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Preface

Along with the Maxwell equations, boundary conditions form an essential part
of defining electromagnetic problems. Mathematically, they ensure uniqueness
of solution for the problem. In working with engineering problems, they offer
analytic help in mathematical handling of given electromagnetic structures and
synthetic help for designing new electromagnetic structures. In the former case,
a given physical structure can often be approximated by boundary conditions
enabling the use of simpler analytical computation schemes to find the electro-
magnetic response of the structure. In the latter case, certain exact boundary
conditions can be used as a starting point to design (synthesize) a structure with
desired electromagnetic response. This aspect is adopted throughout in the text.
With the synthetic approach, the problem becomes to realize the structure in
terms of suitable materials. The main topic of this book is the most general lin-
ear and local boundary conditions and the basic problem, plane-wave reflection
from a planar boundary in a simple-isotropic medium.

The general boundary is approached by starting, in Chapters 1 and 2, from
the simplest special cases, the Perfect Electric Conductor (PEC), the Perfect
Magnetic Conductor (PMC) and their generalization, the Perfect ElectroMag-
netic Conductor (PEMC). It is shown that, by applying suitable duality trans-
formations, these boundaries can be transformed to one another. As an applica-
tion, scattering of small PEMC particles is analyzed to find effective parameters
of a mixture of PEMC inclusions.

In Chapter 3, the Impedance Boundary Condition (IBC) is seen to generalize
the previous cases. Other special cases are obtained by splitting the impedance
dyadic Zt in its natural components. A plane wave satisfying the boundary
conditions identically is called a wave matched to the boundary, an example
of which is the surface wave propagating along certain impedance surfaces. In
addition to finding the plane-wave reflection dyadic for the general IBC surface,
and the special cases, the Soft-and-Hard (SH) boundary with its generalization
(GSH boundary), the simple-isotropic boundary problem is solved for dipole
excitation in terms of its image source.

In Chapter 4, boundaries defined by conditions involving components of
fields normal to the boundary surface, are considered. Main attention is given
to the DB boundary, at which the fields D and B have no normal components.
Along with it, the one called D’B’ boundary, defined by zero normal derivatives

ix
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of the normal components of D and B, is analysed. Two applications, spherical
DB resonator and cylindrical DB waveguide are solved for their basic modes.
Finally, attention is given to the more general case of the mixed-impedance (or
DB/D’B’) boundary.

In Chapter 5, the most general linear and local impedance boundary (GBC
boundary) is introduced as a generalization of all of the above cases except the
D’B’ and DB/D’B’ boundaries which are not local ones. It is shown that any
plane wave can be decomposed in two parts defined by polarizations depending
on the parameters of the boundary and the k vector of the wave. It is shown that
such a polarization property is retained in reflection, whence the decomposed
waves do not couple at the boundary. This allows one to express the reflection
dyadic as a sum of two simple parts. Conditions for waves matched to the GBC
boundary are obtained from zero reflection coefficients. Special cases, like the
SHDB boundary and the GSHDB boundary, not falling in the topics of the
previous Chapters, are discussed with examples on matched waves in various
cases. Reciprocity of the GBC boundary is discussed by analysing different
special cases, and realization of the general GBC boundary in terms of the
interface of a suitable bi-anisotropic medium is suggested.

As a topic different from the previous ones, based on linear boundary condi-
tions, the class of SQL boundaries, based on sesquilinear boundary conditions,
is introduced in Chapter 6. For the basic problem of plane wave incident to
an isotropic SQL boundary, it is shown that there are two reflected waves, one
of which is forward-reflected and, the other one, is retro-reflected. For certain
parameters of the medium, only the retro-reflected wave survives, whence the
SQL boundary resembles one made of corner reflectors.

Chapter 7 deals with the numerical analysis of scattering from objects de-
fined by boundary conditions at their surfaces. The manner how electromagnetic
waves are affected by such scatterers depends on their size, geometrical shape,
and in particular, the character of the boundary condition of their surface. The
analysis in this chapter focuses mostly on the canonical spherical geometry.
Scatterers with PEC, PMC, PEMC, DB, D’B’, and isotropic impedance bound-
aries are analysed using the full-wave Mie scattering principles. Interesting
physical responses of such scatterers are discussed, such as zero-backscattering
objects, unexpected front-to-back asymmetries, and sharp resonances for sub-
wavelength impedance-boundary scatterers.

The main scope of this book is to introduce the set of most general linear
and local boundary conditions and analyse the basic problems of plane-wave
reflection and matching associated to a planar boundary in a simple-isotropic
medium. Most of the material in this book has been first presented by these
authors in various journals listed at the end of the book, and is here given a uni-
fied representation. Some of these less common boundary conditions discussed
here have already found practical engineering realizations by scientists working
on metamaterials and metasurfaces. They are referred to in a proper context in
this book.

While the analysis applies Gibbsian 3D vector formalism, familiar to all
electrical engineers, the general boundary conditions can be given a simple and

x
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natural representation in terms of 4D multiforms and dyadics, which leads to the
impression of their basic physical nature. The formalism is briefly introduced in
Appendix C. In Appendices A and B some useful formulas from electromagnetic
analysis and Gibbsian 3D dyadics are added for convenience. Many details of
the analysis are skipped and left as exercises, solutions of which are outlined in
the Appendix D. The aim is as well to compact the text as to leave room for
activity in self-learning.

The book is directed to anyone interested in electromagnetic theory in gen-
eral. For example, those working in the fashionable engineering field of meta-
materials and metasurfaces, may find the concepts discussed here useful.

Ismo V. Lindell and Ari Sihvola

i





Chapter 1

Introduction

1.1 Basic Equations

Maxwell Equations
Electromagnetic problems involving fields and sources are governed by the
Maxwell equations, medium equations and boundary conditions. For time-
harmonic fields and sources, with time dependence exp(jωt), the Maxwell equa-
tions, in the form of Heaviside [19] and the formalism of Gibbs [13], can be
expressed as

∇×E+ jωB = −Jm (1.1)
∇×H− jωD = Je. (1.2)

Here, Je and Jm denote the respective electric and magnetic current density
vectors while E,H,D and B represent the respective electric field, magnetic
field, electric flux-density and magnetic flux-density vectors. All of these vectors
may have complex components.

Medium Conditions
Conditions between the field vectors in a bianisotropic medium can be expressed
in the form [29, 35] (

D
B

)
=

(
ε ξ

ζ μ

)
·
(

E
H

)
, (1.3)

where ε, ξ, ζ and μ are medium dyadics. In terms of a given vector basis, any
dyadic can be represented in terms of a 3 × 3 matrix involving nine scalar
components (for rules of dyadic algebra, see Appendix C).

Here we mainly consider problems involving the simple-isotropic medium
(’free space, vacuum’), for which the medium conditions are reduced to

D = εoE, B = μoH. (1.4)

1



2 Lindell and Sihvola: Boundary Conditions in Electromagnetics

The wave impedance ηo, expressing the ratio of the electric and magnetic field
magnitudes in the simple-isotropic medium, is defined by

ηo =

√
μo

εo
. (1.5)

Boundary Conditions

Boundary conditions form an essential part of formulating electromagnetic prob-
lems. By a boundary we mean a surface on which secondary electromagnetic
sources are induced by the primary fields so that the fields beyond the surface
vanish. A boundary surface is different from an interface of two media because
the fields beyond the interface are not necessarily zero. From the mathemat-
ical point of view, boundary conditions are required to ensure existence and
uniqueness of solutions for a particular problem. From the engineering point of
view, two aspects of boundary conditions can be separated which may be called
analytic and synthetic.

An analytic aspect of boundary conditions is encountered when a given phys-
ical problem requires mathematical analysis. Due to natural complications, a
given structure must often be approximated by certain boundary conditions to
find a numerical solution [21, 88]. As an example, solving radio wave propaga-
tion over ground requires that the ground be approximated by an impedance
boundary or, if well-enough conducting, by the perfect electric conductor (PEC).
Thus, in such a case, to analyze the effect of a given structure, we replace it by
some approximate boundary conditions.

In contrast, a synthetic aspect emerges when we wish to realize given bound-
ary conditions by some physical structure. As an example, when designing
mobile phones with submerged antennas, the concept of perfect magnetic con-
ductor (PMC) boundary has been suggested to solve the problem of efficient
radiation [92]. In this case, the problem becomes a synthesis, how to find a
physical structure to realize the PMC conditions.

In this book we are concerned about the synthetic aspect by studying dif-
ferent types of boundary conditions, their effect on electromagnetic fields, and
possible realizations by interfaces of media defined by medium parameters. More
practical physical realizations by (meta)materials are, however, beyond the topic
of the book. Let us start with three most basic boundary conditions, properties
of which will be considered in due course.

• Perfect Electric Conductor (PEC)

n×E = 0 (1.6)

• Perfect Magnetic Conductor (PMC)

n×H = 0, (1.7)



Lindell and Sihvola: Boundary Conditions in Electromagnetics 3

• Perfect Electromagnetic Conductor (PEMC) [45]

n× (H+ME) = 0 (1.8)

The PEMC, involving a parameter M (the PEMC admittance), is a gen-
eralization of both the PEC and the PMC. For M = 0, the PEMC reduces
to the PMC, and for 1/M = 0, it reduces to the PEC.

1.2 Duality Transformation

A given electromagnetic problem can be transformed to another one in terms
of duality transformation which does not change the geometry of the problem,
but the sources, fields, medium and boundary parameters are transformed to
have other values, in general. The concept of duality was evidently unknown to
Maxwell, because he presented his equations in a very nonsymmetric form, in
terms of 20 scalar field and potential quantities [79]. The concept was introduced
by Heaviside in 1886 [19].

Duality transformation is based on the apparent symmetry of the Maxwell
equations (1.1), (1.2), written more compactly as

∇×
(

E
−H

)
+ jω

(
0 1
1 0

)(
D
B

)
= −

(
Jm

Je

)
. (1.9)

In fact, for the simple change of symbols E ↔ −H, B↔ D and Je ↔ Jm, the
pair of equations (1.9) is invariant. More generally, the same property can be
expressed in terms of the duality transformation (E,H)→ (Ed,Hd), defined by
[35] (

Ed

ηoHd

)
=

(
A B
C D

)(
E

ηoH

)
. (1.10)

The wave impedance ηo has been included to obtain dimensionless transforma-
tion parameters A · · ·D. They are assumed to satisfy

AD −BC = 1, (1.11)

whence the inverse transformation exists and has the form(
E

ηoH

)
=

(
D −B
−C A

)(
Ed

ηoHd

)
. (1.12)

Applying (1.10) to (1.1) and (1.2), the associated transformation rules can be
expressed as (

ηoDd

Bd

)
=

(
D −C
−B A

)(
ηoD
B

)
(1.13)

(
ηoJed

Jmd

)
=

(
D −C
−B A

)(
ηoJe

Jm

)
(1.14)
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One can show that the PEMC boundary conditions (1.8) are transformed to

n× (Hd +MdEd) = 0, (1.15)

with the transformed PEMC admittance satisfying

Mdηo = −C −DMηo
A−BMηo

. (1.16)

From this it follows that both PEC and PMC boundaries are transformed to
PEMC boundaries with Mdηo = −D/B and Mdηo = −C/A, respectively. Also,
any given PEMC boundary can be transformed to PEC and PMC boundaries
when the transformation parameters are chosen to satisfy the respective restric-
tions A/B = Mηo and C/D = Mηo.

In the general case, the dyadic parameters of the electromagnetic medium
will be changed when the fields are subject to the duality transformation (1.10).
For a bianisotropic medium defined by conditions of the form (1.3), the trans-
formed medium dyadics can be shown to obey the relations [42]⎛

⎜⎜⎜⎝
εd

ξd
ζd
μd

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

D2 −CD/ηo −CD/ηo C2/η2o
−BDηo AD BC −AC/ηo
−BDηo BC AD −AC/ηo
B2η2o −ABηo −ABηo A2

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎝

ε

ξ

ζ
μ

⎞
⎟⎟⎟⎠ . (1.17)

Requiring a transformation in which the simple isotropic medium (μo, εo) is
invariant leads to a choice of the form

A = D = cosϕ, B = −C = sinϕ, (1.18)

where ϕ is a free transformation parameter. The resulting transformation matrix(
A B
C D

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)
(1.19)

can be recognized as a 2D rotation matrix. The corresponding transformation
rule for the medium dyadics (1.17) becomes in this case⎛

⎜⎜⎜⎝
εd/εo

ξd/
√
μoεo

ζd/
√
μoεo

μd/μo

⎞
⎟⎟⎟⎠ = Q(ϕ)

⎛
⎜⎜⎜⎝

ε/εo

ξ/
√
μoεo

ζ/
√
μoεo

μ/μo

⎞
⎟⎟⎟⎠ , (1.20)

with the 4× 4 matrix Q(ϕ) defined by

Q(ϕ) =

⎛
⎜⎜⎝

cos2 ϕ sinϕ cosϕ sinϕ cosϕ sin2 ϕ
− sinϕ cosϕ cos2 ϕ − sin2 ϕ sinϕ cosϕ
− sinϕ cosϕ − sin2 ϕ cos2 ϕ sinϕ cosϕ

sin2 ϕ − sinϕ cosϕ − sinϕ cosϕ cos2 ϕ

⎞
⎟⎟⎠ . (1.21)
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For the simple-isotropic medium with ε = εoI, ξ = ζ = 0 and μ = μoI, from
(1.20) we obtain εd = εoI, ξd = ζd = 0 and μd = μoI, as required. One can
further show that the matrix Q(ϕ) satisfies

Q(ϕ1)Q(ϕ2) = Q(ϕ1 + ϕ2), (1.22)

detQ(ϕ) = 1, (1.23)

Q−1(ϕ) = QT (ϕ) = Q(−ϕ), (1.24)

i.e., it is an orthogonal matrix. The proof is left as an exercise.
Expressing the PEMC admittance parameter M in terms of another param-

eter ϕ as
Mηo = tanϑ, (1.25)

the transformation rule (1.16) takes the simple form

Mdηo =
Mηo + tanϕ

1−Mηo tanϕ
= tan(ϑ+ ϕ). (1.26)

Thus, for the choice ϕ = −ϑ of the duality parameter, the PEMC boundary
is transformed to the PMC boundary (Md = 0), while for ϕ = π/2 − ϑ, it is
transformed to the PEC boundary (1/Md = 0).

1.3 Plane Waves

Basic Conditions
Let us consider time-harmonic plane waves with exp(jωt) dependence in a simple
isotropic medium, in front of a boundary surface defined by n · r = 0. For
simplicity we assume that the surface is a plane, i.e., that n is a constant unit
vector. The electric and magnetic field components of waves incident to the
boundary are expressed by

Ei(r) = Ei exp(−jki · r), (1.27)
Hi(r) = Hi exp(−jki · r), (1.28)

and the reflected fields are

Er(r) = Er exp(−jkr · r), (1.29)
Hr(r) = Hr exp(−jkr · r). (1.30)

To satisfy the Maxwell equations, the two wave vectors must satisfy the
dispersion equation as

ki · ki = kr · kr = k2o = ω2μoεo. (1.31)

If the boundary condition is linear, the ki and kr vectors must have the same
components tangential to the boundary surface, i.e., they can be represented as

ki = kt − knn, kr = kt + knn. (1.32)
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n
ki

kr

ktkt

+nkn-nkn

Figure 1.1: The incident and reflected plane waves have the same wave-vector
components kt tangential to the boundary surface.

A class of boundaries with conditions deviating from linear ones is considered
in Chapter 6.

Substituting the plane-wave fields in the Maxwell equations (1.1) and (1.2),
equations relating the electric and magnetic fields are obtained as

ki ×Ei = koηoH
i, (1.33)

ki × ηoH
i = −koEi, (1.34)

and

kr ×Er = koηoH
r, (1.35)

kr × ηoH
r = −koEr. (1.36)

The field components normal to the boundary can be expressed in terms of their
tangential components from the orthogonality conditions as

ki ·Ei = 0, ⇒ n ·Ei =
1

kn
kt ·Ei

t, (1.37)

kr ·Er = 0, ⇒ n ·Er = − 1

kn
kt ·Er

t , (1.38)

valid for kn �= 0. Similar conditions are valid for the magnetic fields.

Field Relations

From (1.33) and (1.34) we obtain the following relations between the tangential
components of the incident fields:

n · kt ×Ei
t =

ko
kn

kt · ηoHi
t, (1.39)

n · kt × ηoH
i
t = − ko

kn
kt ·Ei

t. (1.40)



Lindell and Sihvola: Boundary Conditions in Electromagnetics 7

Assuming also kt · kt = k2t �= 0, the vectors kt and n × kt serve as a 2D basis,
in terms of which we can expand the 2D unit dyadic as

It = I− nn =
1

k2t
(ktkt + (n× kt)(n× kt)). (1.41)

The relation between the tangential electric and magnetic fields can be expanded
as

Ei
t =

1

k2t
(kt(kt ·Ei

t) + (n× kt)(n× kt ·Ei
t))

=
1

k2t
(−kn

ko
kt(n× kt) +

ko
kn

(n× kt)kt) · ηoHi
t

=
1

kokn
n× (ktkt + k2nIt) · ηoHi

t. (1.42)

The dyadic in this relation is of importance in the analysis of plane waves.
Denoted by

Jt =
1

kokn
n× (ktkt + k2nIt), (1.43)

it can be shown to satisfy the properties

trJt = 0, (1.44)

J2t = −It, (1.45)

J−1
t = −Jt, (1.46)

derivations of which are left as exercises.
The dyadic Jt allows one to write relations between the tangential electric

and magnetic fields of a plane wave in compact form as

Ei
t = Jt · ηoHi

t ηoH
i
t = −Jt ·Ei

t. (1.47)

For the reflected fields, similar expressions are valid when replacing kn by −kn:

Er
t = −Jt · ηoHr

t , ηoH
r
t = Jt ·Er

t . (1.48)

The expressions (1.47) and (1.48) will be needed in the analysis of reflections
from various boundaries. In this, we can also make use of the following set of
relations:

kt · Jt = −kn
ko

n× kt, Jt · kt =
ko
kn

n× kt, (1.49)

(n× kt) · Jt = ko
kn

kt, Jt · (n× kt) = −kn
ko

kt, (1.50)

and,

J
(2)
t =

1

2
Jt
××Jt = nn, dettJt = trJ

(2)
t = 1. (1.51)
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n

Ei

Ei
t

η0H
i

η0H
i
t

kt

ki

Jt

Figure 1.2: The dyadic Jt maps the tangential component of the magnetic field
of an incident plane wave to the tangential component of the electric field. The
vectors Ei,Hi and ki are orthogonal to one another.

The dyadic Jt and the antisymmetric dyadic n× I share the property (n× I)2 =

J2t = −It. While n × I rotates vectors on the tangent plane by π/2, the dyadic
Jt "rotates" the tangential part of the electric field to the tangential part of the
magnetic field of the same plane wave. The Jt dyadic is determined by kt, the
tangential part of the wave vector in the simple-isotropic medium.

1.4 TE/TM Decomposition

It turns out that the field vectors of a plane wave, propagating with the wave
vector k = nkn+kt, can be expressed in terms of their normal components n ·E
and n ·H as

E =
1

k2t
((k2tn− knkt)(n ·E) + ko(n× k)(n · ηoH)) (1.52)

ηoH =
1

k2t
((k2tn− knkt)(n · ηoH)− ko(n× k)(n ·E)). (1.53)

Details of the derivation are left as an exercise. Applying (1.52) and (1.53), any
plane wave can be decomposed in two parts as

(
E
H

)
=

(
ETE

HTE

)
+

(
ETM

HTM

)
, (1.54)
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with

ETE =
ko
k2t

(n× k)(n · ηoH), (1.55)

HTE =
1

k2t
(k2tn− knkt)(n ·H), (1.56)

ETM =
1

k2t
(k2tn− knkt)(n ·E), (1.57)

ηoHTM = −ko
k2t

(n× k)(n ·E). (1.58)

The partial fields are called tranverse electric (TE) and transverse magnetic
(TM) because the two parts are restricted by the respective conditions

n ·ETE = 0, n ·HTM = 0. (1.59)

The decomposed fields satisfy the Maxwell equations separately. To check this,
we can expand

∇×ETE = −jk×ETE (1.60)

= −j koηo
k2t

k× (n× kt)(n ·H) (1.61)

= −j koηo
k2t

(nk2t − knkt)(n ·H) (1.62)

= −jkoηoHTE , (1.63)

∇×HTM = −jk×HTM (1.64)

= j
ko
ηok2t

k× (n× kt)(n ·E) (1.65)

= j
ko
ηok2t

(nk2t − knkt)(n ·E) (1.66)

= j
ko
ηo

ETM . (1.67)

The decomposition is unique for kt �= 0. For kt = 0 the expansions (1.52) and
(1.53) are not applicable. In this case the TE/TM decomposition is still possible
but not unique. Actually, for kt = 0 the plane-wave has TEM polarization,
n ·E = n ·H = 0.

Because the TE/TM decomposition of a plane wave does not depend on the
choice of the k vector, it is valid for a sum of plane waves and, ultimately, for
an integral of plane waves in the space of k vectors which may have complex
values. Thus, any fields which can be expressed as an integral of plane waves
can be decomposed in two independent TE and TM parts with respect to a
given n vector.
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1.5 Problems
1.1 For a given duality transformation, find a PEMC admittance which is in-

variant in the transformation. Apply the result to the special transforma-
tion (1.19).

1.2 Derive the transformation rule (1.17) for the medium dyadics and show
that the dyadic ξ − ζ is invariant in the transformation.

1.3 Derive the transformation rule (1.20) from (1.17).

1.4 Show that the matrix Q(ϕ) in (1.21) is orthogonal, i.e., that it satisfies

Q−1(ϕ) = QT (ϕ) = Q(−ϕ).

1.5 Show that it is possible to find a duality transformation which maps two
given PEMC admittances M1 and M2 so that M1d = −M2d = Md and
leaves the simple-isotropic medium invariant. Find the relation between
M1, M2 and Md.

1.6 Derive the properties (1.45), (1.46) and (1.51) of the dyadic Jt.

1.7 Derive the decomposition rules (1.52) and (1.53).

1.8 Applying (1.20), find another expression for the duality transformation of
the medium dyadics in the form⎛

⎜⎜⎜⎝
εd/εo − μd/μo

(ξd − ζd)/
√
μoεo

(ξd + ζd)/
√
μoεo

εd/εo + μd/μo

⎞
⎟⎟⎟⎠ = Q′(ϕ)

⎛
⎜⎜⎜⎝

ε/εo − μ/μo

(ξ − ζ)/
√
μoεo

(ξ + ζ)/
√
μoεo

ε/εo + μ/μo

⎞
⎟⎟⎟⎠

in terms of a matrix Q′(ϕ). Which dyadics appear invariant in the trans-
formation?



Chapter 2

Perfect Electromagnetic
Conductor Boundary

2.1 PEMC Conditions
The condition (1.8), defining the perfect electromagnetic conductor (PEMC)
boundary, actually represents one of the most basic conditions in electromag-
netic theory. In fact, applying the four-dimensional formalism of Appendix A,
the PEMC medium (also called the axion medium [20, 72, 97, 99]) is defined
by the simplest possible linear relation between the electromagnetic two-forms
Φ = B+E ∧ ε4 and Ψ = D−H ∧ ε4 as

Ψ = MΦ. (2.1)

In terms of the spatial two-form components D,B and spatial one-form compo-
nents H,E, (2.1) equals the conditions

D = MB, H = −ME. (2.2)

In Gibbsian 3D formalism, the corresponding PEMC medium conditions be-
tween the field vectors1 are(

H
D

)
= M

(
0 −1
1 0

)(
B
E

)
. (2.3)

There is no natural way to express these conditions in the form (1.3) in terms
of finite medium dyadics. However, they can be represented as the limit [46](

ε ξ

ξ μ

)
= lim

q→∞ q

(
M 1
1 1/M

)
I. (2.4)

1Although the Gibbsian field vectors and the field one- and two-forms are here denoted by
similar symbols, they obey different algebraic rules.

11
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A slightly more natural form with the same limit is [83, 72](
ε ξ

ξ μ

)
= lim

q→∞ q

(
M(1 + (μoεo/q

2)) 1
1 1/M

)
I. (2.5)

In both of these representations all four medium dyadics ε · · ·μ become ulti-
mately infinite in magnitude. However, while in the case (2.4) the matrix has
no inverse for any q, in the case of (2.5), the matrix does have an inverse for finite
values of q, whence it corresponds to a more ordinary bi-anisotropic medium.

Continuity of the tangential components of E and H, and the normal com-
ponents of D and B, at an interface of a PEMC medium, yields the PEMC
boundary conditions,

n× (H+ME) = 0, (2.6)
n · (D−MB) = 0. (2.7)

Actually, the condition (2.7) is not necessary, because it can be shown to
follow from (2.6) and the Maxwell equations. The proof is left as an exercise.
Although (2.7) carries no additional information beyond (2.6), it can be useful
in reducing computational effort in some practical cases.

The PEMC boundary can be realized by an interface of the PEMC medium.
However, it is not obvious how to realize the PEMC medium. A more practical
realization can be based on a slab of medium with suitable properties. Since the
PEMC boundary is isotropic and nonreciprocal, it would be natural to apply a
slab of uniaxial gyrotropic medium with axis parallel to the vector n [47]. In
Chapter 3 such a realization (3.259), (3.260) will be considered as associated
with the realization of more general impedance-boundary surfaces [51].

2.2 Eigenproblem of Dyadic Jt

Assuming a field consisting of incident and reflected plane waves, the PEMC
condition (2.6) can be written for the tangential field components as

ηo(H
r
t +Hi

t) +Mηo(E
r
t +Ei

t) = 0. (2.8)

Substituting the plane-wave relations (1.47) and (1.48), we can write

Jt · (Er
t −Ei

t) +Mηo(E
i
t +Er

t ) = 0. (2.9)

It appears convenient to expand the tangential field components in terms of
the eigenvectors of the Jt dyadic (1.43),

Jt =
1

kokn
n× (ktkt + k2nIt). (2.10)

After some algebraic steps we can derive the relations

Jt · (knkt ∓ jkon× kt) = ±j(knkt ∓ jkon× kt), (2.11)
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details of which are left as an exercise. The solutions for the eigenvalue equation

Jt · xt± = J±xt± (2.12)

can now be identified from (2.11) as

J± = ±j, xt± = knkt ∓ jkon× kt. (2.13)

Applying the rule

xt+xt− − xt−xt+ = −(xt+ × xt−)× I = −Xn× I, (2.14)
X = n · (xt+ × xt−) = 2jknkok

2
t , (2.15)

and assuming knk
2
t �= 0, whence X �= 0, we obtain

It =
1

X
(xt+xt− − xt−xt+)× n. (2.16)

The eigenvectors make a 2D basis, in terms of which we can expand

Jt = Jt · It = j

X
(xt+xt− + xt−xt+)× n. (2.17)

The tangential component of the incident electric field can now be decom-
posed in eigenvectors as

Ei
t = Ei

t+ +Ei
t− = A+xt+ +A−xt−, (2.18)

with
A+ =

1

X
(xt− × n) ·Ei

t, A− = − 1

X
(xt+ × n) ·Ei

t. (2.19)

Applying ki · Ei
± = 0, the corresponding total incident fields can be expressed

as

Ei
± =

n

kn
(kt ·Ei

t±) +Ei
t±

= A±(nk2t + knkt ∓ jkon× kt).

One can easily verify that they satisfy

Ei
+ ·Ei

+ = Ei
− ·Ei

− = 0, (2.20)

whence the incident fields Ei
+ and Ei

−, whose tangential components are eigen-
vectors of the dyadic Jt, must be circularly polarized. From (1.47) the corre-
sponding tangential and total magnetic eigenfields satisfy

ηoH
i
t± = −Jt ·Ei

t± = ∓jEi
t±, (2.21)

ηoH
i
± = ∓jEi

±, (2.22)
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whence also the magnetic fields Hi
+,H

i
− are circularly polarized. Plane-wave

fields reflected from the PEMC boundary can be decomposed similarly in two
circularly polarized parts.

Assuming real vector of propagation ki, from (2.13) we have x∗t± = xt∓,
whence Ei

+
∗ and Ei

− are multiples of the same vector. Expanding

Ei
± ×Ei

±
∗ = ±j2|A±|2(nk2t + knkt)× (kon× kt)

= ∓j2kok2t |A±|2ki, (2.23)
Ei
± ·Ei

±
∗ = |A±|2(k4t + k2nk

2
t − k2ok

2
t ) = 2k2ok

2
t |A±|2, (2.24)

the polarization vectors (see Appendix B) of the two field vectors Ei
± become

p(Ei
±) =

Ei
± ×Ei

±
∗

jEi± ·Ei±∗
= ∓ui, (2.25)

where ui = ki/ko is a real unit vector. Because the time-harmonic vectors Ei
±(t)

have right-handed rotation when looking into the directions of p(Ei
±), the fields

Ei
+ and Ei

− have respectively left and right-handed circular polarizations when
looking in the direction of propagation ui.

As a consequence of the property

Ei
± ·Ei

± = 0 ⇒ Ei
± ·Ei

∓
∗ = 0, (2.26)

valid for real ki, the Poynting vector of the incident wave becomes

Si =
1

2
Ei ×Hi∗ =

1

2koηo
Ei × (ki ×Ei∗)

=
ki

2koηo
|Ei|2 =

ui

2ηo
|Ei

+ +Ei
−|2

=
ui

2ηo
(|Ei

+|2 + |Ei
−|2), (2.27)

whence the incident eigenfields are power orthogonal, i.e., they carry power
independently. The same applies for the reflected fields. Depending on the
nature of the boundary, there may be power exchange between the incident
and reflected eigenfields at the boundary. However, it turns out that, at the
PEMC boundary, there is no power coupling between the eigenfields. Because
of n · kr = −n · ki, handedness of the wave is changed in reflection, whence Er

+

is right handed and Er
− is left handed.

2.3 Reflection from PEMC Boundary
Let us consider the problem of plane-wave reflection from the PEMC boundary
defined by the boundary conditions (2.6). From (2.9) we obtain

(Jt +MηoIt) ·Er
t = (Jt −MηoIt) ·Ei

t. (2.28)


