	E4	E5	E6	E7	E8
E1	1.00	0.20	0.20	0.20	3.00	3.00	0.25	5.00
E2	5.00	1.00	1.00	1.00	1.67	1.67	1.25	1.00
E3	5.00	1.00	1.00	1.00	1.67	1.67	1.25	1.00
E4	5.00	1.00	1.00	1.00	1.67	1.67	1.25	1.00
E5	0.33	0.60	0.60	0.60	1.00	1.00	0.75	0.60
E6	0.33	0.60	0.60	0.60	1.00	1.00	0.75	0.60
E7	4.00	0.80	0.80	0.80	1.33	1.33	1.00	0.80
E8	0.20	1.00	1.00	1.00	1.67	1.67	1.25	1.00
Sum	20.87	6.20	6.20	6.20	13.00	13.00	7.75	11.00

Table 5. IFE & EFE matrix

Key internal factors	Weight	Rating	Weighted score	Key external factors	Weight	Rating	Weighted score
Strengths				Opportunities			
I1	0.02	3	0.06	E1	0.13	3	0.41
I4	0.09	3	0.28	E4	0.15	3	0.46
I6	0.06	3	0.17	E6	0.15	3	0.46
18	0.08	3	0.23	E7	0.15	3	0.46
I10	0.11	3	0.34				1.8
I11	0.04	3	0.11				
			1.19				
Weaknesses				Threats			
I2	0.13	2	0.26	E2	0.08	2	0.15
I3	0.06	2	0.11	E3	0.08	2	0.15
15	0.15	2	0.3	E5	0.12	2	0.25
I7	0.09	2	0.19	E8	0.13	2	0.25
19	0.09	2	0.19				0.8
I12	0.08	2	0.15				
			1.21				
Total	1		2.4	Total	1		2.6

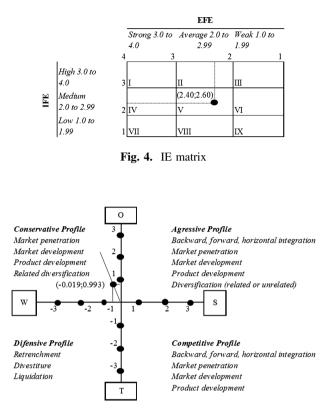


Table 6. SWOT matrix

	Strength	Weakness
Opportunities	SO strategies	WO strategies
	All notifications let post and	Increasing the company information
	distribute to all department by	systems (W5, W6, O2)
	system information of there (S5, O1)	Repair relationships with the
	Expand market and coming to	cooperations (W2, O2)
	customer for do cooperations (S3,	Do calculation price on the input,
	S4, O2, O3, O4)	process, output for repair debt
		situation (W3, O3, O4)
Threats	ST Strategies	WT Strategies
	Create the ethical rule for employee	Determine BEP price of
	toward work (S4, T3)	service/product to minimize the loss
	Do changed price for get more profit	value of dollar in world markets
	toward service import & export (S2,	(W5, T1, T4)
	T4)	

Key factors	Strategic alternative									
	Weight	Focus		Compan	Company repair					
		Connect	ed	Expand	market					
		Evolved		Change	price					
		AS	TAS	AS	TAS					
Opportunities										
El	0.14	3	0.41	4	0.55					
E4	0.15	2	0.31	4	0.62					
E6	0.15	3	0.46	3	0.46					
E7	0.15	3	0.46	3	0.46					
Threats	·		•		•					
E2	0.08	3	0.23	4	0.31					
E3	0.08	2	0.15	3	0.23					
E5	0.12	3	0.37	3	0.37					
E8	0.13	3	0.38	3	0.38					
	1.00									
Strength		I		ł						
I1	0.02	2	0.04	2	0.04					
I4	0.09	4	0.38	4	0.38					
I6	0.06	3	0.17	3	0.17					
18	0.08	2	0.15	2	0.15					
I10	0.11	2	0.23	2	0.23					
I11	0.04	2	0.08	1	0.04					
Weakness	·									
12	0.13	3	0.40	3	0.40					
13	0.06	3	0.17	3	0.17					
15	0.15	2	0.30	3	0.45					
17	0.09	3	0.28	3	0.28					
19	0.09	4	0.38	4	0.38					
I12	0.08	3	0.23	3	0.23					
Total	1.00	55	5.56	60	6.27					

Table 7. QSPM matrix

4 Conclusion

Based on the input stage, there are 8 key questions external factors and 12 key questions internal factors. From IE & SPACE Matrix, it shows the current position of the company in a conservative profile where the strategy that must be carried out is hold and maintain. The results of the SWOT matrix analysis are alternative strategies that are raised based on the comparison between S-O, S-T, W-O, and W-T. Then the QSPM matrix analysis will compare the value of interests between existing strategies and alternative strategies produced by the SWOT matrix. It is show that the proposed weighted strategy value of 6.27 while the existing strategic weighting is 5.56. Based on

the results of the analysis, the things that must be done by the company are improving the internal relations, expanding marketing network, and adjusting prices.

References

- 1. David, F.R.: Strategic Management: Concepts and Cases, 13th edn. Pearson, New Jersey (2011)
- Alamsyah, N.: Pengurutan skala prioritas perspektif balance scorecard dan KPI perusahan startup dengan metode AHP (analytical hierarchy process). Jurnal Teknik Ibnu Sina JT-IBSI 1 (01), 51–61 (2016)
- Alamsyah, N., Lubis, A.L.: Analisa strategi pemasaran menggunakan matriks IEF dan EFE (Studi Kasus PT. Kian Ho Indonesia). Jurnal Industri Kreatif (JIK) 2(2), 51–58 (2018)

Optimization of CNG Multi-depot Distribution to Determine Model Routes and GTM Totals Using Tabu Search and Differential Evolution Methods

Afni Khadijah^(IM) and Huswatun Hasanah

Universitas Banten Jaya, Serang, Banten, Indonesia {afnikhadijah, huswatunhasanah}@unbaja.ac.id

Abstract. Fuel Gas Filling Station Sadikun Bekasi and Fuel Gas Filling Station Sadikun Sukabumi multi-depots have 30 consumers of distribution area such as Bogor, Tangerang, and Cilegon. They distribute Compressed Natural Gas (CNG) to industrial consumers by using a trailer-based Gas Transport Module (GTM). The CNG purchase agreement between the provider of CNG to consumers who will fulfill the request per day without time limitation (time windows) and the distribution frequency set by the company. To optimize the distribution of CNG in this research is conducted using Tabu Search (TS) and the Different Evolution (DE) Methods. Meanwhile, TS Method has reducing total distribution costs as Rp 45.294.844, the reducing of mileage distribution as 1532, 3 km, and the route of distribution is reduced. Starting from 17-trips to 6trips as the offer route of distribution using 6 GTM. It affects increasing the utility value of GTM as 22.70%. DE Method has reduced total distribution costs as Rp 36.571.190, the reducing of mileage distribution as 1.441,7 km, and the route of distribution is reduced. Starting from 17-trips to 8-trips as the offer route of distribution using 8 GTM. It affects increasing the utility value of GTM as 29.95%. This study shows that Tabu Search (TS) Method is more reliable.

Keywords: Compressed Natural Gas · Tabu Search · Differential Evolution

1 Introduction

Today, the largest contribution of gas utilization is industrial sector reached 44% of totals and will increase in 2050 to 69%. In the industrial sector, natural gas is not only consumed to fuel, but also as raw material. By 2050, the power generation sector, commercial, and transportation of each section of gas utilization are 26%, 13% and 1%. At the same time, the part of household sector is below 1% [1]. To satisfy the demand of industrial gas needs which to increase annually, then the perpetrators of the natural gas business needs to expand the infrastructure of pipelines, increase the optimization value of the production process and supply chain from upstream to downstream in order to the availability of gas supply awake in various regions, price stability, and timeliness of the distribution of precision so that the cycle of industrial production in Indonesia continues to perform well.

The study focuses on multi-depot of Fuel Gas Filling Station Sadikun Bekasi and Sukabumi which are 30 consumer distribution areas such as Bogor, Tangerang, and Cilegon. The distribution of Compressed Natural Gas (CNG) to industrial consumers uses a trailer-based Gas Transport Module (GTM) that is specifically used for the transport of gas. The Gas Sales Purchase Agreement between the CNG provider to consumers who will perform the request of CNG per day without a time limit (time windows) and the distribution frequency set by the company depot. The Problem in research is related to quantity different in each point, charge, the limited capacity of fleet limited fleet, the distance, those who to traffic congestion. The distribution still uses the one-on-one. To minimize the total cost of distribution made the determination of the route and the number of the distribution of CNG optimal industry to reduce fixed cost and variable cost are conducted by using Tabu Search (TS) and the Different Evolution (DE) algorithm of The Vehicle Routing Problem with Times Window (VRPTW).

2 Literature Review

2.1 Tabu Search (TS)

Tabu Search is a method that is incorporated in a class called meta-heuristics. TS method has proven successful in solving problems related to the combinatorial optimization problems. The basis of TS meta-heuristic is to use aggressive strategies escort to cut local search procedure to carry out exploration in the solution set in order to avoid being stuck in local optima. When local optima encountered, an aggressive strategy to move to the best solution in every neighbor even if it resulted in a decrease in the value of interest.

2.2 Different Evolution (DE)

Differential Evolution algorithm is not much different from other Evolutionary algorithms. DE uses vectors that represent all of candidate solutions which its search technique performed simultaneously on a number of solutions called the population. Initial population (zero generation) is formed by generating a random number, while the next population is the result of the evolution of vectors that have been through the stages of reproduction, mutation, recombination and selection. Each individual is defined as a D-dimensional vector in which the vectors are denoted as $x_{i.g}$ which is a member of the population in g-generation. Population denoted as Px comprising the vectors are Np dimension where Np is the population size.

2.3 The Vehicle Routing Problem with Times Window (VRPTW)

VRP with time windows (VRPTW) is the development of CVRP which has a capacity constraint applied and each i-consumer associated with interval $[a_i, b_i]$ called time window. The instant time when the vehicle leaves the depot, travel time TIJ, for each

notation (i, j) \in A (or te notation for e \in E) and the addition of the service time for each i-consumer have been determined [2].

Service to customers should be initiated which is associated in the time window and the vehicle must stop at customer locations are for the time instant. Sometimes, in the case of an earlier arrival at the location of the i-consumer, vehicles are generally allowed to wait until the instant time a_i , i.e. until the service begins.

3 Research Methodology

The data used in the research is the historical data in 2015 regarding the distribution of CNG from CNG provider company depot to various consumer depots which have a demand regardless of time of delivery (time windows). Here is a secondary data that is required in this study.

- (a) Fleet data used
- (b) Data of distribution costs (fixed cost and variable cost)
- (c) The number of CNG by consumer demand
- (d) Data of mileage of the vehicle from the depot to the consumer
- (e) Data of matrix consumer depot locations

Overall the data processed by designing mathematical models and algorithms VRPTW translated into programming language Matlab R2015b (ver.7.9.0) by entering the objective function and constraints are predetermined.

Constraint

Q = The number of transported for customers *j j* Point = 1, 2, 3, ..., 32 d_{ij} = The distance from *i* to *j* FC₁ = Fixed costs vehicles VC₁ = Variable costs vehicles

Variable

$$X_{ijk} = \begin{cases} 1 \ (i \text{ point connected to } j \text{ point on the day to } k) \\ 0 \text{ No} \end{cases}$$

$$Y_k = \begin{cases} Vehicle used \\ 0 No \end{cases}$$