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Introduction

Extracting actionable information from data is changing the fabric of modern 
business in ways that directly affect programmers. One way is the demand 
for new programming skills. Market analysts predict demand for people with 
advanced statistics and machine learning skills will exceed supply by 140,000 
to 190,000 by 2018. That means good salaries and a wide choice of interesting 
projects for those who have the requisite skills. Another development that affects 
programmers is progress in developing core tools for statistics and machine 
learning. This relieves programmers of the need to program intricate algorithms 
for themselves each time they want to try a new one. Among general-purpose 
programming languages, Python developers have been in the forefront, building 
state-of-the-art machine learning tools, but there is a gap between having the 
tools and being able to use them efficiently.

Programmers can gain general knowledge about machine learning in a 
number of ways: online courses, a number of well-written books, and so on. Many 
of these give excellent surveys of machine learning algorithms and examples of  
their use, but because of the availability of so many different algorithms, it’s 
difficult to cover the details of their usage in a survey.

This leaves a gap for the practitioner. The number of algorithms available 
requires making choices that a programmer new to machine learning might not 
be equipped to make until trying several, and it leaves the programmer to fill 
in the details of the usage of these algorithms in the context of overall problem 
formulation and solution.

This book attempts to close that gap. The approach taken is to restrict the algo-
rithms covered to two families of algorithms that have proven to give optimum 
performance for a wide variety of problems. This assertion is supported by 
their dominant usage in machine learning competitions, their early inclusion in 
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newly developed packages of machine learning tools, and their performance in 
comparative studies (as discussed in Chapter 1, “The Two Essential Algorithms 
for Making Predictions”). Restricting attention to two algorithm families makes 
it possible to provide good coverage of the principles of operation and to run 
through the details of a number of examples showing how these algorithms 
apply to problems with different structures.

The book largely relies on code examples to illustrate the principles of oper-
ation for the algorithms discussed. I’ve discovered in the classes I have taught 
at University of California, Berkeley, Galvanize, University of New Haven, and 
Hacker Dojo, that programmers generally grasp principles more readily by 
seeing simple code illustrations than by looking at math.

This book focuses on Python because it offers a good blend of functionality 
and specialized packages containing machine learning algorithms. Python is an 
often-used language that is well known for producing compact, readable code. 
That fact has led a number of leading companies to adopt Python for prototyp-
ing and deployment. Python developers are supported by a large community 
of fellow developers, development tools, extensions, and so forth. Python is 
widely used in industrial applications and in scientific programming, as well. 
It has a number of packages that support computationally intensive applica-
tions like machine learning, and it is a good collection of the leading machine 
learning algorithms (so you don’t have to code them yourself). Python is a better 
general-purpose programming language than specialized statistical languages 
such as R or SAS (Statistical Analysis System). Its collection of machine learning 
algorithms incorporates a number of top-flight algorithms and continues to 
expand.

Who This Book Is For

This book is intended for Python programmers who want to add machine 
learning to their repertoire, either for a specific project or as part of keeping 
their toolkit relevant. Perhaps a new problem has come up at work that requires 
machine learning. With machine learning being covered so much in the news 
these days, it’s a useful skill to claim on a resume.

This book provides the following for Python programmers:

 ■ A description of the basic problems that machine learning attacks

 ■ Several state-of-the-art algorithms

 ■ The principles of operation for these algorithms

 ■ Process steps for specifying, designing, and qualifying a machine learning 
system



 Introduction xxiii

 ■ Examples of the processes and algorithms

 ■ Hackable code

To get through this book easily, your primary background requirements include 
an understanding of programming or computer science and the ability to read 
and write code. The code examples, libraries, and packages are all Python, so the 
book will prove most useful to Python programmers. In some cases, the book 
runs through code for the core of an algorithm to demonstrate the operating 
principles, but then uses a Python package incorporating the algorithm to apply 
the algorithm to problems. Seeing code often gives programmers an intuitive 
grasp of an algorithm in the way that seeing the math does for others. Once 
the understanding is in place, examples will use developed Python packages 
with the bells and whistles that are important for efficient use (error checking, 
handling input and output, developed data structures for the models, defined 
predictor methods incorporating the trained model, and so on).

In addition to having a programming background, some knowledge of math 
and statistics will help get you through the material easily. Math requirements 
include some undergraduate-level differential calculus (knowing how to take a 
derivative and a little bit of linear algebra), matrix notation, matrix multiplication, 
and matrix inverse. The main use of these will be to follow the derivations of 
some of the algorithms covered. Many times, that will be as simple as taking a 
derivative of a simple function or doing some basic matrix manipulations. Being 
able to follow the calculations at a conceptual level may aid your understanding 
of the algorithm. Understanding the steps in the derivation can help you to under-
stand the strengths and weaknesses of an algorithm and can help you to decide  
which algorithm is likely to be the best choice for a particular problem.

This book also uses some general probability and statistics. The requirements 
for these include some familiarity with undergraduate-level probability and con-
cepts such as the mean value of a list of real numbers, variance, and correlation. 
You can always look through the code if some of the concepts are rusty for you.

This book covers two broad classes of machine learning algorithms: penal-
ized linear regression (for example, Ridge and Lasso) and ensemble methods 
(for example, Random Forest and Gradient Boosting). Each of these families 
contains variants that will solve regression and classification problems. (You 
learn the distinction between classification and regression early in the book.)

Readers who are already familiar with machine learning and are only inter-
ested in picking up one or the other of these can skip to the two chapters cov-
ering that family. Each method gets two chapters—one covering principles of 
operation and the other running through usage on different types of problems. 
Penalized linear regression is covered in Chapter 4, “Penalized Linear Regres-
sion,” and Chapter 5, “Building Predictive Models Using Penalized Linear 
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Methods.” Ensemble methods are covered in Chapter 6, “Ensemble Methods,” 
and Chapter 7, “Building Ensemble Models with Python.” To familiarize yourself 
with the problems addressed in the chapters on usage of the algorithms, you 
might find it helpful to skim Chapter 2, “Understand the Problem by Under-
standing the Data,” which deals with data exploration. Readers who are just 
starting out with machine learning and want to go through from start to finish 
might want to save Chapter 2 until they start looking at the solutions to prob-
lems in later chapters.

What This Book Covers

As mentioned earlier, this book covers two algorithm families that are relatively 
recent developments and that are still being actively researched. They both 
depend on, and have somewhat eclipsed, earlier technologies.

Penalized linear regression represents a relatively recent development in 
ongoing research to improve on ordinary least squares regression. Penalized 
linear regression has several features that make it a top choice for  predictive 
analytics. Penalized linear regression introduces a tunable parameter that makes 
it possible to balance the resulting model between overfitting and underfitting. 
It also yields information on the relative importance of the various inputs to the 
predictions it makes. Both of these features are vitally important to the proc-
ess of developing predictive models. In addition,  penalized linear regression 
yields the best  prediction performance in some classes of  problems, particularly 
underdetermined problems and problems with very many input parameters 
such as genetics and text mining. Furthermore, there’s been a great deal of recent 
development of coordinate descent methods, making training penalized linear 
regression models extremely fast.

To help you understand penalized linear regression, this book recapitulates 
ordinary linear regression and other extensions to it, such as stepwise regres-
sion. The hope is that these will help cultivate intuition.

Ensemble methods are one of the most powerful predictive analytics tools 
available. They can model extremely complicated behavior, especially for prob-
lems that are vastly overdetermined, as is often the case for many web-based 
prediction problems (such as returning search results or predicting ad click-
through rates). Many seasoned data scientists use ensemble methods as their 
first try because of their performance. They are relatively simple to use, and 
they also rank variables in terms of predictive performance.

Ensemble methods have followed a development path parallel to penalized 
linear regression. Whereas penalized linear regression evolved from over-
coming the limitations of ordinary regression, ensemble methods evolved to 
overcome the limitations of binary decision trees. Correspondingly, this book’s 
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coverage of ensemble methods covers some background on binary decision trees 
because ensemble methods inherit some of their properties from binary decision 
trees. Understanding them helps cultivate intuition about ensemble methods.

What Has Changed Since the First Edition

In the three years since the first edition was published, Python has more firmly 
established itself as the primary language for data science. Developers of plat-
forms like Spark for big data or TensorFlow and Torch for deep learning have 
adopted Python interfaces to reach the widest set of data scientists. The two 
classes of algorithms emphasized in the first edition continue to be heavy favor-
ites and are now available as part of PySpark.

The beauty of this marriage is that the code required to build machine learning 
models on truly gargantuan data sets is no more complicated than what’s required 
on smaller data sets.

PySpark illustrates several important developments, making it cleaner and 
easier to invoke very powerful machine learning tools through relatively simple 
easy to read and write Python code. When the first edition of this book was 
written, building machine learning models on very large data sets required 
spinning up hundreds of processors, which required vast knowledge of data 
center processes and programming. It was cumbersome and frankly not very 
effective. Spark architecture was developed to correct this difficulty.

Spark made it possible to easily rent and employ large numbers of processors 
for machine learning. PySpark added a Python interface. The result is that the 
code to run a machine learning algorithm in PySpark is not much more compli-
cated than to run the plain Python versions of programs. The algorithms that 
were the focus of the first edition continue to be heavily used favorites and are 
available in Spark. So it seemed natural to add PySpark examples alongside the 
Python examples in order to familiarize readers with PySpark.

In this edition all the code examples are in Python 3, since Python 2 is due to 
fall out of support and, in addition to providing the code in text form, the code 
is also available in Jupyter notebooks for each chapter. The notebook code when 
executed will draw graphs and tables you see in the figures.

How This Book Is Structured

This book follows the basic order in which you would approach a new prediction 
problem. The beginning involves developing an understanding of the data and 
determining how to formulate the problem, and then proceeds to try an algorithm 
and measure the performance. In the midst of this sequence, the book outlines 
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the methods and reasons for the steps as they come up. Chapter 1 gives a more 
thorough description of the types of problems that this book covers and the 
methods that are used. The book uses several data sets from the UC Irvine data 
repository as examples, and Chapter 2 exhibits some of the methods and tools 
that you can use for developing insight into a new data set. Chapter 3, “Predic-
tive Model Building: Balancing Performance, Complexity, and Big Data,” talks 
about the difficulties of predictive analytics and techniques for addressing them. 
It outlines the relationships between problem complexity, model complexity, 
data set size, and predictive performance. It discusses overfitting and how to 
reliably sense overfitting. It talks about performance metrics for different types 
of problems. Chapters 4 and 5, respectively, cover the background on penalized 
linear regression and its application to problems explored in Chapter 2. Chapters 
6 and 7 cover background and application for ensemble methods.

What You Need to Use This Book

To run the code examples in the book, you need to have Python 3.x, SciPy, 
numpy, pandas, and scikit-learn and PySpark. These can be difficult to install 
due to cross-dependencies and version issues. To make the installation easy, 
I’ve used a free distribution of these packages that’s available from Continuum 
Analytics (http://continuum.io/). Its Anaconda product is a free download and 
includes Python 3.x and all the packages you need to run the code in this book 
(and more). I’ve run the examples on Ubuntu 14.04 Linux but haven’t tried them 
on other operating systems.

PySpark will need a Linux environment. If you’re not running on Linux, then 
probably the easiest way to run the examples will be to use a virtual machine. 
Virtual Box is a free open source virtual machine—follow the directions to 
download Virtual Box and then install Ubuntu 18.05 and use Anaconda to install 
Python, PySpark, etc. You’ll only need to employ a VM to run the PySpark exam-
ples. The non-Spark code will run anywhere you can open a Jupyter notebook.

Reader Support for This Book

Source code available in the book’s repository can help you speed your learning. 
The chapters include installation instructions so that you can get coding along 
with reading the book.

Source Code
As you work through the examples in this book, you may choose either to type 
in all the code manually or to use the source code files that accompany the book. 

http://continuum.io/
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All the source code used in this book is available for download from http://
www.wiley.com/go/pythonmachinelearning2e. You will find the code snippets 
from the source code are accompanied by a download icon and note indicating 
the name of the program so that you know it’s available for download and can 
easily locate it in the download file.

Besides providing the code in text form, it is also included in a Python note-
book. If you know how to run a Jupyter notebook, you can run the code cell-
by-cell. The output will appear in the notebook, the figures will get drawn, and 
printed output will appear below the code block.

After you download the code, just decompress it with your favorite com-
pression tool.

How to Contact the Publisher
If you believe you’ve found a mistake in this book, please bring it to our attention. 
At John Wiley & Sons, we understand how important it is to provide our cus-
tomers with accurate content, but even with our best efforts an error may occur.

In order to submit your possible errata, please email it to our Customer Service 
Team at wileysupport@wiley.com with the subject line “Possible Book Errata 
Submission”.

http://www.wiley.com/go/pythonmachinelearning2e
http://www.wiley.com/go/pythonmachinelearning2e
mailto:wileysupport@wiley.com



