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Nomenclature

A [m2] Vacuum chamber cross section area or volume per
unit of axial length

A(r, t) [W/m3] Source term of energy input on the electrons
a [m] Vacuum chamber or channel height or width
a A constant in equations
B [T] Magnetic field
B(r, t) [W/m3] Source term of energy input on the lattice
b [m] Vacuum chamber or channel width or height
C [m2/s] Distributed pumping speed of pumping holes or

slots per unit axial length
Ce/a [J/(kg⋅K)] Specific heat of the electronic/lattice system
c [m2/s] Distributed pumping speed per unit axial length
D [m2/s] Knudsen diffusion coefficient
D Accumulated dose of particle bombarding a

surface
– D or D

𝛾
Photon dose

⚬ D or D
𝛾

[photons] Total photon dose
⚬ D or D

𝛾
or DL [photons/m] Photon dose per unit of axial length

⚬ D or D
𝛾

or DA [photons/m2] Photon dose per unit of area
– D or De Electron dose⚬ D or De [electrons]

Total electron dose⚬ D or De or DL [electrons/m]
Electron dose per unit of axial length⚬ D or De or DA [electrons/m2]
Electron dose per unit of area

– D or Di Ion dose
⚬ D or Di [ions] Total ion dose
⚬ D or Di or DL [ions/m] Ion dose per unit of axial length
⚬ D or Di or DA [ion/m2] Ion dose per unit of area
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d [m] Tube or orifice diameter
E Energy of charged particles
– E [MeV, GeV, TeV] Energy of particles in the beam
– E0 Rest energy, e.g. E0 = 0.511 MeV for electron and

E0 = 938.27 MeV for proton
– Ee or E [eV, keV] Energy of test electron in ESD and SEY

measurements
– Ei or E [eV, keV] Energy of test ion in ISD
– Edes [eV] Desorption energy

 [V/m] Electric field
F [m] Vacuum chamber cross section circumference or

surface area per unit axial length
f Fraction of beam ions (0< f < 1)
g [W/(m3⋅K)] Electron–phonon coupling
H (index) [ions/s] or [ions/(s⋅m)] Ion flux
I [A] Charged particle beam current

– Ie [mA] (Photo)electron current
– Ii [mA] Ion current

I [J] Mean ionization potential
J [molecules/(s⋅m2)] An impingement rate
K e/a [W/(m⋅K)] Thermal conductivity of the electronic/lattice

system
Kn Knudsen number
Kq Charge state of ions
L [m] Length of vacuum chamber
M [kg/mol] or [amu] Molecular molar mass
Mhi A number of hits on facet i′ in TPMC model
Mpi A number of particles pumped by facet i in TPMC

model
m [kg] (molecular) mass
N [molecules] A number of molecules in a volume
N A number of generated molecules in TPMC model
n [molecules/m3] Number density of gas
ne [molecules/m3] Thermal equilibrium gas density (in Chapters 7

and 9)
ne [electrons/m3] Electron density (in Chapters 8 and 10)
P [Pa] Pressure
P [W/m] Power dissipation per unit axial length
R [m] Bending radius of dipole magnet
R or 𝜌 Photon reflectance (reflectivity coefficient)
Rz [μm] Mean surface roughness
r [m] Radius



Nomenclature xix

Q [molecules/s] or Q* [Pa⋅m3/s] Local gas flux
q [molecules/(s⋅m2)] or q* [Pa⋅m/s] Specific outgassing rate
q [molecules/(s⋅m)] or q* [Pa⋅m2/s] Gas desorption flux per unit axial length
S [m2/s] Distributed pumping speed per unit axial length
Seff [m3/s] Effective pumping speed
Sid = Av∕4 [m3/s] Ideal pumping speed
Sp [m3/s] Pumping speed of a lumped pump
S = FLv∕4 [m3/s] Ideal wall pumping speed of accelerator vacuum

chamber of length L
SA [m/s] Specific pumping speed (pumping speed per unit

of surface area)
s [molecules/m2] Surface molecular density, a number of adsorbed

molecules
s0 [molecules/m2] A number of adsorption sites
T [K] Temperature of gas or walls of vacuum chamber
t [s] Time
U = u/L [m3/s] The vacuum chamber conductance
u = AD [m4/s] Specific vacuum chamber conductance per unit

axial length
V [m3] Vacuum chamber volume
v [m/s] Bulk velocity
v [m/s] Average molecular velocity
vrms [m/s] Root-mean-square molecular velocity
W Transmission probability matrix
w Transmission probability
x and y [m] Transversal coordinate
Z Atomic number
Zeff Effective charge of projectile ion, screened by

electrons
z [m] Longitudinal coordinate along the beam vacuum

chamber

𝛼 Sticking probability of molecules on vacuum
chamber walls

𝛼 Exponent in Eqs. (4.29), (4.34), and (4.35) for 𝜂(D)
𝛽 Capture coefficient
Γ Photon flux
– Γ [photons/s] Total photon flux
– Γ or ΓL [photon/(s⋅m)] Linear photon flux (photon flux per unit of axial

length)
– Γ or ΓA [photon/(s⋅m2)] Photon flux per unit surface area



xx Nomenclature

– Γmrad [photon/(s⋅mrad)] Photon flux from the beam in dipole magnetic field
into 1 mrad bend

𝛾 The Lorentz factor: 𝛾 = E/E0

𝛿 Secondary electron yield
𝜀 Photon energy
𝜀c Critical energy of SR
𝜂 or 𝜂e or 𝜉 [molecules/electron] ESD yield
𝜂 or 𝜂

𝛾
[molecules/photon] PSD yield

𝜂t [molecules/(s⋅m2)] or [Pa⋅m] Specific thermal outgassing rate
𝜂
′ or 𝜂e

′ or 𝜉′ [molecules/electron] ESD yield from cryosorbed gas (secondary ESD)
𝜂
′ or 𝜂

𝛾

′[molecules/photon] PSD yield from cryosorbed gas (secondary PSD)
Θ Electron flux (surface bombardment intensity)
– Θ [electron/s] Total electron flux
– Θ or ΘL [electron/(s⋅m)] Electron flux per unit axial length
– Θ or ΘA [electron/(s⋅m2)] Electron flux per unit surface area
Θ [mrad or ∘] Incidence angle of bombarding particles
𝜃 = s/s0 Normalised surface coverage
𝜈0 [s−1] Oscillation frequency of bound atom/molecule
𝜌 A pump capture efficiency (or a capture

coefficient), pump mesh or beam screen
transparency

𝜌(x, y) [C/m3] Beam charge density
𝜏 [s] Beam lifetime, an average residence time of sorbed

molecule on a surface
𝜎 [m2] An ionisation cross section of the residual gas

molecules by beam particles, an interaction cross
section (in Chapter 1)

𝜎x and 𝜎y [m] Transverse r.m.s. beam sizes
𝜒 [molecules/ion] ISD yield
𝜒

′ [molecules/ion] ISD yield from cryosorbed gas (secondary ISD)

Physical Constants

c Speed of light in vacuum c= 299 792 458 m/s
kB Boltzmann constant kB = 1.380 650 4(24)× 10−23 J/K

= 1.380 650 4(24)× 10−23 Pa⋅m3/K
h Plank’s constant h = 6.626 069 57× 10−34 m2⋅kg/s
qe Elementary charge qe = 1.602 176 46× 10−19 C
NA Avogadro constant NA = 6.022 140 76× 1023 mol−1

R Ideal gas (Regnault) constant R = 8.314 459 8(48) J/(mol⋅K) or
Pa⋅m3/(mol⋅K) or kg⋅m2/(mol⋅K⋅s2)
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List of Abbreviations

AC angular coefficient method
ESD electron-stimulated desorption
ISD ion-stimulated desorption
NEG non-evaporable getter
PEE photoelectron emission
PEY photoelectron yield
PSD photon-stimulated desorption
RGA residual gas analyser
SEE secondary electron emission
SEY secondary electron yield
SIP sputter ion pump
SR synchrotron radiation
TD thermal desorption
TPMC test particle Monte Carlo method
TMP turbo-molecular pump
TSP titanium sublimation pump
UHV ultra-high vacuum
XHV extreme high vacuum

Frequently Used Vacuum Units and Their Conversion
Vacuum Units

Pa mbar Torr bar
Atmosphere at
sea level

Pa 1 10−2 7.500 62× 10−3 10−5 9.869 2× 10−6

mbar 100 1 0.750 062 10−3 9.869 2× 10−4

Torr 133.322 1.333 22 1 1.333 22× 10−3 1.315 8× 10−3

bar 105 103 750.062 1 0.986 92
atm 1.013 25× 105 1.013 25× 103 760 1.013 25 1

Conversion of Frequently Used Units

Amount of
gas

PV N = PV
kBT

nmol =
PV
RT

m = M PV
RT

Units Pa⋅m3 = 10 mbar⋅l molecules mol kg

Gas flow d(PV )
dt

dN
dt

dnmol

dt
dm
dt

Units Pa⋅m3/s = 10 mbar⋅l/s molecules/s mol/s kg/s

Specific
outgassing
rate

1
A

d(PV )
dt

1
A

dN
dt

1
A

dnmol

dt
1
A

dm
dt

Units Pa m/s = 105 mbar⋅l/(s⋅cm2) molecules/(s⋅cm2) mol/(s⋅cm2) kg/(s⋅m2)
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Monolayer (ML)

A monolayer (ML) is a one-molecule thick layer of closely packed molecules of
gas on a geometrically flat surface.

In practical estimations for the gases present on rough surface of accelera-
tor vacuum chamber, an approximate value of 1 ML ≈ 1015 molecules/cm2 can
be used.
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Introduction

Oleg B. Malyshev
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A large number of good books related to vacuum science and technology
have already been written. Thus, the International Union for Vacuum Science,
Technique and Applications (IUVSTA) and American Vacuum Society (AVS)
have published on their websites a list of ‘Textbooks on vacuum science and
technology published, 1922–2003’, prepared by Kendall B.R. [1] which a list of
textbooks on vacuum science and technology published in 1922–2003, prepared
by Kendall B.R., which has 136 book titles, including [2–6]. A few more books
were published in recent years to represent a modern level of knowledge in the
rarefied gas dynamics and modelling, design of vacuum system and vacuum
technology, and vacuum instrumentation and materials [7–10]. However,
these books do not cover a number of specific problems related to vacuum
systems of charged particle accelerators and other large vacuum systems. The
lack of this specialist education materials was covered by CERN Accelerator
Schools in 1999, 2007, and 2017 (published in their proceedings [11–13]) and in
vacuum-related articles in the Handbook of Accelerator Physics and Engineering
[14], related to a number of different aspects of vacuum science, technology,
and engineering for particle accelerators. The proceedings of two workshops on
vacuum design of synchrotron radiation (SR) sources were also published by
AIP [15, 16]. However, there are a very small number of publications related to
accelerator vacuum chamber modelling and optimisation, including selecting
and manipulating the input data to the model [17–19], although there were a
few presentations at conferences, workshops, schools, and short courses on this
subject.

This book aims to help vacuum scientists and engineers in the gas dynamics
modelling of accelerator vacuum systems. It brings together the main considera-
tions, which have to be discussed and investigated during modelling and optimi-
sation in a design of particle accelerator vacuum system, as well as to give some
analytical solutions that could be useful in vacuum system design optimisation.
This includes, first of all, an analysis of experimental data that should be used
as inputs to analytical models; secondly, an understanding of what physical and
chemical processes are happening in the vacuum chamber with and without a

Vacuum in Particle Accelerators: Modelling, Design and Operation of Beam Vacuum Systems,
First Edition. Oleg B. Malyshev.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.
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beam; and thirdly, choosing and applying a model (or available software) and
interpreting the results. It is expected that readers have theoretical knowledge
and practical experience in vacuum science and technology, thermodynamics,
gas dynamics and some basic knowledge in particle accelerators.

The structure of the book corresponds to a workflow in the design of accelerator
vacuum chamber:

(1) Chapter 1 describes first considerations at the beginning of work on a new
machine such as what type of machine and what vacuum specifications,
rough vacuum estimations, etc.

(2) Chapters 2–5 provide an input data for gas dynamics models:
– Synchrotron radiation(SR) is one of the main characteristics required in

modelling of vacuum systems of many particle accelerators. Chapter 2
describes photon flux, critical energy, power, and angular distribution
from dipoles, quadrupoles, wigglers, and undulators. The authors were
writing the formulas in the format that could be useful for the vacuum
designers.

– Chapter 3 is focused on two important effects in the interaction between
SR and vacuum chamber walls: photon reflectivity and photoelectron pro-
duction. These two effects play a significant role in the photon-stimulated
desorption processes in room temperature and cryogenic beam chambers,
and the beam-induced electron multipacting and should also be consid-
ered in the ion induced pressure instability.

– Chapter 4 describes the main materials used in accelerator vacuum cham-
bers, their cleaning procedure, thermal outgassing, and electron-, photon-,
and ion-stimulated desorption.

– Chapter 5 is devoted to a very special vacuum technology – non-evaporable
getter coating.

(3) Chapters 6–10 describe the gas dynamics models:
– Chapter 6 describes vacuum system modelling using two main

approached: a one-dimensional diffusion model and a three-dimensional
test particle Monte Carlo method. We recommend reading this chapter
before the following Chapters 7–10.

– Chapter 7 describes specific problems of particle accelerators at cryogenic
temperature.

– Chapter 8 demonstrates how vacuum chamber design of positively
charged machines can be affected by mitigation of beam-induced electron
multipacting and e-cloud.

– Chapter 9 describes the ion-induced pressure instability, another potential
problem of positively charged machines, gas dynamics model, a number of
analytical solutions, and stability criteria.

– Chapter 10 is fully devoted to the heavy ion machine vacuum problems
and solutions. We recommend reading Chapters 6–9 before this chapter.

The authors believe that vacuum scientists and engineers, postdocs and PhD
students will find the book very helpful in their work related to the gas dynamics
modelling and vacuum design of charged particle accelerator vacuum systems.
The authors would be happy to receive a feedback or comments to any part of
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this book. This includes questions related to clarity, consistency, typos, missing
points, wish-to-see, etc.
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Vacuum Requirements
Oleg B. Malyshev

ASTeC, STFC Daresbury Laboratory, Keckwick lane, Daresbury, Warrington WA4 4AD Cheshire, UK

1.1 Definition of Vacuum

The content of this book is fully related to vacuum, so it is reasonable to begin
with its definition. It appears that the ‘common sense’ definition is very different
from the scientific one. For example, Oxford Dictionaries [1] defines vacuum as ‘a
space entirely devoid of matter’. A space or container from which the air has been
completely or partly removed, while Cambridge Dictionaries Online [2] gives a
more accurate definition: ‘a space from which most or all of the matter has been
removed, or where there is little or no matter’. However, the scientific community
refers to the ISO standards, ISO 3529-1:1981 [3], where the definition of vacuum
is given as follows:

“1.1.1
vacuum
A commonly used term to describe the state of a rarefied gas or the envi-
ronment corresponding to such a state, associated with a pressure or a
mass density below the prevailing atmospheric level.”

In other words, in rarefied gas dynamics, a gas is in vacuum conditions as soon
as its pressure per standard reference conditions is below 100 kPa. In practice,
vacuum conditions apply when a vacuum pump connected to a closed vacuum
vessel is switched on.

Theoretically, there is no limit for rarefication. However, in practice, there is
a limit of what can be achieved and what can be measured. Nowadays, some
modern vacuum systems may cover up to 15–16 orders of magnitude of gas rar-
efication, whereas the total pressure measurements are technologically limited to
∼10−11 Pa.

For convenience, ‘to distinguish between various ranges or degrees of vacuum
according to certain pressure intervals’, ISO 3529-1:1981 also defines the ranges
of vacuum:
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Low (rough) vacuum: 100 kPa to 100 Pa
Medium vacuum: 100 to 0.1 Pa
High vacuum (HV): 0.1 Pa to 10 μPa
Ultra-high vacuum (UHV): below 10 μPa

A vacuum system designer should be aware that regardless the definition of the
vacuum ranges given by ISO 3529-1:1981, a few alternative ranges with different
boundaries and two more ranges (very high vacuum [VHV] and extremely high
vacuum [XHV]) are used in vacuum community, for example, when each range
covers exactly 3 orders of magnitude:

Low (rough) vacuum: 105 to 102 Pa
Medium vacuum: 102 to 10−1 Pa
High vacuum (HV): 10−1 to 10−4 Pa
Very high vacuum (VHV): 10−4 to 10−7 Pa
Ultra high vacuum (UHV): 10−7 to 10−10 Pa
Extremely high vacuum (XHV): below 10−10 Pa

1.2 Vacuum Specification for Particle Accelerators

1.2.1 Why Particle Accelerators Need Vacuum?

All particle accelerators are built to meet certain user’s specifications (e.g. certain
luminosity in colliders; defined photon beam parameters in synchrotron radia-
tion (SR) sources; specified ion or electron beam intensity, timing and a spot size
on a target; etc.). The user’s specifications are then translated to the specifica-
tion to the charged particle beam parameters, which, in their turn, are translated
the specifications to all accelerator systems where the specifications to vacuum
system are one of the most important for all types of particle accelerators.

Ideally, charged particles should be generated, accelerated, transported,
and manipulated without any residual gas molecules. However, residual gas
molecules are always present in a real vacuum chamber. The energetic charged
particles can interact with gas molecules and these interactions cause many
unwanted effects such as loss of the accelerated particle, change of a charge state,
residual gas ionisation, and many others [4, 5].

In practice, vacuum specifications for particle accelerators or other large vac-
uum system are set to minimise these effects of beam–gas interaction to a toler-
able level when their impact on beam parameters is much lower than one from
other physical phenomena. Thus, the particle accelerator vacuum system should
provide the required (or specified) vacuum in the presence of the charged parti-
cle beam.

Not only the residual gas affects the beam, but the beam can also cause an
increase of gas density by a beam-induced gas desorption in its vacuum chamber.


