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Preface

This book is published 13 years after the bookMeasuring Precipitation from Space:
EURAINSAT and the Future (V. Levizzani, P. Bauer, and F. J. Turk, Eds., Springer,
ISBN 978-1-4020-5835-6), but it is not a revised edition of the previous. It is a new
book that aims to construct a quasi-complete picture of the science and applications
of satellite-derived precipitation measurements at the present time.

The book comes out at the end of a very exciting era of precipitation measure-
ments from space. The Tropical Rainfall Measuring Mission (TRMM), launched in
November 1997, ended its long life in space in April 2015 providing an unprece-
dented 17-year-long dataset of tropical precipitation and lightning. The Global
Precipitation Measurement (GPM) mission, launched in February 2014, is now in
space as TRMM’s natural successor with a more global perspective that extends
precipitation radar observations to the Arctic and Antarctic circles. At the same time,
the CloudSat mission, launched in April 2006, is in its 13th year in space and focuses
on cloud structure, which is essential for improving precipitation retrievals. These
are just a few examples of precipitation-oriented missions that continuously provide
data from geostationary and low Earth orbits in a truly cooperative effort worldwide.
This effort involves many agencies and a broad range of countries who collaborate in
a genuine way to observe global precipitation.

It is by realizing the significance of this historical moment and the need to think
about what is important for the future that the community joined in the effort of
writing a book with the goal of serving the precipitation community itself, the
scholars, the students, the stakeholders, the end users, and all the readers interested
in knowing the progress of satellite precipitation studies. The most recent achieve-
ments in precipitation monitoring from space drive us into the future of measuring
not only heavy rainfall but less intense rainfall, snowfall, and even hailfall. Such a
scientific framework would not have even been conceivable 13 years ago and is only
possible thanks to the relentless effort of the worldwide space and precipitation
communities.

Naturally, we realize that at the time of the printing of this book, the field will
already have made advances and thus part of the material may already be a bit
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outdated. However, in this era of rapidly evolving technological developments,
sensors that take years to design, build, and launch are already considered old.
This is particularly true nowadays when the progress in approaching new scientific
challenges is particularly fast.

Since 2007, science has made substantial progresses toward transforming satellite
rainfall “estimates” into accurate “measurements” and producing operational rainfall
products readily available for a wide field of applications ranging from climate
research and numerical weather prediction to hydrology, agriculture, health, civil
protection, and much more. Satellite-derived precipitation products are now being
considered as a valuable tool for a number of applications that benefit society and
save lives. This is perhaps the most important achievement of all.

This book represents a significant effort, and each author has provided high-
quality material in the topics of current and future mission contributions, observa-
tions of precipitation using the suite of precipitation satellites, retrieval techniques,
validation, and applications. The result is a book that not only photographs the state
of the art of the discipline but also projects it into the future.

Bologna, Italy Vincenzo Levizzani
Greenbelt, MD, USA Christopher Kidd
Greenbelt, MD, USA Dalia B. Kirschbaum
Fort Collins, CO, USA Christian D. Kummerow
Saitama, Japan Kenji Nakamura
Pasadena, CA, USA
9 March 2020

F. Joseph Turk
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