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Preface

Since they were first described in 1993, microRNAs have been recognized as
central players in the regulation of gene expression. This important class of small
non-coding RNA molecules is present in widely diverse groups of organisms,
including plants and animals. The investigation of microRNA roles in cellular
processes and their regulatory functions in response to the external environment and
in disease is a highly active and prolific research field.

In plants, there are a number of relatively well-characterized microRNAs which
are present across different taxonomic groups. The roles of some of these conserved
microRNAs in diverse biological processes, either related to development or
interaction with external factors, have been already characterized in some detail,
especially in model plant species such as Arabidopsis thaliana. However, a wealth
of new sequencing data is being produced at an increasing pace. The release of a
growing number of plant genome sequences and the relatively low cost of coding
and non-coding transcriptome sequencing represent both an opportunity and a
challenge. On the one hand, the amount of available information allows the dis-
covery of novel, non-conserved microRNAs, in a wide range of plant species, with
as yet unknown but potentially relevant functions. On the other hand, the identi-
fication and unequivocal annotation of such sequences are still a major challenge,
and the criteria used by different research groups are not homogeneous or con-
sensual. Significant advances in this area are expected to occur in the near future
taking advantage of more advanced technologies for investigating regulatory pro-
cesses in vivo and with cellular resolution.

In this book, we provide a state-of-the-art overview of the functions of
microRNAs in the regulation of plant development and their responses to the
surrounding environment. This overview is presented in the form of review chapters
which are organized around four main subjects, including microRNA investigation
and annotation, their regulatory roles in diverse developmental processes, and in
response to abiotic and biotic factors. Each of the 11 chapters, authored by experts
in the field, details a specific aspect of microRNA investigation, including a sys-
tematized revision of the key findings in that area or topic. The book will be useful
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to those interested in up-to-date knowledge about microRNAs in plants, including
undergraduate and graduate students, teachers and researchers. Due to the
promising applications of microRNAs in crop breeding and protection, the book
will be valuable for scientists in academia and in the private sector as well.

Lisbon, Portugal Célia Miguel
Norwich, UK Tamas Dalmay
Oeiras, Portugal Inês Chaves
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Chapter 1
Regulation of Plant microRNA
Biogenesis

Aleksandra Grabowska, Susheel Sagar Bhat, Aleksandra Smoczynska,
Dawid Bielewicz, Artur Jarmolowski and Zofia Szweykowska Kulinska

Abstract miRNAs play important regulatory roles in various plant metabolic
pathways. Similar to any key regulator,miRNAgenes are under a variety of transcrip-
tional and post-transcriptional controls. Another layer of this regulation is provided
by the regulation of Microprocessor protein components as well as their interac-
tions with other regulatory proteins. When in cytoplasm, miRNAmode of action and
turnover is also influenced by various protein partners that either bind directly to the
miRNA or interact with them indirectly. We put together currently available data to
provide a comprehensive overview regarding miRNA biogenesis, mode of action,
and turnover in plants.

Keywords microRNA · Biogenesis regulation · Microprocessor ·
Posttranscriptional MIR gene regulation · microRNA action and turnover · Plants

1.1 Introduction

microRNAs (miRNAs) are small (21–24 nucleotides) regulatory RNAs that are
products of RNA Polymerase II transcription. miRNAs are transcribed as long
precursors called primary-miRNAs (pri-miRNAs). pri-miRNAs contain a double-
stranded hairpin loop region and are processed by miRNA biogenesis machinery
to release miRNA/miRNA* duplexes (Xie 2005; Kim et al. 2011). One strand of
the miRNA/miRNA* duplex is then incorporated into Argonaute 1 (AGO1) protein
which becomes a part of RNA-induced silencing complex (RISC) that executes the
post-transcriptional regulation of messenger RNAs (mRNAs) (Vaucheret et al. 2004;
Baumberger and Baulcombe 2005; review: Vaucheret 2008). The regulation can be
achieved in two different ways: cleavage of mRNAs or translational inhibition (Llave
et al. 2002; Palatnik et al. 2007; Brodersen et al. 2008; Eamens et al. 2012).
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miRNA biogenesis in plants starts from the transcription of MIR genes by RNA
Pol II (Lee et al. 2004;Xie 2005).MIR genes in plants aremostly located in intergenic
regions and are independent transcriptional units (Reinhart et al. 2002). Similar to
other RNA Pol II transcripts pri-miRNAs also carry a 5′ 7 methylguanosine cap and
3′ polyadenylated tail (Jones-Rhoades and Bartel 2004; Xie 2005).

The long pri-miRNA transcripts are known to generally fold over to form dsRNA
structures containing imperfect hairpin loops that house miRNA/miRNA* duplex.
Generally, one pri-miRNA gives rise to one mature miRNA species but ‘poly-
cistronic’ pri-miRNAs (one pri-miRNA gives rise to more than one miRNA) have
also been reported (Talmor-Neiman et al. 2006; Merchan et al. 2009; Zhang et al.
2009; Baldrich et al. 2016). miRNA biogenesis is also affected by general transcrip-
tional regulating factors like the Mediator complex (Kim et al. 2011). Absence of
Mediator complex leads to lower levels of primary and mature miRNAs owing to
lower RNA Pol II occupancy on MIR genes. In addition, MIR gene promoters have
motifs that allow for binding of various transcription factors, which in turn allow
for the regulation of miRNA biogenesis according to various developmental and/or
environmental cues (Megraw et al. 2006; Yamasaki et al. 2009; Yant et al. 2010;
Rogers and Chen 2013; Wang and Perry 2013; Barciszewska-Pacak et al. 2015a;
Stepien et al. 2017). Certain transcriptional factors are noteworthy in this regulation
and are discussed further.

Negative on TATA less 2 (NOT2a) is a core member of the Carbon Catabolite
Repression 4 (CCR4)-NOT complex. NOT2a and NOT2b (previously known as
Vire2 interacting protein2) are homologous proteins that act as general transcription
factors and associate with RNA Pol II to regulate RNA Pol II based transcription.
NOT2a and NOT2b can form homo or heterodimers and interact with Dicer Like 1
(DCL1, discussed later), RNAPol II and othermiRNAbiogenesis factors like Serrate
(SE) and Cap Binding protein 80/20. Absence or lower levels of NOT2 proteins leads
to decreased accumulation of both primary and mature miRNAs (Wang et al. 2013).
Cell Division Cycle 5 (CDC5) is another transcription factor that associates with
MIR gene promoters and positively regulates MIR gene transcription (Zhang et al.
2013). Other transcription factors that provide conditional regulation to MIR gene
expression include, but are not limited to, auxin response factors (ARFs; provide
auxin sensitivity) (Megraw et al. 2006), Squamosa Promoter binding protein Like
7 (SPL7; copper sensitivity) (Yamasaki et al. 2009), MYB2 transcriptional factor
(phosphate sensitivity) (Baek et al. 2013), Apetala 2 (AP2) (Yant et al. 2010) and
Fusca 3 (Wang and Perry 2013) for organ-specific miRNA expression.

miRNA biogenesis is also affected by processes like splicing and alternative
polyadenylation (Bielewicz et al. 2013; Schwab et al. 2013; Knop et al. 2017). It
has been shown that presence of introns stimulates miRNA biogenesis when miRNA
is present in the exonic region, an effect that is enhanced by the presence of active 5′
splice site (5′ ss) rather than splicing itself. In contrast, biogenesis of selected intron-
derived miRNAs is enhanced when 5′ ss is inactive or splicing is inhibited. These
effects have been annotated to the association between U1 small nuclear ribonucle-
oprotein (U1 snRNP, component of the spliceosome complex) and Microprocessor
components (SE) and Cap Binding Complex (CBC).
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pri-miRNAs are processed by the RNase III endonuclease type enzyme DCL1
(Reinhart et al. 2002; Park et al. 2005). DCL1 cleavage is dependent on structural
features of pri-miRNAs, especially the stem loop (Song et al. 2010; Werner et al.
2010). The imperfect pairing of the stem loop below the miRNA/miRNA* duplex
plays an important role in the DCL1 cleavage (Bologna et al. 2009). pri-miRNAs
are processed by DCL1 in a two-step process. In the first step, DCL1 cleaves pri-
miRNAs and a precursor-miRNA (pre-miRNA) containing the stem loop (carrying
miRNA/miRNA*) with 2nt 3′ overhang and 5′ phosphate group is released (Kurihara
and Watanabe 2004). The second cleavage step then releases the miRNA/miRNA*
duplex. The precision of this cleavage is also dependent on whether the process-
ing happened from base to loop or loop to base. This bi-directional activity is also
attributed to the heterogeneity of pri-miRNA structures (Bologna et al. 2009, 2013;
Song et al. 2010; Werner et al. 2010). DCL1 activity also requires several other pro-
teins for proper functioning. Hyponastic Leaves 1/Double stranded RNA Binding
protein 1 (HYL1/DRB1) is a double-stranded RNA binding protein that is thought
to probably bind the miRNA/miRNA* double-stranded region and guide proper pri-
miRNA cleavage (Kurihara, 2005). Similarly, zinc finger protein SE, binds single-
strandedRNA regions of pri-miRNAs and helps in proper positioning of pri-miRNAs
at the catalytic site of DCL1 (Lobbes et al. 2006; Laubinger et al. 2008). Another
protein Tough (TGH) binds single-stranded RNA and is shown to promote DCL1
activity (Ren et al. 2012b). All these proteins, DCL1, HYL1, SE, and TGH are known
to interact physically. The plantMicroprocessor is largely considered to be formed by
DCL1, HYL1, and SE; while the inclusion of TGH in the Microprocessor complex
is not yet definitive.

Recently, Chromatin Remodeling Factor (CHR2) has also been shown to be
involved in miRNA biogenesis (Wang et al. 2018b). CHR2 is a member of the
SWI/SNF chromatin remodeling complex and has ATPase activity. Wang and col-
leagues show that CHR2 positively affectsMIR gene transcription and hence leads to
higher levels of pri-miRNAs, but when it associates with SE it remodels pri-miRNAs
in a way that they are no more suitable substrates for DCL1 mediated cleavage. This
remodeling of pri-miRNAs is a result of non-canonical RNA helicase activity of
CHR2. The processing of pri-miRNAs thus can also be affected by any modifica-
tions that can result in altered structures of pri-miRNAs or can be identified by some
specific proteins. Methylation of adenosine at N6 position (m6A) is one such modifi-
cation that has been shown topositively affectmiRNAproduction in animals (Alarcón
et al. 2015). A recent Arabidopsis based study showed that mRNA adenosine methy-
lase (MTA), catalytic component of m6A methyltransferase complex, binds to and
methylates pri-miRNAs and affects their processing. MTA also interacts with RNA
Pol II and TGH and thus the possibility that it may also affectMIR gene transcription
cannot be ruled out (Bhat et al. 2019). Evidence of another regulatory step came
in the form of retrograde signaling from chloroplast (Fang et al. 2019). Fang and
colleagues showed that nuclear Exoribonuclease 2 (XRN2) degrades pri-miRNAs
and it is inhibited by 3′-phosphoadenosine 5′-phosphate (PAP). The levels of PAP
are further influenced by tocopherols produced in chloroplast. Another example of
retrograde signaling that regulates miRNA biogenesis came from a study done on


