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Sandrine Péché, Univirsité Paris Diderot, Paris, France
Gesine Reinert, University of Oxford, Oxford, UK
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Preface

Discrete-time zero-sum Markov games constitute a class of stochastic games intro-
duced by Shapley in [65] whose evolution over time can be described as follows.
At each stage, players 1 and 2 observe the current state x of the game and indepen-
dently choose actions a and b, respectively. Then, player 1 receives a payoff r(x,a,b)
from player 2 and the game moves to a new state y in accordance with a transition
probability or a transition function F as in (1), below. The payoffs are accumulated
throughout the evolution of the game in a finite or infinite horizon under a specific
optimality criterion.

Even though there are now many studies in this field under multiple variants,
it is mostly assumed that all components of the game are completely known by
the players. However, the environment itself in which it evolves could make this
assumption unrealistic or too strong. Hence, the availability of approximation and
estimation algorithms that provide players with some insights on the evolution of
the game is important, so that they can select their actions more accurately.

An important feature of this book is that it will deal with a class of Markov
games with Borel state and action spaces, and possibly unbounded payoffs, under
discounted and average criteria, whose state process {xt} evolves according to a
stochastic difference equation of the form

xt+1 = F(xt ,at ,bt ,ξt), t = 0,1, . . . (1)

Here, the pair (at ,bt) represents the actions chosen by players 1 and 2, respectively,
at time t, and {ξt} is the disturbance process which is an observable sequence of
independent and identically distributed random variables with unknown distribution
θ for both players. In this scenario, our concern is in a game played over an in-
finite horizon evolving as follows. At stage t, once the players have observed the
state xt , and before choosing the actions at and bt , players 1 and 2 implement a
statistical estimation process to obtain estimates θ 1

t and θ 2
t of θ , respectively. Then,
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viii Preface

independently, the players adapt their decisions to such estimators to select actions
a = at(θ 1

t ) and b = bt(θ 2
t ). Next the game jumps to a new state according to the

transition probability determined by Eq. (1) and the unknown distribution θ , and
the process is repeated over and over again.

This book is the first part of a project whose objective is to make a systematic
analysis on recent developments in this kind of games. Specifically, in this first part
we will provide the theoretical foundations on the procedures combining statistical
estimation and control techniques for the construction of strategies of the players.
We generically call this combination “estimation and control” procedures. The sec-
ond part of the project will deal with another class of games models, as well as with
approximation and computational aspects.

The statistical estimation process will be studied from two approaches. In the
first one, we assume that the distribution θ has a density ρ on ℜk. In this case,
there is a vast literature (see, e.g., [9–11, 27] and references therein) that provides
different density estimation methods that might be easily adapted to the conditions
imposed by the problem being analyzed. Among these we can mention kernel den-
sity estimation, Lq estimation for q ≥ 1, and projection estimation, through which
it is possible to obtain several important properties such as the rate of convergence.
The second approach is provided by the empirical distribution θt defined by the ran-
dom disturbance process {ξt}. This method is very general in the sense that both the
random variables ξt and the distribution θ can be arbitrary. The price that must be
paid due to this generality is that its applicability is restricted because it is necessary
to impose stronger conditions than those of the previous case on the game model.
Anyhow, the use of the empirical distribution has the additional advantage that it
provides an approximation method of the value of the game and optimal strategies
for players, in cases where the distribution θ is difficult to handle, by replacing θ
with a simpler distribution given by θt . In general terms, our approach to obtain
estimation and control procedures for both discounted and average criteria consists
of combining a statistical estimation method suitable for θ with game theory tech-
niques. Our starting point is to, first, prove the existence of a value of the game as
well as measurable minimizers/maximizers in the Shapley equation. To this end,
some conditions are imposed on the game model which fall within the weighted-
norm approach proposed by Wessels in [76] and then fully studied in [23, 24, 31]
for Markov decision processes (MDPs) and recently for zero-sum stochastic games
in [32, 40, 41, 44, 48]. Thereby, the estimation method is adapted to these conditions
to obtain appropriate convergence properties.

Clearly, the good behavior of the strategies obtained through the estimation and
control procedures depends on the accuracy of the estimation method, and even
more on the optimality criterion with which their performance is measured. For
instance, it is well known that the discounted criterion strongly depends on the de-
cisions selected in the early stages of the game, just where the estimation process
yields deficient information about the unknown distribution θ . So, neither player
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1 nor player 2 can generally ensure the existence of discounted optimal strategies.
Hence the optimality under a discounted criterion is studied in an asymptotic sense.
The notion of asymptotic optimality used in this book for Markov games was mo-
tivated from Schäl [67], who introduced this concept to study adaptive MDPs. In
contrast, in view of the necessary asymptotic analysis in the study of the average
criterion, the strategies obtained by means of estimation and control procedures turn
out to be average optimal, providing suitable ergodicity conditions.

According to the historical development of the theories of stochastic control and
Markov games, the problem of estimation and control for MDPs, also known as
an adaptive Markov control problem, has received considerable attention in recent
years (see, e.g., [2, 7, 22, 25, 26, 28, 29, 33–35, 52–55, 67] and references therein).
In fact, even though approximation algorithms for stochastic games and games
with partial information have been studied from several points of view (see, e.g.,
[8, 17, 20, 43, 46, 59, 60, 63], and references therein), in the field of statistical esti-
mation and control procedures for Markov games the literature remains scarce; we
can cite, for instance, [50, 56–58, 69, 70]. In particular, [56] deals with semi-Markov
zero-sum games with unknown sojourn time distribution. The works [69, 70] study
repeated games assuming that the transition law depends on an unknown parameter
which is estimated by the maximum likelihood method, whereas [50, 56–58] deal
with the theory developed in the context of this book.

The book is organized as follows. In Chap. 1 the class of Markov game mod-
els we deal with is introduced, together with the main elements necessary to define
the game problem. Chapters 2 and 3 are devoted to analyze the discounted and
the average criteria, respectively, where estimation and control procedures are pre-
sented under the assumption that the distribution θ has a density on ℜk. Empirical
estimation-approximation methods are given in Chap. 4. In this case, by using the
empirical distribution to estimate θ both discounted and average criteria are ana-
lyzed. Finally, several examples of the class of Markov games studied throughout
the book are given in Chap. 5. In this part we focus, mainly, on illustrating our as-
sumptions on the game model, as well as on the numerical implementation of the
estimation and control algorithm in specific examples.
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Summary of Notation and Terminology

Symbols and Abbreviations

N Set of positive integers
N0 Set of nonnegative integers
ℜ Set of real numbers
ℜ+ Set of nonnegative real numbers
1D(·) Indicator function of the set D
:= Equality by definition
a.e. Almost everywhere
a.s. Almost surely
i.i.d. Independent and identically distributed
r.v. Random variable
p.m. Probability measure
l.s.c. Lower semicontinuous
u.s.c. Upper semicontinuous

Spaces of Functions

• The space Lq = Lq(ℜk), for 1 ≤ q < ∞, consists of all real-valued measurable
functions on ℜk with finite Lq-norm:

‖ρ‖Lq
:=

(∫
ℜk

|ρ |q dμ
)1/q

with respect to the Lebesgue measure μ .
• A Borel space is a Borel subset of a complete separable metric space.

xiii



xiv Summary of Notation and Terminology

For a Borel space X , we use the following notation:

B(X) Borel σ -algebra in X , and “measurable,” for
either sets or functions, means “Borel measurable.”

B(X) Space of real-valued bounded measurable functions
on X with the supremum norm: ‖v‖B := supx∈X |v(x)| .

C(X)⊂ B(X) Subspace of bounded continuous functions.
L(X) Space of lower semicontinuous functions and

bounded from below.
BW (X) For a function W : X → [1,∞), space of measurable

functions with finite weighted norm (W -norm):

‖v‖W := supx∈X
|v(x)|
W (x)

.

CW (X)⊂ BW (X) Subspace of W -bounded continuous functions.
LW (X)⊂ BW (X) Subspace of W -bounded lower semicontinuous

functions.
P(X) Space of probability measures on X endowed with

the weak topology (see Appendix B).
P(X |Y ) Family of stochastic kernels on X given Y, where

X and Y are Borel spaces.


